
 D5.2 COLA Application Templates

Work Package WP5 Page 1 of 40

Cloud Orchestration at the Level of Application

Project Acronym: COLA

Project Number: 731574

Programme: Information and Communication Technologies
Advanced Computing and Cloud Computing

Topic: ICT-06-2016 Cloud Computing

Call Identifier: H2020-ICT-2016-1

Funding Scheme: Innovation Action

Start date of project: 01/01/2017 Duration: 30 months

Deliverable:

D5.2 COLA Application Templates

Due date of deliverable: 31/07/2017 Actual submission date: 26/07/2017

WPL: Gabriele Pierantoni

Dissemination Level: PU

Version: WIP

 D5.2 COLA Application Templates

Work Package WP5 Page 2 of 40

1. Table of Contents

Contents
1. Table of Contents 2

2. List of Figures and Tables 3

3. Status, Change History and Glossary 4

4. Introduction 6

5. Relationship with other Work Packages and Deliverables 7

6. Application Descriptions 8

7. COLA applications and their TOSCA based description 10

8. TOSCA and virtualisation 13

9. Policies Overview and Related Work 18

10. TOSCA Policies in COLA 20

10.1 TOSCA Description Design Assumptions ... 20

10.2 Abstract Policy Hierarchy in COLA .. 21

10.3 Application and Service Policy Structure in COLA .. 21

10.4 Policy Description Structure in COLA .. 22

11. Conclusions 24

12. References 25

Annex 1. COLA Policy Template 26

Annex 2: Minimum TOSCA Service Template 28

Annex 3: Complete TOSCA Parameter Definition 30

Annex 4: Scaling Policies 31

Annex 5: Placement Policies 34

Annex 6: Security Policies 36

 D5.2 COLA Application Templates

Work Package WP5 Page 3 of 40

2. List of Figures and Tables
Figures

Figure 1, Applications, Services, Types and Templates .. 9
Figure 2, COLA application architecture .. 10
Figure 3, Implementation of the COLA application architecture ... 10
Figure 4, TOSCA meta-model ... 11
Figure 5, COLA application layers and their representation in TOSCA 11
Figure 6, TOSCA specification of the COLA application architecture 12
Figure 7, Containers and Virtual machines .. 13
Figure 8, Docker Containers ... 14
Figure 9, Docker environment ... 15
Figure 10, Docker Swarm architecture .. 15
Figure 11, TOSCA description of a Docker containerized application 16
Figure 12, TOSCA description of a Windows based application .. 17
Figure 13, Application Description Types and Templates and the COLA Architecture 18
Figure 14, Application Description Templates and the COLA Architecture (Detail) 19
Figure 15, Policies Structure and Potential Conflicts ... 20
Figure 16, Abstract Policy Hierarchy ... 21
Figure 17, Policies at Application and Service Level .. 21
Figure 18, Generic Policy Structure ... 22
Figure 19, Scaling Policies Hierarchical Structure ... 31
Figure 20, Deployment Policies Hierarchical Structure .. 34
Figure 21, Security Policies Hiearchical Structure ... 36

Tables

Table 1, Status Change History .. 4
Table 2, Deliverable Change History ... 4
Table 3, Glossary .. 5

 D5.2 COLA Application Templates

Work Package WP5 Page 4 of 40

3. Status, Change History and Glossary

Status: Name: Date: Signature:

Draft: Gabriele Pierantoni 20/07/17 Gabriele Pierantoni

Reviewed: Jose Manual Rapun 24/07/17 Jose Manual Rapun

Approved: Gabor Terstyanszky 26/07/17 Gabor Terstyanszky

Table 1, Status Change History

Version Date Pages Author Modification

V0.1 28/05 ALL G. Pierantoni First Policy Draft

V0.2 01/06 ALL G. Pierantoni Added relationship with other WPs and
Some Policy Examples

V1.0 20/07 ALL G. Pierantoni,
G. Terstyanszky

Added Sections on multi-level application
description and other corrections.

V1.1 24/07 ALL G. Pierantoni,
G. Terstyanszky

Addressed Internal and External Review
Comments

V1.2 26/07 ALL G. Pierantoni Updated policy template and policy-
related annexes.

