
 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 1 of 32

Cloud Orchestration at the Level of Application

Project Acronym: COLA

Project Number: 731574

Programme: Information and Communication Technologies
Advanced Computing and Cloud Computing

Topic: ICT-06-2016 Cloud Computing

Call Identifier: H2020-ICT-2016-1

Funding Scheme: Innovation Action

Start date of project: 01/01/2017 Duration: 30 months

Deliverable:

D5.1 Analysis of existing application description

approaches

Due date of deliverable: 31/03/2017 Actual submission date: 31/03/2017

WPL: Gabriele Pierantoni

Dissemination Level: PU

Version: WIP

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 2 of 32

1. Table of Contents
1. Table of Contents 2

2. List of Figures and Tables 3

3. Status, Change History and Glossary 4

4. Introduction 6

5. COLA Application Description Concept 7

6. Overview of Existing Application Description Approaches 8

6.1 Platform specific application description approaches 8

6.1.1 Amazon Solutions 8

6.1.2 Microsoft Azure 9

6.1.3 ORACLE 10

6.2 Platform independent application description approaches 11

6.2.1 TOSCA 11

6.2.2 CAMP 14

7. Cloud Orchestration Tools and Application Description Approaches 17

7.1 Application Description Approaches used by Cloud Orchestration Tools 17

7.1.1 Chef 17

7.1.2 Heat 17

7.1.3 Juju 18

7.1.4 Occopus 18

7.1.5 Puppet 18

7.1.6 Summary 19

8. Comparison of Application Description Approaches 20

8.1 Comparison Criteria 20

Application description: basic properties 21

Application description: Entities Managed and Storage 22

Application description: QoS parameters 23

Application execution 23

9 Application Description in COLA 24

10 Cloud Orchestration in COLA 26

10.1.1 Describing infrastructure and node 26

10.1.2 Resource description 27

10.1.3 Contextualisation 28

10.1.4 Config management 28

10.1.5 Health check 29

10.1.6 Occopus vs TOSCA 29

11 References 31

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 3 of 32

2. List of Figures and Tables
Figures

Figure 1, Specifying applications to be deployed and run on the cloud 7
Figure 2, Base, foundational and customized AMI template .. 8
Figure 3, Azure Resource Manager Template ... 10
Figure 4, OVAB Assembly Template ... 11
Figure 5, Comparison between TOSCA and other standard efforts 12
Figure 6, Topologies, nodes, relationships and plans in TOSCA ... 12
Figure 7, Types, templates and instances in TOSCA .. 13
Figure 8, Topologies specification and management plans ... 13
Figure 9, CAMP entities .. 15
Figure 10, CAMP lifecycle ... 15
Figure 11, Topologies Specification and Management Plans .. 16
Figure 12, Relation among infrastructure description and node definition............................ 26
Figure 13, Sections of a node definition .. 27
Figure 14, Resource section of a node definition ... 27
Figure 15, Example for referencing variables and ip address .. 28
Figure 16, Example for config_management section in node definition 29
Figure 17, Example for health_check section in node definition .. 29

Tables

Table 1, Status Change History .. 4
Table 2, Deliverable Change History ... 4
Table 3, Glossary .. 5
Table 4: Basic properties .. 21
Table 5: Entity managed + storage ... 22
Table 6, QoS Parameters ... 23
Table 7: Application execution .. 23
Table 8: TOSCA References ... 25

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 4 of 32

3. Status, Change History and Glossary

Status: Name: Date: Signature:

Draft: Gabriele Pierantoni 06/02/17 Gabriele Pierantoni

Reviewed: Tamas Kiss 23/03/17 Tamas Kiss

Approved: Tamas Kiss 31/03/17 Tamas Kiss

Table 1, Status Change History

Version Date Pages Author Modification

V0.1 06/02 ALL G. Pierantoni Empty Skeleton

V0.2 20/02 ALL G. Pierantoni,
G. Terstyanszky

Added compared analysis of TOSCA,
Azure, Amazon and ORACLE

V1.0 07/03 ALL G. Pierantoni Added sections about CAMP and TOSCA
security

V1.1 20/03 ALL G. Pierantoni Draft for Review

v2.0 27/03 All G. Terstyanszky Reviewing the report

V2.1 29/03 All G. Terstyanszky Added missing section, Introduction,
Orchestrator Languages

Table 2, Deliverable Change History

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 5 of 32

Glossary

API Application Programming Interface

CAMP Cloud Application Management for Platforms

COLA Cloud Orchestration at the level of Application

IAAS Infrastructure as a Service

PAAS Platform as a Service

SAAS Software as a Service

TOSCA
Topology Orchestration Specification for Cloud
Application

Table 3, Glossary

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 6 of 32

4. Introduction

DoW specifies D5.1 Analysis of existing application description approaches deliverable as
follows:

“This deliverable will give a summary of the investigation on the existing application
description approaches. It will also shortly describe the selected application description
approach and explain why it was selected.”

This deliverable aims at analysing the existing application descriptions. This state of the art
overview is fundamental to decide which description language and overall design approach
is best suited to solve COLA’s requirements. Deliverable 5.1 constitutes a first step in the
definition and implementation of the COLA Application Description Templates, therefore, it is
fundamental to assess all viable existing solutions and match them against COLA’s specific
requirements.

In order to achieve this, D5.1, is structured as follows:

 Chapter 5 – gives a short overview of the concept that COLA will apply to describe
applications, outlining how it specifies architecture, service and implementation
levels.

 Chapter 6 – briefly describes major platform-oriented and platform independent
application description languages that are perspective candidates to be used in
COLA.

 Chapter 7 – investigates application description approaches used by major cloud
orchestration tools.

 Chapter 8 – defines the comparison criteria and recapitulates strengths and
weaknesses of each of the perused approaches with regard of the COLA
requirements

 Chapter 9 –describes the final decision on the application description solution to be
used in COLA and lists reasons that justify this decision.

