
D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 1 of 28

Cloud Orchestration at the Level of Application

Project Acronym: COLA

Project Number: 731574

Programme: Information and Communication Technologies
Advanced Computing and Cloud Computing

Topic: ICT-06-2016 Cloud Computing

Call Identifier: H2020-ICT-2016-1

Funding Scheme: Innovation Action

Start date of project: 01/01/2017 Duration: 30 months

Deliverable:

D4.2 Requirements Gathering and Performance

Benchmarking of Microservices

Due date of deliverable: 31/04/2018 Actual submission date: 31/04/2018

WPL: Peter Gray

Dissemination Level: PU

Version: 1.0

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 2 of 28

1 Table of Contents

1 Table of Contents 2

2 List of Figures and Tables 4

3 Status, Change History and Glossary 5

4 Glossary 5

5 Introduction 7

6 Requirements gathering 7

7 Performance benchmarking: Methodology and Tools 9

7.1 Code repository - GitHub 9

7.2 Continuous integration/automated testing tool - Travis & Jenkins 11

8 Performance benchmarking of MiCADO services 11

8.1 Occopus (SZTAKI) 12

8.1.1 Benchmarking Occopus 12

8.1.2 Swarm deployment by Occopus 14

8.1.3 MiCADO deployment by Occopus 16

8.2 Prometheus 18

8.2.1 Automated stress testing 18

8.3 Docker Swarm 19

8.3.1 Automated setup of containers using MiCADO 19

9 Test plan for the security components 20

9.1 Crypto Engine 21

9.1.1 Test Items 21

9.1.2 Test Features 21

9.1.3 Features not to be tested 21

9.1.4 Approach 22

9.2 Credential Manager 22

9.2.1 Test Items 23

9.2.2 Test features 23

9.2.3 Features not to be tested 23

9.2.4 Approach 24

9.3 Credential Store 24

9.3.1 Test Items 24

9.3.2 Test features 25

9.3.3 Features not to be tested 25

9.3.4 Approach 25

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 3 of 28

9.4 Security Policy Manager 25

9.4.1 Test Items 25

9.4.2 Test features 25

9.4.3 Features not to be tested 26

9.4.4 Approach 26

10 Conclusion 27

11 References 28

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 4 of 28

2 List of Figures and Tables

Figures

Figure 1 Occopus benchmark test with 10 notes infrastructure .. 13

Figure 2 Occopus benchmrk test with 100 nodes infrastructure .. 13

Figure 3 Swarm deployment page on Jenkins .. 15

Figure 4 Occopus swarm deployment in different clouds .. 16

Figure 5 MiCADO deployment time in different clouds ... 17

Figure 6 Grafana displaying real-time Prometheus metrics (average and individual CPU load on nodes

and containers) during automated load testing ... 18

Figure 7 Docker Swarm Visualiser showing test_stress containers (smaller green boxes) running

inside worker virtual machine nodes (larger boxes) as they are scaled-down............................. 19

Tables

Table 1 Status Change History .. 5

Table 2 Deliverable Change History .. 5

Table 3 Glossary .. 6

Table 4 Occupus Swarm deployment average .. 16

Table 5 MiCADO deployment average .. 17

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 5 of 28

3 Status, Change History and Glossary

Status: Name: Date: Signature:

Draft: Peter Gray 20/04/2018 Peter Gray

Reviewed: Gabor Terstyanszky 26/04/2018 Gabor Terstyanszky

Approved: Tamas Kiss 30/04/2018 Tamas Kiss

Table 1 Status Change History

Version Date Author Modification

v0.1 8/03 Peter Gray Structure document

v0.2 26/03 James Deslauriers Add content sections 8.2 / 8.3

v0.3 04/04 Mark Emodi Add content 7.2, 7.3 (travis), 8.1

v0.4 10/04 Mark Emodi Add content under section 8.1.x

v0.5 12/04 Nicolae Paladi Add security section 9

v0.6 16/04 Peter Gray / Bogdan
Despotov

Add requirements gathering section 6 and
performance benchmarking methodology and
tools section 7

v1.0 18/04 Peter Gray / Bogdan
Despotov

Consolidate content, add Introduction and
conclusion

Table 2 Deliverable Change History

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 6 of 28

4 Glossary

CLI Command Line Interface

CM Credential Manager

CO Container Orchestrator

CS Credential Store

GUI Graphical User Interface

HTTPS Hyper Text Transfer Protocol (Secure)

ON OpenNebula

SPM Security Policy Manager

SQL Structured Query Language

SSD Solid State Drive

TOSCA Topology and Orchestration Specification for Cloud Applications

REST Representational State Transfer

SSH Secure Shell

YAML Yet Another Markup Language / YAML Ain’t Markup Language

QoS Quality of Service

Table 3 Glossary

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 7 of 28

5 Introduction

The purpose of the COLA project is to develop a generic framework that will enable cloud

applications to utilise the dynamic and elastic capabilities of underlying IaaS cloud

infrastructure. The framework should allow for the performance of these applications to be

optimised taking both execution/response time and also economic cost and viability into

consideration. However, to achieve this we must first ensure adequate performance of the

MiCADO services layer and underlying cloud infrastructure.