V1.3 26/07 ALL G. Pierantoni Final Corrections and Formatting

final 26/07 ALL G. Pierantoni Final version

Table 2, Deliverable Change History

 D5.2 COLA Application Templates

Work Package WP5 Page 5 of 40

Glossary

API Application Programming Interface

CAMP Cloud Application Management for Platforms

COLA Cloud Orchestration at the level of Application

CLI Command Line Interface

DoW Description of Work

GUI Graphical User Interface

IaaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

TOSCA
Topology Orchestration Specification for Cloud
Application

Table 3, Glossary

 D5.2 COLA Application Templates

Work Package WP5 Page 6 of 40

4. Introduction

COLA DoW specifies the D5.2 “Specification of the Application Template Concept” as
follows:

“This deliverable will outline the concept of the application template and its formal
description.”

This deliverable aims at illustrating how COLA will describe the applications and how these
description referred to in this document as Application Templates will be handled by the
various components of the COLA architecture. This deliverable is related to other COLA
Deliverables and work packages and such dependencies are detailed in section TODO. The
Research Activities in this area are correlated to other Work packages (as detailed in Section
5) and is still ongoing; the proposed approach described may (and probably will) be amended
and ameliorated depending on the results of the adoption of his design and guidelines

D5.2, is structured as follows:

 Section 5, defines the dependencies of this deliverable with other deliverables of COLA.

 Section 6, offers an overview of Application Descriptions and COLA design guidelines.

 Section 7, defines how COLA will describe the Application Topologies.

 Section 8, details the relationship of TOSCA with virtualization.

 Section 9, introduces the description of policies.

 Section 10, defines the assumption and limitations of the design for the policies
description, defines the hierarchy for the definition of the policy types, defines the
relationship between the policy description and the application template structure and
defines the structure for the policy template.

 Section 11, concludes the Deliverable and lists some open issue that will be further
investigated.

 Section 12 contains the references.

 D5.2 COLA Application Templates

Work Package WP5 Page 7 of 40

5. Relationship with other Work Packages and Deliverables

This deliverable is closely related to the following Work Packages and Deliverables:

WP4 – Cloud Access Layer. The Policy Extension uses information that originates from
the Cloud Access Layer (e.g. the geographical location of the services). The policy
extension may also dictate some characteristics of the IaaS Layer (e.g. the storage
encryption or networking constraints), finally, the Microservices Performance
benchmarking may be used directly in the Trigger Namespace; alternatively, another
component will collect these measures and present them in another namespace.

WP5 – Application Definition Templates. Deliverable D5.1 – “Analysis of existing

application description approaches”, analyses the existing applications descriptions.
This state of the art is related to this deliverable as it defines TOSCA as description
language and overall design approach is best suited to solve COLA’s requirements.

WP6 – Microservices deployment and execution. The COLA policy extensions will be

used by the Cloud Deployment Orchestrator Service (T6.1) through the TOSCA
Translator. The policies will use information from the Measurements and Metrics
(T6.2). Finally, the policies will be used by the MiCADO Policy Keeper (T6.3) and
MiCADO Policy Optimiser (T6.4) to define high-level optimization policies. (See Fig.
2 Architecture of the MiCADO Cloud Orchestration Layer in D6.1.)

WP7 – Security, Privacy and Trust. The COLA policy extensions will be compatible with

the design drafted in T7.1 and will be related to the COLA Security Architecture
Design. More specifically, the TOSCA policy extensions will be able to support and
express the security policies to be defined in D7.2.

WP8 – Use Case Pilots. The TOSCA policy extensions will be able to support the use

cases defined in D8.1

 D5.2 COLA Application Templates

Work Package WP5 Page 8 of 40

6. Application Descriptions

The description of the applications in COLA covers various interconnected aspects and it is
fundamental for the good success of the project.

 Firstly, as it is common in related scientific and industrial research, we assume that

each application will be composed by different services that are arranged in an

“application topology”.