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 7 of 32

5. COLA Application Description Concept
To support efficient orchestration of application execution on the Cloud, COLA will elaborate
the concept of application template to support application description at three levels:
architecture, service, implementation levels. The architecture level manages architectures
that can be used by different applications in business, industry and public sector. Application
templates describe these architectures specifying their service types, relations, and
requirements. The service types are high-level services, for example business logic,
presentation logic, data service, etc. The service level identifies particular types of services
specified in the application template. For example, either MongoDB, SQL or other database
can be used as data service. Service descriptions must be added to the application template
to create a service template. The implementation level specifies the service version needed
to run the service, for example MongoDB v3.1, v3.2 etc., and the required service signature.
Adding this information to the service template they create an implementation template.
Each application template may have “1…k” service templates, and each of them may have
“1…m” implementation templates (see Figure 1).

To deploy and run an application in the Cloud, application developers working in business,
industry and public sector, and description developers, who are experts in application
descriptions and in the Cloud, must cooperate. They follow top-down approach. First, they
elaborate the application templates. Next, they define the service and implementation
templates describing services and their implementations. Finally, they publish these
templates in a repository.

Figure 1, Specifying applications to be deployed and run on the cloud

Publishing these templates will significantly improve application development and sharing
because application developers can select and use the existing templates. They can search
the repository for application templates they need. Finding required templates they check
whether there are service and implementation templates they need. For example, if
developers were able to find an existing application and a service template needed but no
proper implementation template is available, they can re-use the first two templates and has
to create only the third one.

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 8 of 32

6. Overview of Existing Application Description
Approaches

WP5 analysed existing platform specific and platform independent application description
approaches to select a service and implementation level description that can be extended
with the architecture level description. After making this decision, WP5 will define the
concept of the application template to describe the architecture level, develop its formal
description, and define how it can be integrated with service and implementation templates.
In the formal description there will be a special emphasis on how to specify QoS parameters
(maximum response time, minimum usage time, throughput, security policies and
credentials, etc.) to support scaling up and down the services as required, and to manage
security in different application scenarios. COLA will also extend the formal description of all
three templates with metadata to support efficient search and selection of these templates.

6.1 Platform specific application description approaches

6.1.1 Amazon Solutions
Amazon uses Amazon Machine Image (AMI) template [1] to describe all information required
to launch an Amazon EC2 instance. An AMI template includes

 root volume for the instance, i.e. an operating system, an application server, and
applications,

 launch permissions that control which AWS accounts can use the AMI to launch
instances and,

 block device mapping that specifies the volumes to attach to the instance when it's
launched.

The AMI template must contain at least the base operating system. It may also include
additional configuration and software code. Launching an instance from a base AMI
containing only the operating system the base AMI can be further customized adding
additional configuration data and software after it has been launched. Customized AMI
contains the complete software stack.

Figure 2, Base, foundational and customized AMI template

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 9 of 32

There are three AMI templates (see Figure 2):

 Base AMI template contains only the OS image.

 Foundational AMI template includes elements of a stack that change infrequently
for example, JVM, application server etc.

 Full stack AMI template contains all elements of the stack. It is recommended to
use if the application changes infrequently, or if it has rapid auto scaling
requirements.

Amazon CloudFormation[2] supports development, deployment and running applications on
the Amazon cloud. The applications are described by the AWS CloudFormation templates
that combine AMI templates. The templates are stored as text files that comply with the
JavaScript Object Notation (JSON) or YAML. The templates can be created and edited in
any text editor and can be managed in the source code IDE. The templates specify the AWS
resources that make up the application stack and that must be created and configured. They
specify an object as a name-value pair or a pairing of a name with a set of child objects
enclosed. The only required top-level object is the resources object, which must declare at
least one resource. Amazon provides the CloudFormation Tool through the AWS
CloudFormation Designer to develop the CloudFormation templates. It creates an AWS
CloudFormation template from existing AWS resources in the developer’s account. The
developer has to select any supported AWS resources that are running in her/his account,
and the CloudFormation Tool creates a template in an Amazon S3 bucket. AWS
CloudFormation uses these templates as blueprints for building AWS resources.

6.1.2 Microsoft Azure
Microsoft Azure[3] describes resources through Azure Resource Manager (ARM). ARM
combines together compute, storage and network resources and shows them as a single
unit that can be created, managed and deleted together. ARM enables template based
Azure resource deployment. ARM templates contain four entities (see Figure 3):

1. parameters that can be entered during run-time with set of values or default values
pre-defined,

2. variables that are static in the code and used for deploying resources,
3. resources to be deployed, and,
4. outputs to be produced.

There are four template scopes.

1. capacity scope delivers a set of resources in a standard topology that is pre-
configured to be in compliance with regulations and policies.

2. capability scope is focused on deploying and configuring a topology for a given
technology for example SQL Server, Cassandra, Hadoop, etc…

3. end-to-end solution scope is targeted beyond a single capability, and instead
focused on delivering an end to end solution comprised of multiple capabilities.

4. solution scope manifests itself as a set of one or more capability scoped templates
with solution specific resources, logic, and desired state, for example Kafka, Storm,
and Hadoop.

ARM templates enable tagging resources with key/value pairs to further categorize and view
them across resource groups and within the portal, and across subscriptions. Tagging adds
metadata about a resource. ARM templates allow managing resource groups that include all
resources needed for an application. ARM templates support deploying topologies by
managing resources required for applications using resource groups that are logical

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 10 of 32

containers for grouping Azure resources. They apply role-based access control (RBAC) to
grant access to users, groups and services. ARM templates can be decomposed to provide
a modular approach to template development to supports reuse, extensibility, testing, and
tooling. There are several sub-templates such as main sub-template, member sub-template,
optional resources and shared resources sub-template, etc. Azure Resource Manager uses
Azure Key Vault to orchestrate and store VM secrets and certificates. The ARM templates
only contain URI references to the secrets that are stored in the Key Vault and are under full
RBAC control of a trusted operator.