This deliverable relates to objective 4.3: To investigate optimal container size and

infrastructure requirements of microservices (MiCADO services) and 4.4: To assess

infrastructure performance for the optimisation of cloud applications. According to

DoW this deliverable reports on the initial functional and non-functional cloud infrastructure

and access layer level requirements of typical MiCADO microservices, and analyses the first

performance benchmarks of these microservices.

This deliverable will inform WP5 regarding QoS policies including deployment and scaling of

services and their security policy, and WP6 to advise on price/performance optimisation.

In Section 6, we outline our approach to understanding performance requirements at

application-level by studying the requirements of the COLA use-cases described in D8.1 and

D8.2, the use-case templates documented in D5.4, and more specifically at the service-level

(MiCADO Services) requirements documented in D6.2. In Section 7, we describe our

approach to performance benchmarking the MiCADO services (methodology and tools). In

Section 8, we document the results from the performance benchmarking of the core

MiCADO Services (Occopus, Prometheus, Docker SWARM). In Section 9, we outline a test

plan for core security components comprised on the Crypto Engine, Credential Manager,

Credential Store and Security Policy Manager.

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 8 of 28

6 Requirements gathering

WP4 is tasked with providing the cloud access layer and testbed/production cloud

infrastructure optimised for the MiCADO microservices. In this respect, most of the

requirements gathering is undertaken by the study and correlation of the outputs from project

deliverables.

We examined D8.1: Business and Technical Requirements of COLA Use-Cases, and

8.2: Customisation and Further Development of Software Applications to extrapolate

the high-level requirements common to the use-cases and assess whether the performance

of the current MiCADO implementation in the cloud is likely to meet the demands of the

applications. Details of these requirements can be found in the above referenced documents

and a short summary is provided beow.

Outlandish / The Audience Agency Finder Application

Querying needs to be in the range of hours and not days. Some degree of elastic

scalability to respond in a timely fashion to soak up load. Spin up time to be less than

AWS’ auto-scaling groups for a standard AMI based deployment. We would prefer the

scaling out to be similar to the speed at which a Kubernetes cluster can be deployed.

Saker Solutions / SakerGrid simulation platform

The system should have a target of a linear increase in performance from the additional

cloud resources deployed. The time to start up a machine instance should be similar to

that to power up a desktop PC with an SSD – i.e. no longer than one minute.

Inycom / Eccobuzz platform

The performance of the system depends strongly on how many crawlers are configured,

how often they are launched and how much information they gather to be processed later.

The objective in this use case for the regional government is that the crawlers are run

every 2 hours and in the meantime all the information collected has been processed.

CloudSME / Data Avenue

The whole cluster should respond (deliver pages) fast (20 up to 100 milliseconds). This

varies by complexity of the delivered pages and type of page (e.g. to be cashed before or

not).

To further understand the application-level performance requirements we also studied the

application description templates (ADTs) and services relating to each use-case including

the additional Data Avenue use-case, as documented in D5.4: First Set of Template and

Services of Use Cases. Finally, technology selection and design decisions related to the

MiCADO framework and its implementation have been influenced by D6.2 Prototype and

documentation of the monitoring service.

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 9 of 28

7 Performance benchmarking: methodology and tools

In order to validate the automated scalability features provided by MiCADO and evaluate the

performance of the MiCADO prototype implementation we refer to Section 10 of D6.2:

Prototype and Documentation of the Monitoring Service. From the experiments

conducted, we learn the time it takes to create and destroy the MiCADO infrastructure and

scale up/down the application nodes.

Operation Time (Sec)

Create infrastructure 320

Destroy infrastructure 15

Scale up app node 300

Scale down app node 12

The results provide evidence that MiCADO performs as required in that the times recorded

for each scaling event are well within the expected performance ranges. However, to assess

in more detail the potential impact on application performance, and efficient resource

utilisation we must first understand the service-level performance requirements. Therefore,

in Section 8 of this deliverable we drill-down further to test the performance of the core

MiCADO services, comprised of (1) Occopus for the orchestration of the MiCADO

infrastructure, (2) Docker Swarm for the automated setup of containers, and (3) Prometheus

as the monitoring tool.

It is important to perform baseline testing for core microservices periodically. It also makes

more sense to run microservice tests at unit level. For this reason, we have decided to use

common tools such as GitHub, for source code management, Travis for unit testing and

Jenkins for performance testing. The results from the tests that follow in Section 8 will

provide a performance baseline allowing for further performance comparisons to be made

per release. This will make it easier to measure any performance degradation at later stages

of development and allow the developers to pinpoint possible cause much more quickly and

accurately.