 Secondly, we assume that the application description must provide information on how

each service is deployed, undeployed and run

 Thirdly, we assume that aspects on how services are deployed, undeployed and run

are described by policies.

In addition to these design requirements, we also define a set of design guidelines that inspire
the design in this document. These guidelines are either derived from COLA’s DoW or have
been defined to tackle specific aspects of the project implementation.

 The application description must be compatible and interoperable as much as possible

with current industrial and scientific standards and practices.

 The application description must minimize the effort required to application developers,

by maximizing re-usability.

 The application description must contain the definition of policies that regulate the

deployment, execution and un-deployment of services.

 The application description must support an incremental development of the COLA

architecture.

Deliverable D5.1, has provided an overview of the current status of Application Description
approaches both in the academic and industrial environment. Given various considerations
and the main COLA requirements, TOSCA [1] was selected as the most suitable solution for
the Application Description. A State of the Art and the parameters that led to the decision to
adopt TOSCA for the Application Description in COLA are detailed in Deliverable 5.1.

 D5.2 COLA Application Templates

Work Package WP5 Page 9 of 40

The concepts of Applications, Services, Types and Templates are important to this
document and are detailed in Figure 1.

On the horizontal axis, we have Types and Templates. Types are akin to Object Oriented
Hierarchies and define the structure of an application description while templates define the
values defined within the type.

Within Types and Templates, we have Applications and Services: Applications are composed
by set of Services along with the full software stacks that allow their deployment and
executions. Applications are described by graphs that are also referred to as “Services
Topologies”.

Figure 1, Applications, Services, Types and Templates

This Deliverable describes how COLA will use the TOSCA language specification[1][2] to
implement a multi-layered application description and how to define policies that will define
the modalities with which the lifetime cycle of the application will be managed.

 D5.2 COLA Application Templates

Work Package WP5 Page 10 of 40

7. COLA applications and their TOSCA based description

Typical COLA applications are web applications that contain three layers: proxy, application
and database layer. These layers may run on a single or multiple servers considering user
demands. Figure 2 presents the application architecture and its typical implementation running
on multiple servers.

Figure 2, COLA application architecture

COLA describes applications using the TOSCA meta-model, presented in Figure 3. TOSCA
defines generalized and base node types such as application server, web server, database,
compute node, storage node etc. to describe PaaS and IaaS resources and services. WP5
will use these node types to describe the platform on which they run and resources they use.

Figure 3, Implementation of the COLA application architecture

COLA applications using the TOSCA meta-model, (Figure 4) define generalized and base
node types such as application server, web server, database, compute node, storage node
etc. to describe PaaS and IaaS resources and services. WP5 will use these node types to
describe the platform on which they run and resources they use.

 D5.2 COLA Application Templates

Work Package WP5 Page 11 of 40

Figure 4, TOSCA meta-model

In COLA cloud applications, three layers can will be distinguished: application, platform, and

resource layer (Figure 5).

Figure 5, COLA application layers and their representation in TOSCA

 D5.2 COLA Application Templates

Work Package WP5 Page 12 of 40

The application layer contains applications such as proxy services, databases (for example
MongoDB, MySQL, etc.), web applications (for example COLA user applications). They are
managed as SaaS and executed on PaaSs and IaaSs. This layer defines the application
architecture as a service template. This template describes the structure, including services
as components and their relation, and a basic set of requirements of one particular application
type. Applications can be described by custom node types to support their re-use in other
TOSCA applications. These custom node types will be derived from TOSCA Container,
SoftwareComponent and WebApplication generalized node type. The platform layer provides
platforms as containers, for example proxy server, application server, web server, database
server, etc., to host and run applications. The servers are described as generalized node
types. For example BlockStorage, Container, Database, WebServer are generalized node
types. The resource layer consists of compute, network and storage resources available in
the Cloud. The resources are represented in TOSCA as base node types, such as Compute,
Network and Storage base node type. Fig. 5 depicts the COLA applications layers and their
representation in TOSCA.

The application architecture, depicted in Figure 2, can be specified in TOSCA using this three
layer approach. This specification is presented in Figure 6.