Figure 3, Azure Resource Manager Template

6.1.3 ORACLE
ORACLE enables quick configuration and provisioning of multi-tier application topologies
onto virtualized and cloud environments by capturing the configuration and packaging of
existing software components as self-contained building blocks known as appliances. These
appliances can then be easily connected to form application blueprints, called as assemblies
[4] and [5]. They are built on Oracle VM Templates that allow deploying a fully configured

software stack by offering pre-installed and pre-configured software images. The Template
contains the virtual machine configuration information, virtual disks that contain the operating
system and any application software. These components are packaged together as an
Oracle VM Template file according to the industry-standard Open Virtualization Format
(OVF) standard. While Oracle VM Template manages one virtual machine usually for a
single tier application, Oracle Virtual Assembly is a collection of interrelated software
appliances that are automatically configured to work together. Assembly is a set of appliance
that includes one or more templates plus the meta-data that describes the relations and
connection among the appliances. When the assembly is deployed its templates are
deployed as virtual machines. The assemblies can be quickly instantiated into a collection of
interrelated virtual machines running on a virtualized pool of servers, with all virtual machine
instances configured and wired to communicate with each other automatically. ORACLE
offers developers the Oracle Virtual Assembly Builder (OVAB) [6] to support customisation
and provisioning of complex enterprise applications with no manual intervention onto
virtualized and cloud environments.

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 11 of 32

Figure 4, OVAB Assembly Template

6.2 Platform independent application description approaches

6.2.1 TOSCA
An OASIS technical committee [7], containing industrial partners, service providers and
research organizations has developed the TOSCA (Topology and Orchestration
Specification for Cloud Applications) Language Specification [8], [9], [10] and [11] as an
interface interoperability standard[12]. Its main goal is to enable the creation of portable
cloud applications and the automation of their deployment and management. In order to
achieve this goal, TOSCA focuses on the following three goals [8]:

1. Automated application deployment and management. TOSCA aims at providing a
language to express how to automatically deploy and manage complex cloud
applications. This goal is achieved by requiring developers to define an abstract
topology of a complex application and to create plans describing its deployment and
management.

2. Portability of application descriptions and their management but not the actual
portability of the applications themselves). To this end, TOSCA provides a
standardized way to describe the topology of multi-component applications. It also
addresses management portability by relying on the portability of workflow languages
used to describe deployment and management plans.

3. Interoperability and reusability of components. TOSCA aims at describing the
components of complex cloud applications in an interoperable and reusable way [13],
[14] and [15]

Compared to other standards efforts (CAMP, CIMI, EMML, OCCI, Open-CSA, OVF, SOA-
ML, and USDL), TOSCA focuses on all the three goals above [10] as shown in Figure 5.

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 12 of 32

Figure 5, Comparison between TOSCA and other standard efforts

The TOSCA language specification [16] and [17] (now based on YAML [18]), allows the
description of topologies, nodes and relationships (see Figure 6) at three different levels of
abstractions (see Figure 7):

 Types: akin to a Java Abstract class,

 Templates: akin to a Java Concrete class

 Instances: akin to a Java instance of a class.

The combination of these three levels of abstraction supports re-usability of descriptions and
offers a flexible and expressive syntax for the definition of application templates at different
level of granularity and definition. Such an approach, also supports implementation where
profiles can be automatically completed to ease the burden of complete specifications [11].

Figure 6, Topologies, nodes, relationships and plans in TOSCA

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 13 of 32

Figure 7, Types, templates and instances in TOSCA

In addition to the description of a topology (nodes and relationships), TOSCA provides for
the definition of implementation plans (see Figure 8) to enact the deployment of nodes and
relationships.

Figure 8, Topologies specification and management plans

TOSCA [10] and [16] also prescribes the format to archive application specifications along
with the installable and executables needed to properly instantiate the specified applications.

The topology specification must be packaged together with the artefacts implementing its
components so as to make all such artefacts available to the execution environment. The
TOSCA specification [10] defines an archive format called CSAR (Cloud Service Archive) to
package application specifications together with concrete implementation and deployment
artefacts. A CSAR is a zip file containing at least the Definitions and TOSCA-Metadata
directories. TOSCA containers can deploy applications by processing the CSAR archives in
two different ways: imperative and declarative [19]. On one hand, imperative processing
takes the CSAR and deploys the application according to the workflow defined as a Build
Plan in the corresponding Service Template. On the other hand, declarative processing

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 14 of 32

deploys the application by trying to automatically excerpt a deployment plan from the
application's Topology Template.

TOSCA does not mandate the use of any specific mechanism or technology for client
authentication. However, a client must provide a principal or the principal must be obtainable
by the infrastructure [7]. None of the reviewed publications on TOSCA mention support for
authentication, authorization, trust and privacy. However, security and other policies can be
defined using TOSCA extensions that can be delegated to other components to implement
such policies.

As TOSCA is NOT a language or an implementation, multiple attempts have been tried to
build TOSCA-compliant environments including TOSCA containers. The implementation of a
Proof of Concept prototype [[20] with Chef and OpenStack describes the steps needed to
implement a TOSCA-enabled environment and the technical difficulties in parsing the
original TOSCA-XML based language. More recently, the OpenTOSCA [21] and [22]
initiative, offers a TOSCA environment with the following components:

 Winery [23] for the creation and modelling of TOSCA applications, including graphical
modelling of topologies and management plans. Exported as Cloud Service Archive
(CSAR) for TOSCA runtime.

 OpenTOSCA container [24] to process CSARs, run plans and manages state.

 Vinotek [25] to hide technical details and to provide end users a simple graphical
interface to provision Cloud applications on demand.

TOSCA is also related to other initiatives such as: TOSCA-MART, a method that enables
deriving valid implementations for custom components from a repository of complete and
validated cloud applications. TOSCA-MART enables developers to specify individual
components in their application topologies, and illustrates how to match, adapt, and reuse
existing (fragments of) applications to implement these components while fulfilling all their
compliance requirements.

6.2.2 CAMP
CAMP [26] is a simple API specification to standardize the API of PaaS systems like
ORACLE Cloud, CloudBees, OPENSHIFT, etc. The specification offers an HTTP-based
RESTful API combined with JSON representation of data. It is extensible to be compliant
with future changes. The specification is language- (Ruby, Java, Python, PHP, etc.),
framework- (Rails, Spring, etc.), and platform- (Java EE, .Net, etc.) neutral. The CAMP API
has been designed for management of applications. CAMP also contains a resource and
lifecycle model for application management.