7.1 Code repository – GitHub

Github is chosen as the source code management platform that will contain all the code

related to the COLA project. It is a web based hosted solution, allows for collaboration and is

integrated with Travis, a tool used for unit testing. Currently the development repository for

MiCADO is at: https://github.com/micado-scale/

MiCADO releases are posted on the project website, while this repository is used for

collaboration between the teams at UoW and SZTAKI.

The guidelines for the development of MiCADO are the following.

Code style

https://github.com/micado-scale/

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 10 of 28

We use the following coding style under the development process. For Python we use PEP-

8 [1] as a standard coding style and for YAML we use the 4-space wide indent.

Versioning

For versioning purposes, we adapted semantic versioning 2.0.0 [2]. Consider a version

format of X.Y.Z (Major.Minor.Patch). Given a version number major, minor, patch increment

the:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards-compatible manner, and

3. PATCH version when you make backwards-compatible bug fixes.

This infers the following renaming of previous releases:

V3 -> 0.3.0 (further modifications will result in 0.3.1, 0.3.2, etc.)

V4 -> 0.4.0

Previous releases (V1 and V2) should remain untouched.

Repositories

We should use separate GIT repositories for each separate logical unit within the micado-

scale github.com organization as follows:

1. Each component should be placed in its own repository with the prefix component-,

e.g., component-alert_manager.

2. The MiCADO repository is the main repository, containing "glue" files (e.g., cloud-init

and/or docker-compose related ones).

3. Documentation should go into the docs repository in either markdown or restructured

text format.

Each repository should contain a README.md file explaining the purpose of the repository,

basic functionality, and pointers for further documentation (in the docs repository). The

master branch of each repository should contain an ISSUE_TEMPLATE.md for issue

reporting. This should be copied over from the master branch of the MiCADO repository.

Branching

We adapt the successful GIT branching method [3] with the following modifications:

1. The master branch should always represent the latest stable release.

2. The develop branch is for development.

3. In each repository, from its develop branch, for each major release, a release branch

should be created.

4. Release branches should be named based on their major and minor versions:

v_MAJOR_.MINOR.x

· E.g., for the 0.4 releases, the branch should be called 0.4.x (x is literal,

represents that all 0.4 releases, e.g., 0.4.0, 0.4.1, etc. are based on this

branch).

· Releases

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 11 of 28

· For 0.4.0 and 0.3.0 we should use the following procedures, as 0.4.0 is

considered a new implementation, but 0.3.x requires fixes and refactoring.

For the current (0.4.x) release branch:

1. Merge the release branch to develop in each affected repository.

2. Merge the release branch to master.

3. Create tag with the release number (e.g., 0.4.0).

For the 0.3.x release branch:

Create a tag on the release branch (no merging with develop branch, but selected fixes

can be added).

Commit Guidelines

We adopt the angular.js commit guidelines [4] with some modifications. We do not pre-define

scopes. The scope part should describe the affected part in the commit message.

Dev Docker registry

We use a private docker registry to develop MiCADO components. This registry is running

on CloudSigma and protected with basic authentication. The address of the registry:

cola‑ registry.lpds.sztaki.hu. To get access, contact with DevNull group

(devnull@lists.lpds.sztaki.hu) at SZTAKI. The naming convention in the registry:

username/imagename:version

To use the registry during the development:

o Replace the default image name with dev image name

o Insert this into the cloud-init file

7.2 Continuous integration/automated testing tool: Travis & Jenkins

Under the development process we are planning to use Travis as a unit testing tool. Travis

is a hosted solution, so we do not have to maintain the Travis infrastructure. It is distributed,

easy to use and free, if open source is the project.

Jenkins is an industry-standard open-source Continuous Integration server. It downloads

code from a repository, resolves dependencies, builds the code, tests it and then deploys it.

While Jenkins is typically used for building and deploying software, it can be easily

repurposed for more interesting tasks. It is an effective way to monitor the execution of

externally-run jobs, such as cron jobs, even those that are run on a remote machine. Jenkins

keeps those outputs and makes it easy to see when something goes wrong. It can be used

to boost productivity and automate repetitive tasks using a consistent and easy to use GUI,

providing an audit trail of each run, as well as access to the output of the run.

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 12 of 28

8 Performance benchmarking of MiCADO services

MiCADO is an implementation of a generic and pluggable framework that supports the

optimal and secure deployment and run-time orchestration of cloud applications. It based on

the concept of microservices and designed to work in a cloud environment. Cloud execution

offers the possibility to optimize resource allocation and thus manage resource cost

dynamically. MiCADO implements an autoscaling functionality which will provide end users

with a convenient way of optimizing costs. MiCADO contains the following major services:

Occopus to deploy virtual machines in the cloud, Docker Swarm, to install and manage

containers, and Prometheus, to monitor execution in the cloud.