Figure 6, TOSCA specification of the COLA application architecture

 D5.2 COLA Application Templates

Work Package WP5 Page 13 of 40

8. TOSCA and virtualisation

As shown in Figure 7, COLA applications can run either on Linux or on Windows operating
system. Windows applications could be too heavy for Docker containers. As a result, the
MiCADO platform has to support running Linux based applications in containers and Windows
based application in virtual machines

Figure 7, Containers and Virtual machines

Virtual machine (VM) emulates system providing functionality of a physical computer. Their
implementations may involve specialized hardware, software, or a combination. VM requires
some sort of emulation layer or hypervisor complete with an OS installation for each VM. The
end user has the same experience on a virtual machine as they would have on dedicated
hardware. The hypervisor emulates hardware resources, such as client, or server's CPU,
memory, hard disk, network and other enabling virtual machines to share the resources. The
hypervisor can emulate multiple virtual hardware platforms that are isolated from each other,
allowing virtual machines to run Linux and Windows operating systems on the same physical
host. Virtualization limits costs by reducing the need for physical hardware systems. Virtual
machines more efficiently use hardware, which lowers the quantities of hardware and
associated maintenance costs, and reduces power and cooling demand.

Container is an operating-system level virtualization method that provides a completely
isolated environment, simulating a closed system running on a single host. It gives the user
the ability to have an environment to do whatever is needed; in particular to develop and run
applications with the necessary resources and environment configuration. Container uses
features in the host operating system’s kernel to provide an isolated virtual environment– disk,
memory, networking, etc., on the same OS. Container does not require an install of anything
other than the files required for applications. The container is a bit like virtual machines, but
less demanding over the host computer. Unlike a virtual machine, where an application and
the OS are tied together, a container splits these by making the OS a shared asset among
containers. Containers are isolated. They may share the virtual machine with other
containers, but they may never know about each other.

D6.2 identified Docker as a container technology (Figure 8) to be used to run COLA
applications. Docker wraps up a software in a complete file system that contains everything it
needs to run: code, run-time, system tools, and system libraries. Docker enables deploying

 D5.2 COLA Application Templates

Work Package WP5 Page 14 of 40

applications to a container.

Figure 8, Docker Containers1

Docker has the following major components (Figure 9):

 Docker images - contain all the dependencies of applications. You using a file called

 Docker file - contains series of commands that specifies how to build an image.

 Docker containers - are instances of images holding everything that is needed for an
application to run. Each container can be run, started, stopped, moved and deleted.

 Docker registries - repositories that hold base images, and they can be public (Docker
Hub) or private.

To run an application inside a Docker container the following steps must be completed:

1. Create a Docker file that describes what application needs to run (i.e., how to define an
image).

2. Connect to the Docker Host.
3. Using the Docker file, create an image in the Host.
4. Create a new container using the image.
5. Start the container with “Dockerized” application.
6. Take a snapshot of this container. This will create a new image which can be uploaded

to a Docker Registry.

1 A. Farkas, MTA SZTAKI, Docker Clustering Tools Comparison

 D5.2 COLA Application Templates

Work Package WP5 Page 15 of 40

Figure 9, Docker environment2

COLA will use Docker Swarm in the MiCADO platform to manage Docker containers in the
Cloud.

Figure 10, Docker Swarm architecture

Figure 10 presents the architecture of Docker Swarm used to manage containerized

applications in the Cloud. Docker Swarm is an orchestration tool providing clustering and
scheduling capabilities for applications. Docker Engines are clustered into a single “virtual
engine” that pools their resources together and communicate with a single Swarm master
to execute commands. It offers flexible scheduling policies to improve management of
host resources available to run applications.

Several cloud orchestration solutions, for example Cloudify[3], Mesos[4], OpenTosca[5][6][7],

2 Diagram source - http://southworks.com/blog/2015/07/03/introduction-to-docker/

http://southworks.com/blog/2015/07/03/introduction-to-docker/

 D5.2 COLA Application Templates

Work Package WP5 Page 16 of 40

etc. defined a new generalized node type called “DockerEngine” to create and run Docker[8]
containers in the Cloud. This node type provides PaaS and IaaS support to run Docker
containers in the Cloud. Using OpenTosca Winery[9], WP5 developed the TOSCA
descriptions, presented in Figure 11, of the application architecture given in Figure 2.