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 15 of 32

Figure 9, CAMP entities

The lifecycle model (see Figure 10) supports performing, uploading, configuring,
customizing, deploying/undeploying, starting/stopping, snapshotting, suspending/restarting
and deleting operations on an application/service as well as monitoring the operation of the
application.

Figure 10, CAMP lifecycle

A candidate for CAMP implementation on the PaaS side is the SOLUM [27] project.
Although the Solum API and resource model are similar (and in some cases identical) to the
API and resource model defined in the CAMP specification, they are also different in a

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 16 of 32

number of significant ways. Tools and applications written to consume the CAMP API cannot
use the Solum API.

TOSCA and CAMP are not at the same abstraction level. Their goals are different. CAMP as
an API could be directly used in applications where at certain points of the applications the
CAMP commands are used and the implementing PaaS system should execute these
commands typically first translating the CAMP commands into their native API commands.
CAMP does not deal with topology and orchestration. There is no description on how the
application looks like. It defines only application template requirements and resource
template capabilities. TOSCA is about to describe how to deploy and manage a complex
application in the cloud and in order to achieve this goal it provides descriptors.
Implementing TOSCA means to interpret these descriptors and according them to deploy
and manage the application in the cloud. It typically requires a tool that can do this
interpretation as well as the execution management.

The tool that interprets TOSCA commands can apply the CAMP API in its executor
component and as a result TOSCA descriptors will be executable on top of PaaS systems
that will implement the CAMP API. Figure 11 shows these levels of abstractions and the
chain of tools and specifications that can work together at different levels of abstractions.

Figure 11, Topologies Specification and Management Plans

TOSCA
descriptors

Descriptor
layer

TOSCA
interpreter

Descriptor
interpretation
and execution

PaaS API
layer

CloudBeesTOSCA
executor with
CloudBees

TOSCA
executor with
OPENSHIFT

OPENSHIFT

Cloud
1

Cloud
2

IaaS cloud
layer

TOSCA
descriptors

TOSCA
interpreter

CloudBees

TOSCA
executor with
CAMP API

OPENSHIFT

Cloud
1

Cloud
2

Case A: Descriptor
interpretation and
execution tool
does not use the
CAMP API

Case B: Descriptor
interpretation and
execution tool
does use the
CAMP API

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 17 of 32

7. Cloud Orchestration Tools and Application Description
Approaches
WP6 has considered several cloud orchestration tools to be used in the MiCADO platform:

 Chef,

 Heat,

 Juju,

 Occopus, and

 Puppet.

WP5 investigated how these cloud orchestration tools describe applications and services to
support their deployment, execution and monitoring on the Cloud:

7.1 Application Description Approaches used by Cloud
Orchestration Tools

7.1.1 Chef
Chef[28][29] is open source cloud orchestration tool that supports integration with cloud-
based platforms. It launches and maintains servers, and manages clients that run on nodes,
which can be physical or virtual machines. This client performs the automation tasks the
specific node requires. The nodes register at a server, which then provides recipes defining
these automation tasks and assigns roles. Cookbooks are used to organize related recipes,
which are basically Ruby scripts, and supporting resources. Roles contain lists of recipes,
which are then executed by the Chef client upon retrieval from the server leading to the
desired configuration.

Chef uses a pure-Ruby, domain-specific language (DSL) to describe system
configuration. It explicitly describes how to deploy and connect cloud application
components. Chef uses “recipes” and “cookbooks. Each deployment step can be
described independently, and bringing those independent recipes together creates a
repeatable application deployment process. Since every operations step can be described in
a recipe, there is nothing that can be deployed manually that Chef can't automate. Recipes
define how infrastructure components are to be deployed and managed. Cookbooks are a
collection of recipes that define scenarios like setting up a database with all dependencies
considered. By abstracting and through that special naming it is emphasized that the defined
recipes are supposed to be platform independent and are usable in other projects. There
already exists a pre-defined library with many recipes

7.1.2 Heat
Heat[30][31] is a pattern-based orchestration mechanism developed by OpenStack. It
provides a template-based orchestration for describing a cloud application by executing
appropriate OpenStack API calls that generate running cloud applications. The software
integrates other core components of OpenStack into a one-file template system. The
templates allow for the creation of most OpenStack resource types as well as more
advanced functionality such as instance high availability, instance auto-scaling, and nested
stacks. These templates, called Heat Orchestration Templates (HOT), are native to Heat
and are expressed in YAML. These templates consist of:

 Resources (mandatory fields) are the OpenStack objects that must be created, like
server, volume, object storage, and network resources. These fields are required in
HOT templates. Each resource consists of:

 References—used to create nested stacks

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 18 of 32

 Properties—input values for the resource
 Attributes—output values for the resource

 Parameters (optional) denote the properties of the resources.

 Output (optional) denotes the output created after running the Heat template, such as
the IP address of the server.

7.1.3 Juju
Juju[32][33] is an open source automatic service orchestration management tool that
enables to deploying, managing, and scaling software and services on a wide variety of
cloud services and servers. It can significantly reduce efforts needed for deploying and
configuring a product's services. Juju utilizes charms to simplify deployment and
management tasks. A charm is a set of scripts that can be written in any language. After a
service is deployed, Juju can define relationships between services and expose some
services to the outside world. Charms encapsulate application configurations, define how
services are deployed, how they connect to other services, and how they are scaled.
Charms define how services integrate, and how their service units react to events in the
distributed environment, as orchestrated by Juju. Charms usually include all of the
intelligence needed to scale a service horizontally by adding machines to the cluster,
preserving relationships with all of the services that depend on that service. This enables
developers to build and scale up and down the service on the cloud.

7.1.4 Occopus
Occopus[34] is an orchestrator tool to build network of nodes containing interconnected
services forming a virtual infrastructure. Each node is built up by virtual machines executing
services or application. The configuration and initial setup of nodes can be performed by
contextualization and configuration management tools. The built-up infrastructure can then
be continuously maintained and the health of nodes can be monitored to detect and recover
faulty nodes. Occopus has a pluggable architecture to cooperate with different type of
resources, with different type of configuration management (CM) tools, to apply different
contextualization methods and procedures. As a result Occopus can be utilized in a broad
range of environments by applying any combination of its plugins. It uses descriptors, written
in YAML, to describe the services to be deployed in the Cloud. Occopus deploys the
services according to deployment order specified in the descriptor. It does not only deploy
the services but checks their availability and accessibility before deploying the next service.
Furthermore, the descriptor can contain contextualization information for every deployable
service and based on that information Occopus carries out contextualization for the deployed
services. As a result after contextualization the services can reach each other, i.e. they can
collaborate to realize a higher level service (the virtual infrastructure).