8.1 Occopus (SZTAKI)
Occopus [5], [6] is an open-source cloud orchestration and management framework for

heterogeneous multi-cloud platforms. Occopus provides a language to specify infrastructure

descriptions and node definitions based on which Occopus can automatically deploy and

maintain the specified virtual infrastructures in the target clouds.

Occopus supports orchestration activities on various cloud types, i.e. on public, private, multi

and hybrid clouds. Occopus does not depend on any cloud type specific feature, therefore it

is operational in any circumstances provided that the Cloud API is accessible. The

orchestration in Occopus includes the startup of the virtual machines with contextualization

and optionally health monitoring remotely. Health monitoring include testing the network

access of the node (e.g. ping), testing the access of a port or an url of a node and testing the

mysql database connectivity.

Building and maintaining an infrastructure can be performed through different interfaces.

Occopus has CLI and REST API. Both, provides the main functionalities, like building,

maintaining, scaling or destroying. Moreover, the CLI and the REST interfaces can be used

in an alternate way, which means after building an infrastructure by the CLI one may

continue the maintenance of the infrastructure with the help of the REST API and vica versa.

During development and maintenance Occopus provides error reporting mechanism and

logging to ease the development and maintenance of the infrastructure.

8.1.1 Benchmarking Occopus

Occopus is able to run in simulation mode, which means that Occopus skips the cloud API

calls and emulates their successful outcome. This option is useful to simulate Occopus

behaviour and performance without spending time and money for instantiating the virtual

machines. The test creates two infrastructure that consists of 10 and 100 nodes. The test

measures the time of simulated deployment for both infrastructures. After that, the test

removes the infrastructure, and archives the logs and results. The test is implemented on

Jenkins and utilises the same container version of Occopus as built into MiCADO. Figure 1

and Figure 2 show a quick summary of 30 tests.

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 13 of 28

Figure 1 Occopus benchmark test with 10 notes infrastructure

As we can see in Figure 1, Occopus generates approximately 5 seconds overhead when

creating 10 nodes (i.e. 0.5 seconds per node) and the fluctuation is very small. We consider

this 0.5 seconds overhead acceptable since the overall time for creating a virtual machine on

cloud infrastructure is in the range between 30 and 90 seconds.

Figure 2 Occopus benchmrk test with 100 nodes infrastructure

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 14 of 28

As it can be seen in Figure 2, Occopus generates approximately 220 seconds overhead

when creating 100 nodes (i.e. 2.2 seconds per node) and the fluctuation is within 5 percent.

We consider this 2.2 second period still acceptable since the overall time for creating a

virtual machine on cloud infrastructure is in the range between 30 and 90 seconds.

However, the overall performance of building 100 virtual machines in parallel in a Cloud

significantly depends on the capacity of the cloud and its background cloud services

performance.

8.1.2 Docker Swarm cluster deployment by Occopus

In this test a Docker Swarm cluster with 3 nodes (1 master and 2 workers) have been

created on six different combination of 4 cloud providers. The six scenarios are listed below

with their reference in brackets:

● Amazon (AWS)

● CloudSigma (CS)

● SZTAKI OpenNebula (ON)

● CloudBroker-AWS (CB-AWS)

● CloudBroker-CloudSigma (CB-CS)

● CloudBroker-SZTAKI OpenNebula (CB-ON)

First, Occopus creates the master node and installs the Docker CE on it. The readiness of

the master is detected by monitoring the port of Swarm API (tcp 2375 port) when it becomes

open. Afterwards Occopus creates the worker nodes in parallel. Detecting the readiness of

the worker nodes is not a straightforward task since no service comes to life on the worker

nodes, thus there is no possibility to detect the existence of a service on the worker nodes.

To detect the end of the configuration stage of the worker nodes with Occopus the cloud‑ init

file has been extended with an Nginx web server installation. Nginx opens port (TCP 80)

which can be detected by Occopus. The open port represents the successful finish of the

worker node creation. This part of the test could be replaced later with SSH or other

lightweight daemon. Our measurements prove that the web server installation takes a few

seconds, and a few percentage of the overall worker node installation and configuration, so it

does not affects negatively the outcome of the test. After a worker connects to the Swarm

cluster, it continues with the installation of a web server. Occopus maintains the

infrastructure and is triggered when the http port (80) becomes open. This is a sign for

Occopus, which indicated that the worker node deployment is completed. The test measures

the required time and saves the logs and results.

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 15 of 28

Figure 3 Swarm deployment page on Jenkins

The Swarm cluster architecture is similar to what we use in MiCADO. The mechanism is

implemented in Jenkins and is made for the container version of Occopus. You can see the

Jenkins page on Figure 4. This test is appropriate for validating the Occopus resource

handlers and for measuring the provisioning time between different cloud providers.

Although, the test depends on the average load of the cloud providers we can still get a

general idea of the average speed of different clouds.

Measurements were repeated 10 times in each scenario and each measurement result of

each scenario are shown in Figure 3. This way we can get a more comprehensive picture

about the measurements.