Figure 11, TOSCA description of a Docker containerized application

The TOSCA description of Linux based applications contains three custom nodes type:
application, database and proxy type embedded in a Docker container. Each Docker container
is executed (or hosted) on a Docker Engine that deploys, configures, starts, manages and
deletes them. In contrary the TOSCA description of Windows based applications run inside
virtual machines. This description incorporates all three layers presented in Fig. 4. (See Figure
13) presents the three layer description of a Windows application.

 D5.2 COLA Application Templates

Work Package WP5 Page 17 of 40

Figure 12, TOSCA description of a Windows based application

 D5.2 COLA Application Templates

Work Package WP5 Page 18 of 40

9. Policies Overview and Related Work

The problem of the description and enforcement of policies in TOSCA is an additional
dimension to the description of the application topologies and their implementation that have
been described in the previous sections. They define and enforce the modalities with which
the services are deployed, configured and executed.

The definition and enforcement of policies is an active field of research and various solutions
both generic and more specific have been proposed[10]. TOSCA offers non-normative
extensions that can be used to define policies [11] and COLA will follow this approach.

The Application Descriptions Templates are shared among different components of the COLA
architecture and the information flow can be drafter as illustrated in Figure 13.

Figure 13, Application Description Types and Templates and the COLA Architecture

A TOSCA Repository will contain the TOSCA Application Descriptions with Policy Templates
that are generic definition of policies that define the structure of the policy with default values
set. The User Interface, (either a GUI or a CLI) will allow the Application Description
Developers to define some of the values of the Policy Types, to create the Policy Template.
The combined roles of the Repository and the User Interface will implement the guidelines of
re-usability and the minimization of the Application Developer Intervention. Once completed,
the TOSCA Application Description with the final version Policy Template (e.g. with all the
values either set by the user of left to their default setting) will be parsed and interpreted by
the TOSCA Submitter. The TOSCA Submitter will evaluate the values and thresholds defined
by the policies and will compare them to the various measures obtained from the monitoring
system(s) and other infrastructure information sources to enforce the related policies.

 D5.2 COLA Application Templates

Work Package WP5 Page 19 of 40

Figure 14, Application Description Templates and the COLA Architecture (Detail)

The interaction between the Application Description Templates expressed in TOSCA and the
components of the COLA architecture that will enforce the policies is detailed in Figure 14.

The TOSCA Submitter will contain a TOSCA Parser and TOSCA Translator. that the TOSCA
Parser will check the validity of the YAML[12] code of the Application Description Templates.
It will pass the TOSCA descriptions to the TOSCA Translator that will instruct three
components (Occopus, Swarm and the COLA Policy Keeper) in accordance to both the
description of the application and the policies that norm its lifecycle. The Policy Keeper will
enforce the policies by matching its values to those provided by the components that monitor
the infrastructure and will instruct Occopus and Swarm accordingly

The interactions between Occopus, Swarm, Docker and other architecture components are
further detailed in Deliverable 6.1.

 D5.2 COLA Application Templates

Work Package WP5 Page 20 of 40

10. TOSCA Policies in COLA

10.1 TOSCA Description Design Assumptions
The design proposed in this Deliverable is based on the following assumptions and restrictions

 Declarative Model. The policies description follows the Declarative Model. E.g. they

describe a policy but they do not imperatively describe how to implement the policy,

which is left to the proper components of the COLA architecture

 Selectable and Composable Policies. Users can select policies from a basket of

existing policies but cannot create new policies

 Modular Policies. Users can select and specify the parameters of atomic (that cannot

be decomposed further) policies of different kinds that cover the various facets of one

service. These policies are combined for each service to define overall policies of that

service and the overall policies of each service are then combined in the overall policies

that govern the complete service topology (the application). In this first draft, users will

only define policies at service level.

 User-defined Policy Parameters. Users can define parameters of the selected policies

but cannot change the structure of the selected policies.