71.5 Puppet
Puppet[35][36] manages cloud services supporting several Linux distributions and Windows
versions. It is designed to manage an infrastructure while pre-defined or custom modules are
stated via relationships, following a high-level concept. A module is a graph of relationships
that is reusable. The user interface is graphical, and because of the declarative language the
programming effort is minimized. Necessary information is discovered during runtime and
compiled into manifests. Manifests are the idempotent declarative Puppet programs. It uses
either a custom declarative language or a Ruby Domain Specific Language to describe
the configuration of system services, allowing the definition of reusable modules. A system-
specific catalogue holds the resource and its dependencies and Puppet then applies any
required actions to the target system, using the previously compiled manifests. Puppet
supports an iterative life-cycle with four stages: Define, Simulate, Enforce and Report. In the
definition stage the relationship graph with modules and their desired state is declared. It is

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 19 of 32

then possible to simulate any changes to the system before committing it, allowing testing
and avoiding faulty updates.

7.1.6 Summary
The development of the above described cloud orchestration tools either has been started
before TOSCA has been elaborated or has been running parallel with TOSCA development.
As a result, they have their own application description solutions: Chef and Puppet uses
Ruby Domain Specific Language, Heat and Occopus uses YAML, and Juju uses scripts.
After publishing TOSCA they either created plug-ins to process TOSCA-based application
descriptions or developed translators to convert these descriptions to their native
descriptions.

IBM developed the TOSCA Chef plug-in to process TOSCA based application descriptions
by Chef. TOSCA support can be enabled by installing and enabling a pattern type “TOSCA
Foundation Pattern Type” in IBM SmartCloud Orchestrator. This orchestrator imports and
deploys TOSCA service templates as virtual application patterns or virtual application
templates. Before deploying an application pattern imported from a TOSCA CSAR, basic
configuration for virtual application patterns, such as configuration of cloud groups or import
of base images must be performed. The TOSCA Chef plug-in is configured and deployed in
a Chef client.

Heat leverages TOSCA as a standard based approach for modelling cloud stacks and
applications. It uses OpenStack components for deploying TOSCA cloud stacks in
OpenStack cloud. OpenStack developed the OpenStack Newton is a TOSCA Parser and
Heat Translator. First, it produces in-memory graph of TOSCA nodes and relationship
among them. Next, it translates non-Heat (e.g. TOSCA) templates to HOT, and deploys it
with Heat.

Juju was extended to be able to parse TOSCA based application descriptions. Juju topology
model components can be transformed to TOSCA compliant topology model components.
Both Juju and TOSCA topology models specify graphs consisting of nodes and relations
between nodes to define the structure of cloud services. In TOSCA, both relations and
nodes are explicitly modelled as separate topology model components. Juju specifies nodes
as topology model components only. The TOSCA-Juju transformation consists of two steps.
First, a TOSCA-compliant topology model component has to be generated for each Juju
charm. As a result, each node that can be modelled using Juju can be modelled using
TOSCA, too. However, the relations between these nodes cannot be modelled in TOSCA
because the corresponding topology model components are missing. Second, to address
this issue, additional TOSCA-compliant topology model components have to be generated
for each relation that can be implicitly modelled using Juju.

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 20 of 32

8. Comparison of Application Description Approaches

8.1 Comparison Criteria
The decision on which approach would be ideal to meet COLA’s requirements has to be
based on a comprehensive and a multi-dimensional analysis to weight strengths and
weaknesses of each solution. This analysis does not attempt to define the worthiness of the
perused solutions per se, but only assess their capacity of supporting COLA’s design and
aim.

WP5 defined the comparison criteria that are recapitulated in the Table 4 – Table 7 below.
They are broadly divided into:

 Basic Properties that cover the support for generic functionalities such as portability,
scalability and possible implementation characteristics and constraints such as the
packaging of installation artefacts and the availability of examples and tutorials.

 Entities managed and storage that cover the capacity of the various solutions to
describe the individual components and the whole application, their relationships and
their overall design. This category also covers the support to publish, store query and
share application description profiles.

 QoS parameters that covers the possibility (if not explicitly the capacity) of
expressing Quality of Service parameters such as elasticity, scalability, security.

 Application Execution that covers the support for the execution of the applications.

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 21 of 32

Application description: basic properties
 generic platform specific portability

support
re-usability

support
Scalability

support
description
language

packaging examples tutorials

CAMP Yes No Yes Yes No API PDP which
may contain
ZIP, GZIP and
TGZ

Yes No

TOSCA Yes No Application
Portability:
application
description
supported, not
the application
Deployment
portability
deployment
artifact is NOT
portable
Management
Portability:
via workflow
language

Yes Yes YAML CSAR Yes Yes
(OPEN-
TOSCA)

Amazon AWS
CloudFormation

None Amazon Web
Services +
Amazon
Cloudformation

N/A N/A dynamic
configuration +
auto scaling

JSON ->
YAML

 Yes AWS
CloudFormatio
n Template

Microsoft Azure
Schema

None Microsoft
Azure

N/A template
decomposition

 N/A JSON Visual Studio
format

Yes

ORACLE Virtual
Assembly
Builder (OVAB)

none ORACLE
Enterprise
Platform

N/A N/A N/A XML ORACLE .ova
file

Yes ORACLE
Fusion tutorial

Table 4: Basic properties

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 22 of 32

Application description: Entities Managed and Storage
 application

description
topology

description
service

description
resource

description
artefact

description
GUI to give
descriptions

marketplace catalogue

CAMP Capabilities and
requirements

No No Yes (Capacity) Components No No No

TOSCA Topology, Node
and
Relationship
Type or
Template

Topology Type
or Template

Node Instance Not supported Implementation
and deployment
artefacts

Vinotek[37] and
Winery[23]