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 16 of 28

Figure 4 Occopus swarm deployment in different clouds

 ON CB-ON CS CB-CS AWS CB-AWS

AVG 317,384 s 313,355 s 443,097 s 459,967 s 137,396 s 484,258 s

MEDIAN 278,96 s 300,78 s 293,3 s 401,605 s 137,995 s 475,64 s

AVG PER

NODE

105,795 s 104,452 s 147,699 s 153,3223 s 45,7987 s 38,4816 s

DEVIATION 125,203 s 39,364 s 271,176 s 214,176 s 8,867 s 38,482 s

Table 4 Occupus Swarm deployment average

The average deployment time, median, average time per node and deviation can be found in

the Table 4. Median is better off filtering out the measurement error, and the other noises

which can distort the result.

As we can see in Table 4, AWS cloud has the lowest deployment time in our measurements

and it is about 3 time faster than any other provider. OpenNebula and CloudSigma

deployment time are close to each other. CloudBroker generates some extra overhead on

top of the target cloud. One way to get the fluctuation, is to calculate deviation. The

fluctuation was small on the AWS cloud and CloudBroker’s OpenNebula, however the others

providers generate peaks on the measurements.

8.1.3 MiCADO infrastructure deployment by Occopus

The test builds up a MiCADO infrastructure on various cloud providers. First, it creates the

MiCADO master node, where the required packages are installed, configurations created,

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 17 of 28

and the main components pulled from Docker Hub. Once, the appropriate configurations are

set, Occopus creates the worker node. The worker cloud-init file which is located in the

official GitHub repository is changed, in order to detect the MiCADO deployment. The

change is a command order modification, it pulls the worker components first, then joins the

Swarm. The test periodically fetches the number of nodes through the Swarm REST API,

and when it reaches a predefined number, the infrastructure creation is considered to be

finished successfully. This way we can measure and investigate the time of MiCADO

deployment and the operability of Occopus as well. Moreover, the deployment of the

MiCADO infrastructure itself is also realized by Occopus. The test has been implemented in

Jenkins, which is running on Cloudsigma.

Figure 5 MiCADO deployment time in different clouds

 ON CB-ON CS CB-CS AWS CB-AWS

AVG 339 s 391 s 455 s 374 s 200 s 591 s

MEDIAN 338 s 360 s 437 s 387 s 203 s 689 s

AVG PER

NODE

169,6 s 195,55 s 227,4 s 187,1 s 100,2 s 295,7 s

DEVIATION 25,12 s 76,98 s 83,87 s 52,41 s 7,73 s 231,63 s

Table 5 MiCADO deployment average

The average deployment time is between 200 and 600 seconds, presented in Table 5, and is

similar to the Swarm cluster deployment time. The reason for this is that the installation

process is quite similar, although the image is being downloading from Docker hub in parallel

on the worker and master nodes.

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 18 of 28

8.2 Prometheus
Prometheus [7] is an open-source monitoring and alerting tool which collects a variety of

metrics from an extensible list of sources. Prometheus in the current MiCADO

implementation monitors hardware resources and generates statistics from the virtual

machines and containers which make up the deployed application. Prometheus can be

extended to collect specific measures from databases, web applications and more. The

metrics reported by Prometheus are used in the decision making processes which drive

Occopus and Docker Swarm to scale nodes and containers respectively.

8.2.1 Automated stress testing

A complete infrastructure test has been automated inside Jenkins to monitor the various

components of MiCADO and the interactions between them. The test relies on a Docker

container running stress-ng [8], an extension of the *NIX stress tool, to deliberately increase

the load on the host CPU (to be reflected in the metrics scraped from both virtual machine

node, and container) to a set percentage, 85%.

The test then observes the MiCADO response to the increased load by either following the

Docker events log, making calls to component APIs, or by attaching to component logs. After

MiCADO successfully completes a scale-up to a set target of four nodes and four containers,

the CPU load in stress-ng is reduced significantly, to 5%. Again, the test observes the

MiCADO response during the scale-down phase, ensuring that both virtual machine nodes

and containers are scaled back to one each. The test periodically queries for alerts through

the Prometheus API, and reports changes in alert state back to the Jenkins console.

Figure 6 Grafana displaying real-time Prometheus metrics (average and individual CPU load

on nodes and containers) during automated load testing

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 19 of 28

The success of the test proves that Prometheus is correctly reporting the CPU consumption
of both virtual machine nodes and containers, and that the information is made available to
the correct components within MiCADO. Based on the console output, the time between a
Prometheus alert and a corresponding scale response by Occopus or Docker Swarm can be
inferred.

To go further and follow the Prometheus metrics directly, we take advantage of the open-
source data graphing tool, Grafana [9], which offers built-in support for the graphical display
of Prometheus metrics. Figure 6 shows a Grafana dashboard during the automated stress
test as it monitors the increase in node and container CPU load to force a scale-up
response, and then as it decreases to force the scale-down response.