TOSCAMart[13] yes

Amazon AWS
CloudFormation

AWS
CloudFormation
Template

links in AWS
CloudFormation
Templates

custom AMI
template

base +
foundational
AWS templates

stack template
file
template
configuration file

command line or
AWS
CloudFormation
Designer

AWS
Marketplace

Amazon Elastic
Block Store

Microsoft Azure
Schema

Azure template
with resource
groups

links defined in
resource group

 ARM template artefacts as
tools to be
installed in VM

command line or
Azure Portal

Azure
MarketPlace

Directory of
Azure Cloud
Services

ORACLE Virtual
Assembly
Builder (OVAB)

OVAB assembly metadata in
OVAB assembly

OVAB template Appliance several artefacts
types

command line or
OVAB Studio

ORACLE Cloud
Marketplace

software library
of Oracle VM
virtual
environment

Table 5: Entity managed + storage

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 23 of 32

Application description: QoS parameters
 authentication authorization privacy trust security groups elasticity scalability

CAMP N/A N/A N/A N/A N/A no no

TOSCA indirectly:
through policies

Indirectly:
through policies

Indirectly:
through policies

Indirectly:
through policies

 ElasticTOSCA Indirectly:
through policies

Amazon AWS
CloudFormation

AWS Identity
and Access
Management

AWS Identity
and Access
Management

AWS Privacy
Policy

AWS Trust
Policy

EC2 security
groups

AWS Elastic
Beanstalk

AWS Scaling
Policy

Microsoft Azure Schema Multifactor
authentication

RBAC secrets N/A network security
groups

Windows Azure
Caching

Windows Azure
Caching

ORACLE Virtual Assembly
Builder (OVAB)

Authentication
token

security roles OVAB Privacy
Policy

OVAB Trust
Policy

OVAB security
groups

Oracle Exalogic
Elastic Cloud

Table 6, QoS Parameters

Application execution
 runtime support container support

CAMP No No

TOSCA Yes Docker

Amazon AWS CloudFormation AWS EC2 Docker + others

Microsoft Azure Schema Windows Azure Runtime Azure Container Service + Docker

ORACLE Virtual Assembly Builder (OVAB) ORACLE Enterprise Manager 12C ORACLE Application Container

Table 7: Application execution

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 24 of 32

9 Application Description in COLA
After consideration of all the previously mentioned factors, TOSCA was selected as the best
candidate for the Application Description Templates in COLA. Such a decision pivots on the
following findings:

 Basic Properties. TOSCA offers support for generic functionalities (portability,
scalability, etc.) suitable for the project, it offers the packaging of installation artefacts
and supports a large variety of installation methodologies that vary from simple scripts
to complex workflows. Furthermore and quite importantly, TOSCA is an accepted
standard, it is supported by a strong and growing community, and there is ample
literature of several and successful attempts of its usage by the research community.

 Entities and storage. TOSCA’s philosophy is very similar and highly compatible with
COLA’s three layered concept to describe applications, their components, their
relationships and generic templates. TOSCA also supports the possibility to publish,
discover and share application description templates.

 QoS parameters. TOSCA does not directly or explicitly support QoS parameter but it
is flexible and generic enough to allow them to be described.

 Application Execution. TOSCA per se is a language specification so it does not
directly support runtime or container support. However, there are TOSCA
implementations that do so.

Greater details and references for each of the decision points are listed in Table 8.

As a further argument to select TOSCA is interoperability. Even today many cloud
orchestration tools are able to manage TOSCA based application/service descriptions. (See
details in Chapter 7). Their number is increasing every year. Selecting a TOSCA based
approach to specify applications/services will improve shareability of COLA applications.

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 25 of 32

Criteria Support Notes Ref

Generic Yes OASIS specification not an implementation.
Implementation is OpenTOSCA

[7] [38]

Platform
Specific

No [7]

Portability Yes (with
caveat)

Description is, Application is NOT per se [8]

Language Yes YAML [17]

Packaging Yes CSAR [39]

Examples Yes Theoretical Examples[8]
Usage of TOSCA to enhance portability[40]

[8] [40]

Tutorials Yes OpenTOSCA has tutorials available [41]

Application
Description

Yes Note and Relationship Templates [8]

Topology
Description

Yes Note and Relationship Templates [8]

Service
Description

Yes Node and Relationship Types [8]

Node
Description

Yes Node Template, node type, node instance [8]

Artefact
Description

Yes CSAR [39]

GUI Yes Winery [23]

Marketplace Yes TOSCA-Mart [13]

Catalogue Yes TOSCA-Mart [13]

Authentication Yes Through Policies and management plan workflows [8]

Authorization Yes Through Policies and management plan workflows [8]

Privacy Yes Through Policies and management plan workflows [8]

Trust Yes Through Policies and management plan workflows [8]

Elasticity Yes Through management plan workflows [8]

Scalability Yes Through Scalability Policies [17]

Runtime
Support

Yes Offered by Open Tosca [38]. Automatic Topology
Completion[11]

[11][38]

Container
Support

Yes Docker, Rocket, Kubernetes and mesos [42]

Table 8: TOSCA References

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 26 of 32

10 Cloud Orchestration in COLA
WP6 investigated and analysed several cloud orchestration tools as prospective candidate
for the MiCADO platform. (See details in Chapter 7). WP6 selected Occopus as the cloud
orchestration tool to be used in COLA. Further, we give an overview how Occopus describes
applications and services.

10.1.1 Describing infrastructure and node
In order to specify a particular virtual infrastructure for Occopus, developers need to provide
an infrastructure description and node definition(s).

The infrastructure description is the most abstract form of defining the infrastructure. It
does not contain any implementation-dependent details. It contains two big sections: list of
nodes and dependencies.

List of nodes contains name, type, implementation selector, scaling information and
variables for each node i.e. node definition, however only name and type are obligatory.
Type is a reference to a node definition. Node definition selector is optional and may perform
selection among multiple implementations (definition) of a certain node. For example, on
Error! Reference source not found. node B uses selector while node A does not. Scaling-
related information covers the minimum and maximum number of instances a node may
have during the lifetime of the infrastructure. The scaling section may include rules and
policies how the actual number of instances should be calculated to support auto-scaling.
The variables section contains user defined key-value pairs, these variables can be referred
later in other parts of the infrastructure description or in node definitions. This is mainly used
to make certain parameters in node definitions tunable from the infrastructure description.

Dependencies in the infrastructure description defines if a node requires the existence of
another node before coming to live. Dependencies are defined by dependency pairs like B
depends on A, which means node A must be deployed before node B (as on Error!
Reference source not found.). The entire dependency graph must be described by
dependency pairs among nodes. Each dependency pair might contain connection related
information, like mapping where the value of certain attribute of a node might be assigned to
an attribute of another node.

Figure 12, Relation among infrastructure description and node definition

Node definition also contains details how a node must be implemented. A node might have

A[ANY] B[2]
depends

A1 A2 B2B1

Definition of
nodes

Description of
infrastructure

A
B

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 27 of 32

more than one implementations. For example, one of the implementations can describe how
the node can be deployed on an Amazon cloud, while another one defines the same for a
particular Openstack cloud. The selection among implementations can be delegated to
Occopus (i.e. random) or can be performed by using a selector in the infrastructure
description as depicted on Figure 12.

Focusing on the implementation of a node there are one obligatory (‘resource’) and three
optional (‘contextualisation’, ‘config_management’, ‘health_check’) sections to be specified
(see Figure 13).

Figure 13, Sections of a node definition

10.1.2 Resource description
The resource section of a node definition specifies the most important and obligatory
parameters to inform Occopus where and how to create a virtual machine for that particular
node. In this section, there are two obligatory parameters: type and endpoint. Type informs
Occopus which protocol the interface located at endpoint applies. The example on Figure
14defines an ‘ec2 type of interface. The rest of the parameters in this sections are protocol
specific parameters. As it can be seen, ec2 interface requires name of region, image ID and
instance type to instantiate a particular virtual machine to represent a node.

Figure 14, Resource section of a node definition

MyNode:
-

resource:
…

contextualisation:
…

config_management:
…

health_check:
…

….

Node definition

….
resource:

type: ec2
endpoint: http://ec2.endpoint.com:4567
regionname: ROOT
image_id: ami-00001234
instance_type: m1.small

….

Node definition

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 28 of 32

The credential information is stored in a separate authentication file for all possible interfaces
and particular endpoints. Currently, ec2, nova, docker, occi and cloudbroker type resources
can be used. Each of them has their own list of parameters to be defined in the resource
section.

10.1.3 Contextualisation
Contextualization allows applying user defined configuration and initial settings of the newly
virtual machine at start-up by executing scripts, creating config files, adding authentication
keys, etc. Currently, contextualization is supported through the cloud-init tool, which is a de
facto standard. In node definition one may add a complete cloud-init configuration file which
is then passed as user-data when launching a new virtual machine. However, an additional
extension is added for handling the contextualization information. Before passing the cloud-
init configuration file as user data for example to an ec2 cloud, it is used as a Jinja2 template
and it is resolved with the actual information stored in Occopus about the actual state of the
infrastructure and nodes. Therefore it is possible to insert e.g. the content of a variable
defined in the infrastructure description (see Figure 15), or to insert the IP address of an
already launched node. The ip address can be queried from Occopus at runtime inside the
contextualization with the support from Jinja2 module. With this extension contextualization
information can be dynamically modified to pass information among the nodes at start-up.

/
Figure 15, Example for referencing variables and ip address

10.1.4 Config management
Occopus is able to utilize external config manager tools, like Chef. In cases when nodes are
built by config managers, Occopus is able to cooperate with them to organize nodes into an
infrastructure. For example, in case of Chef the endpoint of Chef server and the list of
recipes must be defined (see Figure 16)

#cloud-config::
…
write_files:
- content: "{{variables.message}}\n"
path: /tmp/helloworld.txt
permissions: '0644‘

runcmd:
- ping {{getip("ping_receiver")}}

…

Cloud_init
configuration

…
variables:

message: “Hello world!\n”
…

Infrastructure
description

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 29 of 32

Figure 16, Example for config_management section in node definition

10.1.5 Health check
This section describes how Occopus should check if a particular node is still alive on that
node. There are built-in methods like ping, port checking, url checking and database
connectivity checking. Occopus assumes that there are healthy services on the node until all
checks executed successfully. A timer is started once at least one of the checks fails and
node is restarted after a timeout period – defined in the node definition – has been reached.
On the example (see Figure 17), all possible checks are represented.

Figure 17, Example for health_check section in node definition

10.1.6 Occopus vs TOSCA
Occopus and TOSCA specifies applications and services in very similar way. They are
based on the same concept and use similar entities::

Occopus TOSCA

infrastructure description topology template

….
config_management:

type: chef
endpoint: https://chef.server.com
run_list:

- recipe[database-setup::db]
….

Node definition

…
MyNode:
…
health_check:

ping: True
urls:

- http://{{ip}}/myapp
mysqldbs:

- { name: 'dbname', user: ‘dbuser', pass: 'dbpass' }
ports:

- 22
timeout: 300

…

Node definition: health_check

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 30 of 32

node definition node type

relation and dependency in the infrastructure
description

relation type

partly supported plan

Since the concept of Occopus and TOSCA is very similar it will be relatively easy to support
TOSCA in Occopus.

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 31 of 32

11 References
[1] S. Pearce and S. Bryen, “Managing Your AWS Infrastructure at Scale,” 2015.
[2] “Learn Template Basics - AWS CloudFormation.” [Online]. Available:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gettingstarted.te
mplatebasics.html. [Accessed: 20-Feb-2017].

[3] “Microsoft Azure Essentials Azure Web Apps for Developers | Microsoft Press Store.”
[Online]. Available: https://www.microsoftpressstore.com/store/microsoft-azure-
essentials-azure-web-apps-for-developers-9781509300594. [Accessed: 20-Feb-
2017].

[4] Kai Yu, “Design and Implement a SelfService Enabled Private Cloud with Oracle
Enterprise Manager 12c.” [Online]. Available: https://published-
rs.lanyonevents.com/published/oracleus2015/sessionsFiles/2011/UGF9927_Yu-
UGF9927_Kai_Yu_OOW.pdf. [Accessed: 20-Mar-2017].