8.3 Docker Swarm
Docker [10] is an OS-level virtualisation platform based on Linux containers which allows for

the deployment of applications in isolated environments. Swarm [11] extends this

functionality by managing the orchestration of containerised applications across multiple

hosts which have been clustered into a single virtual instance of Docker. In the current

implementation of MiCADO, Docker Swarm is the container orchestrator of choice, used to

manage application deployment and application-level scalability.

8.3.1 Automated setup of containers using MiCADO

The automated stress test described in 8.2.1 is also used to test Docker Swarm and its

handling of containers within the MiCADO infrastructure. The stress-ng container is created

and destroyed twice during testing, and Docker receives instructions to scale up or down

based on the current CPU load.

Figure 7 Docker Swarm Visualiser showing test_stress containers (smaller green boxes)

running inside worker virtual machine nodes (larger boxes) as they are scaled-down.

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 20 of 28

The success of the test shows that Docker Swarm is able to handle setup and teardown of

containers, both in response to the automated request from the test script and from the

MiCADO components during autoscaling phases. The test attaches to the Docker events

stream and follows containers as they are replicated up and down. This information is output

to the console log of the test. The testing is visualised in Figure 6, where the docker-swarm-

visualiser tool [12] displays virtual machine nodes and containers in real-time as they are

added or removed from the infrastructure in scale-up or scale-down events.

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 21 of 28

9 Test plan for the security components

The following subsections outline the test plan for the COLA security enablers to be

developed within the COLA project. The test plan does NOT include test plans for existing

security enablers that have been developed earlier by the industrial partners in the project. A

detailed description of each security architecture component including the Crypto Engine,

Credential Manager, Credential Store and the Security Policy Manager can be found in

Section 4 of Deliverable 7.2.

Please note that as the implementation of these security components only started in April

2018 (according to the original COLA DoA), results of these tests cannot be presented in this

document. The tests will be completed following the implementation of security components

and will be reported by WP7.

9.1 Crypto Engine
The Crypto Engine generates cryptographic keys to enable secure interaction between

different entities within the MiCADO framework.

9.1.1 Test Items

Items to Test Test Description

1 Key generator Test whether the component can generate keys according to
specifications.

2 Nonce generator Test whether the component can generate random numbers
according to specifications.

3 Encryption library Test whether the component can encrypt and decrypt
messages according to specifications.

9.1.2 Test Features

Function of Test Test Description

1 Generate 256-bit
symmetric key

Test whether the function correctly generates a 256-bit
symmetric key with sufficient entropy.

2 Generate 2048-bit
asymmetric key

Test whether the function correctly generates a 2048-bit public-
private keypair with sufficient entropy.

3 Generate random nonce Test whether the function generates random numbers with
sufficient entropy.

4 Encrypt and decrypt data Test whether the function works properly and correctly encrypts
and decrypts sample inputs using a given key, encryption
algorithm and encryption mode.

5 Generate X509 certificate Test whether the function correctly generates a well-formed
X509 certificate.

9.1.3 Features not to be tested

Some features are not tested at this phase because they will be delayed for developing later

or they belong to another test phase.

Feature not to be tested Test Description

1 Symmetric Searchable
encryption

Test whether the component correctly implements symmetric
searchable encryption.

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 22 of 28

2 Asymmetric Searchable
encryption

Test whether the component correctly implements asymmetric
searchable encryption.

3 Probabilistic encryption Test whether the component correctly implements probabilistic
encryption.

9.1.4 Approach

Function to Test Test data
Description

Metrics to be collected Pass/Fail criteria

1 Generate 256-bit
symmetric key

Data involves:
input command,
key type.

Correct/ Incorrect
“Correct” means
function produces a
uniformly distributed
256-bit sequence;
Incorrect otherwise

Precision = # of
incorrect/ # of test
runs
Pass if precision = 1
Fail if precision<1

2 Generate 256-bit
asymmetric key

Data involves:
input command,
key type.

Correct/ Incorrect
“Correct” means
function produces a
uniformly distributed
sequence of a given
size; Incorrect otherwise

As above

3 Generate random
nonce

Data involves:
input command,
nonce size

Correct/ Incorrect
“Correct” means
function produces a
pseudorandom
sequence (for
encryption) that equals
the input plaintext when
decrypted (for
decryption); Incorrect
otherwise

As above

4 Encrypt and
decrypt data

Data involves:
input command,
input data,
encryption/decrypti
on key,
encryption/decrypti
on cipher and
mode

Correct/ Incorrect
“Correct” means
function produces a
valid X509 certificate
with correct input data.
Incorrect otherwise

As above

5 Generate X509
certificate

Data involves:
input command,
certificate input
data,
encryption/decrypti
on cipher and
mode

Correct/ Incorrect
“Correct” means
function produces a
uniformly distributed
sequence of a given
size; Incorrect otherwise

As above

9.2 Credential Manager
The Credential Manager securely stores the credentials of entities with access to the

MiCADO service.

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 23 of 28

9.2.1 Test Items

Item to Test Test Description

1 Security Policy Manager Test whether the component can communicate with CM, and
works properly or not

2 Credential Manager Test whether the component can communicate with SPM, and
works properly or not

9.2.2 Test features

Function to Test Test Description

1 Verify authenticator Test whether the function works properly and returns correct
response

2 Add new identity Test whether the function works properly and returns correct
response

3 Change authenticator Test whether the function works properly and returns correct
response

4 Reset authenticator Test whether the function works properly and returns correct
response

5 Delete identity Test whether the function works properly and returns correct
response

6 Integration of #1 and #2 Test whether the two functions corporate smoothly to deliver
the function of adding a new identity or not

7 Integration of #1 and #3 Test whether the two functions corporate smoothly to deliver
the function of changing authenticator or not

8 Integration of #1 and #4 Test whether the two functions corporate smoothly to deliver
the function of resetting authenticator or not

9.2.3 Features not to be tested

Some features are not tested at this phase because they will be delayed for developing later

or belong to another test phase.

Features not to be

tested
Test Description

1 Lock-out mechanism Test whether the function works properly and returns correct
response

2 Verifying password
strength

Test whether the function works properly and returns correct
response

3 Reset authenticator
by user himself

Test whether the function works properly and returns correct
response

4 Collision of random
authenticator

Test whether new random generated authenticator matches with
any of other generated ones in the past

5 Forcing user to
change the default
authenticator

Test whether users changed their default authenticator from the
first log-in or not

6 Testing for credentials
transported over
protected channel

Test whether credentials are transported with POST method
through HTTPS protocol or not. This test should involve all
sensitive requests, such as log in request, TOSCA file submission.

7 Testing for bypassing
authentication

Test whether user can bypass authentication by means such as
directing to another page which is not under access control,
parameter modification, session Id prediction, SQL injection.

8 Test for non-specific
announcement for

Test whether user knows if username or password fails or not.

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 24 of 28

failed login

9 Test for default
credentials

Test whether user is using common default credentials or not. For
e.g., common usernames are admin, qa, test, root. Common
passwords are blank password, pass123, 123, nopass, password.

9.2.4 Approach

Function to Test Test data description Metrics to be
collected

Pass/Fail criteria

1 Verify
authenticator

Data involves not existed
identity, existed identity
with wrong authenticator,
existed identity with
matched authenticator

Correct/
Incorrect

Precision = # of
incorrect/ # of test
runs
Pass if precision = 1
Fail if precision<1

2 Add new identity Data involves not existed
identity, existed identity

Correct/
Incorrect

As above

3 Change
authenticator

Data involves not existed
identity, existed identity
with wrong authenticator,
existed identity with
matched authenticator but
empty new authenticator,
existed identity with
matched authenticator and
non-empty new
authenticator

Correct/
Incorrect

As above

4 Reset
authenticator

Data involves not existed
identity, existed identity

Correct/
Incorrect

As above

5 Delete identity Data involves not existed
identity, existed identity

Correct/
Incorrect

As above

6 Integration of #1
and #2

Combination data from #1
and #2

Correct/
Incorrect

As above

7 Integration of #1
and #3

Combination data from #1
and #3

Correct/
Incorrect

As above

8 Integration of #1
and #4

Combination data from #1
and #4

Correct/
Incorrect

As above

9 Integration of #1
and #5

Combination data from #1
and #5

Correct/
Incorrect

As above

9.3 Credential Store
The Credential Store securely stores the Authentication Credentials used to manage

passwords, keys, tokens, and other secrets in the system.

9.3.1 Test Items

Items to Test Test Description

1 Security Policy Manager
(SPM)

Test whether the component can communicate with CO and
CS, and works properly or not

2 Credential Store (CS) Test whether the component can communicate with SPM, and
works properly or not

3 Container Orchestrator
(CO)

Test whether the component can communicate with SPM, and
works properly or not

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 25 of 28

9.3.2 Test features

Function to Test Test Description

1 Initialize Credential Store Test whether the function works properly and returns correct
response

2 Write secrets to
Credential Store

Test whether the function works properly and returns correct
response

3 Read secrets from
Credential Store

Test whether the function works properly and returns correct
response

9.3.3 Features not to be tested

This is not applicable to the Credential Store.

9.3.4 Approach

Function to Test Test data
description

Metrics to be
collected

Pass/Fail criteria

1 Initialize Credential
Store

Data involves two
cases: correct URL of
Credential Store,
incorrect URL of
Credential Store

Correct/ Incorrect
(“correct” means that
Credential Store is
initialized successful
if providing URL is
correct, and vice
versa)

Precision = # of
incorrect/ # of test
runs
Pass if precision = 1
Fail if precision<1

2 Write secrets to
Credential Store

Data involves: empty
secret, 1 secret,
multiple secrets

Correct/ Incorrect As above

3 Read secrets from
Credential Store

Data involves: not
existed secret name,
existed secret name,
and combination.