[5] K. Yu, “SIMPLIFYING APPLICATION DEPLOYMENT IN CLOUD USING VIRTUAL
ASSEMBLIES AND EM 12C.” [Online]. Available:
https://kyuoracleblog.files.wordpress.com/2013/05/2013_369_yu_ppr.pdf. [Accessed:
20-Mar-2017].

[6] “Oracle Fusion Middleware.”
[7] OASIS, “OASIS Topology and Orchestration Specification for Cloud Applications

(TOSCA) TC,” Website, 2014. [Online]. Available: https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca. [Accessed: 15-Feb-2017].

[8] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “TOSCA: Portable Automated
Deployment and Management of Cloud Applications,” in Advanced Web Services,
2014, pp. 527–549.

[9] “tosca-primer-v1.0.”
[10] A. Brogi, J. Soldani, and P. Wang, “TOSCA in a nutshell: Promises and Perspectives.”
[11] P. Hirmer, U. Breitenbücher, T. Binz, and F. Leymann, “Automatic Topology

Completion of TOSCA-based Cloud Applications.”
[12] C. Pahl, L. Zhang, and F. Fowley, “A Look at Cloud Architecture Interoperability

through Standards.”
[13] J. Soldani, T. Binz, U. Breitenbücher, F. Leymann, and A. Brogi, “ToscaMart: A

method for adapting and reusing cloud applications,” J. Syst. Softw., 2016.
[14] J. Soldani, T. Binz, U. Breitenbücher, F. Leymann, and A. Brogi, “TOSCA-MART: A

Method for Adapting and Reusing Cloud Applications TOSCA-MART: A Method for
Adapting and Reusing Cloud Applications *,” 2015.

[15] A. Brogi and J. Soldani, “Reusing cloud-based services with TOSCA *.”
[16] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “TOSCA: Portable Automated

Deployment and Management of Cloud Applications.”
[17] W. Draft, “TOSCA Simple Profile in YAML Version 1.0,” 2014. [Online]. Available:

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd01/TOSCA-
Simple-Profile-YAML-v1.0-csprd01.html. [Accessed: 14-Feb-2017].

[18] “The Official YAML Web Site.” [Online]. Available: http://www.yaml.org/. [Accessed:
20-Feb-2017].

[19] U. Breitenbücher, T. Binz, K. Képes, O. Kopp, F. Leymann, and J. Wettinger,
“Combining Declarative and Imperative Cloud Application Provisioning based on
TOSCA.”

[20] G. Katsaros, M. Menzel, A. Lenk, R. Skipp, and J. Eberhardt, “Cloud Service
Orchestration with TOSCA, Chef and Openstack Jannis Rake-Revelant.”

[21] T. Binz et al., “OpenTOSCA – A Runtime for TOSCA-based Cloud Applications.”
[22] C. Sofokleous, N. Loulloudes, D. Trihinas, G. Pallis, and M. D. Dikaiakos, “c-Eclipse:

An Open-Source Management Framework for Cloud Applications.”

 D5.1 Analysis of existing application description approaches

Work Package WP5 Page 32 of 32

[23] O. Kopp, T. Binz, U. Breitenbücher, F. Leymann, and U. Breitenb, “Winery – A
Modeling Tool for TOSCA-based Cloud Applications Title = {{Winery} --Modeling Tool
for {TOSCA}-based Cloud Applications} Institute of Architecture of Application
Systems Winery – A Modeling Tool for TOSCA-based Cloud Applications.”

[24] “OpenTOSCA Container – Architecture.” [Online]. Available: http://www.iaas.uni-
stuttgart.de/OpenTOSCA/container_architecture.php. [Accessed: 20-Feb-2017].

[25] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann, “Vinothek – A Self-Service
Portal for TOSCA.”

[26] “Cloud Application Management for Platforms Version 1.1,” 2014.
[27] “Solum CAMP API — Solum Specs 0.0.1.dev24 documentation.” [Online]. Available:

https://specs.openstack.org/openstack/solum-specs/specs/juno/solum-camp-api.html.
[Accessed: 20-Mar-2017].

[28] “Chef - Automate IT Infrastructure | Chef.” [Online]. Available:
https://www.chef.io/chef/. [Accessed: 29-Mar-2017].

[29] M. Pfeiffer, “Chef Server on the AWS Cloud: Quick Start Reference Deployment,”
2015.

[30] R. Mateescu, “OpenStack Heat – Overview.”
[31] “Heat - OpenStack.” [Online]. Available: https://wiki.openstack.org/wiki/Heat.

[Accessed: 29-Mar-2017].
[32] “Juju | Cloud | Ubuntu.” [Online]. Available: https://www.ubuntu.com/cloud/juju.

[Accessed: 29-Mar-2017].
[33] J. Baker and U. S. Team, “Service Orchestration for Cloud Environments with Juju,”

2012.
[34] “Welcome - Occopus.” [Online]. Available: http://occopus.lpds.sztaki.hu/en_GB/.

[Accessed: 29-Mar-2017].
[35] R. Ignazio, “Managing Mesos, Docker, and Chronos with Puppet.”
[36] “Puppet - The shortest path to better software.” [Online]. Available:

https://puppet.com/. [Accessed: 29-Mar-2017].
[37] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann, “Vinothek - A self-service portal

for TOSCA,” in CEUR Workshop Proceedings, 2014.
[38] T. Binz et al., “OpenTOSCA – A Runtime for TOSCA-based Cloud Applications.”
[39] “Topology and Orchestration Specification for Cloud Applications,” 2013.
[40] C. Pahl, “IEEE CLOUD COMPUTING MAGAZINE [IN PRESS -ACCEPTED FOR

PUBLICATION, 6 MAY 2015] Containerisation and the PaaS Cloud.”
[41] “OpenTOSCA Ecosystem.” [Online]. Available: http://www.opentosca.org/. [Accessed:

20-Feb-2017].
[42] C. Pahl and B. Lee, “Containers and Clusters for Edge Cloud Architectures – a

Technology Review.”