Correct/ Incorrect As above

9.4 Security Policy Manager
The Security Policy Manager is required for the enforcement of user-defined security

policies.

9.4.1 Test Items

Items to Test Test Description

1 Security Policy Manager
(SPM)

Test whether the component can communicate with CO and
CS, and works properly or not

2 Credential Store (CS) Test whether the component can communicate with SPM, and
works properly or not

3 Container Orchestrator
(CO)

Test whether the component can communicate with SPM, and
works properly or not

9.4.2 Test features

Function to Test Test Description

1 Initialize Credential Store Test whether the function works properly and returns correct
response

2 Write secrets to
Credential Store

Test whether the function works properly and returns correct
response

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 26 of 28

3 Read secrets from
Credential Store

Test whether the function works properly and returns correct
response

9.4.3 Features not to be tested

Some features are not tested at this phase because they will be delayed for developing later

or they belong to another test phase.

Features not to be

tested
Test Description

1 Lock-out mechanism Test whether the function works properly and returns correct
response

2 Verifying password
strength

Test whether the function works properly and returns correct
response

3 Reset authenticator by
user himself

Test whether the function works properly and returns correct
response

4 Collision of random
authenticator

Test whether new random generated authenticator matches
with any of other generated ones in the past

5 Forcing user to change
the default authenticator

Test whether users changed their default authenticator from the
first log-in or not

6 Testing for credentials
transported over
protected channel

Test whether credentials are transported with POST method
through HTTPS protocol or not. This test should involve all
sensitive requests, such as log in request, TOSCA file
submission.

7 Testing for bypassing
authentication

Test whether user can bypass authentication by means such
as directing to another page which is not under access control,
parameter modification, session Id prediction, SQL injection.

8 Test for non-specific
announcement for failed
login

Test whether user knows if username or password fails or not.

9 Test for default
credentials

Test whether user is using common default credentials or not.
For e.g., common usernames are admin, qa, test, root.
Common passwords are blank password, pass123, 123,
nopass, password.

9.4.4 Approach

Function to
Test

Test data
description

Metrics to be
collected

Pass/Fail criteria

1 Initialize
Credential Store

Data involves two
cases: correct URL of
Credential Store,
incorrect URL of
Credential Store

Correct/ Incorrect
(“correct” means that
Credential Store is
initialized successful
if providing URL is
correct, and vice
versa)

Precision = # of
incorrect/ # of test
runs
Pass if precision = 1
Fail if precision<1

2 Write secrets to
Credential Store

Data involves: empty
secret, 1 secret,
multiple secrets

Correct/ Incorrect As above

3 Read secrets
from Credential
Store

Data involves: not
existed secret name,
existed secret name,
and combination.

Correct/ Incorrect As above

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 27 of 28

10 Conclusion

In this deliverable we have presented our approach to the performance testing of the core

MiCADO components in accordance with the performance requirements and specifications

of the MiCADO orchestration layer, matched against the high-level performance

requirements of the four project use-case applications. We have also provided a plan for

testing the key security enablers to be developed. To reiterate, the deliverable will inform

WP5 regarding QoS and scaling services, and WP6 to advice on price performance

optimisation, while providing the developers of the core MiCADO components a baseline for

further testing. As a result, application developers and end-users will be able to set QoS,

security, performance and economic requirements, and make modification to the

requirements on the fly. Furthermore, an optimized price/performance ratio will make the

cloudification of applications more feasible for SMEs.

D4.2 Requirements Gathering and Performance Benchmarking of Microservices

Work Package WP4 Page 28 of 28

11 References

[1] PEP 8, https://www.python.org/dev/peps/pep-0008/

[2] Semantic Versioning 2.0.0, https://semver.org/

[3] A successful Git branching model, http://nvie.com/posts/a-successful-git-branching-

model/

[4] AngularJS developers.md,

https://github.com/angular/angular.js/blob/master/DEVELOPERS.md#-git-commit-guidelines

[5] Occopus: a multi-cloud orchestrator to deploy and manage complex scientific

infrastructures, J. Kovács and P. Kacsuk, “Occopus: a multi-cloud orchestrator to deploy and

manage complex scientific infrastructures,” Journal of Grid Computing, Nov 2017. [Online].

Available: https://doi.org/10.1007/s10723-017-9421-3

[6] Occopus website, http://occopus.lpds.sztaki.hu/

[7] Prometheus website, https://prometheus.io/docs/introduction/overview/

[8] Stress-ng documentation, http://kernel.ubuntu.com/~cking/stress-ng/

[9] Grafana website, https://grafana.com/grafana

[10] Docker website, https://www.docker.com/what-docker

[11] Swarm documentation, https://docs.docker.com/engine/swarm/

[12] docker-swarm-visualizer on Github, https://github.com/dockersamples/docker-swarm-

visualizer