 No Consistency is ensured. Policies may be contradictive, at this stage of the policies

description, only a priority level will be offered to the user to define which policy has the

highest priority but this priority may not always be respected.

The concepts of modularity and consistency are further explained in Figure 15 below. Policies
that define certain aspects of the entire application topology (and hence each of the services
that compose the application) may raise conflicts with policies that define aspects of a specific
service. Furthermore, policies that define the various aspects of the policies of individual
services may raise conflicts.

Figure 15, Policies Structure and Potential Conflicts

COLA will define policies at three different levels: at abstract policy hierarchy level, application
and service policy level, and policy description level.

 D5.2 COLA Application Templates

Work Package WP5 Page 21 of 40

10.2 Abstract Policy Hierarchy in COLA

TOSCA allows to define type hierarchies of arbitrary complexity, COLA will define a multi-
layered hierarchy of policies that will all derive from a Root Policy. Each Policy Type, will then
be further detailed in each sub-type. The first level the abstract hierarchy of different Policy
Types is depicted in Figure 16. Each of the sub-policies hierarchies are defined in Annexes 4
to 6

Figure 16, Abstract Policy Hierarchy

10.3 Application and Service Policy Structure in COLA

The second level of policy description is the placement and relationship between the policies
and at the various level of the TOSCA Application Template. As introduced in Section 0.2,
policies are composed by sub-policies and can be placed either at application (entire topology)
or service (single or multiple topology node levels). This structure level of the policies is
illustrated in Figure 17 below.

Figure 17, Policies at Application and Service Level

 D5.2 COLA Application Templates

Work Package WP5 Page 22 of 40

10.4 Policy Description Structure in COLA

Finally, each policy adheres to the generic structure drafted in Figure 18.

Figure 18, Generic Policy Structure

WP5 elaborated a Policy Template to support definition of COLA policies. This template is
detailed in Annex 1 and examples are given in Annexes 4 to 6. Each policy is divided into two
main section:

 Description: This section of the Policy is composed of different fields that give an overall

description of on which service and during which part of their lifecycle the policy are

applied. This section is further composed of the following fields:

o Name: A String that represents the name of the Policy

o Type: The type defined in the policy hierarchy. This field defines the link with the

first level of policy structure (Abstract Policy Hierarchy Type)

o Description: A textual description of the policy

 Properties. This section contains two kinds of parameters: those that are common to

all COLA policies, and those that are specific to each policy.

 Common Properties that are present in all COLA policies (it is expected that all these

parameters are defines in a COLA policy).

o Target: define the technological element to which the policy has to be applied. As

an example, a policy could be applied to a single service, to a set of services, or

to an entire application topology. This fields define the link with the second level

of the policy structure (Application and Service Policy Structure)

 D5.2 COLA Application Templates

Work Package WP5 Page 23 of 40

o Stage: define at which stage the policy applies. As an example, a policy may

apply at deployment stage, or execution stage]. It may cover more than one stage,

if no value is defined, the policy will not be implemented.
o Priority: This is an arbitrary integer of 0 to 100 used to define the priority with which

the policy will be implemented. It is used to resolve possible conflicts with other

policies, if no value is given, a default value of 50 is given to the policy. A Priority

of 0 signifies that the policy will not be enforced, a Priority of 100 signifies that the

policy MUST always be enforced (the case of two conflicting policies with priority

100 has not been solved yet). Any value between 1 and 99 signifies that the policy

will be enforced unless it conflicts with a policy with a higher priority.

 Specific Properties are specific to each Policy. Most Policies will define Triggers in

this sections along with their namespace. Triggers are the values that will be used to

determine whether to execute or not a policy (e.g. the cpu consumption of an

application). To allow for support to multiple sources of information of the

infrastructure (possibly not known at the time of the specification of the policy

structure), triggers are associated with a namespace. Properties are defined as a list of

TOSCA parameter definition as specified in section 3.5.12 of the TOSCA Simple Profile [1]

and contains various parameter definition including type, constraints and other useful

fields such as required and constraints (among other). A complete description of the

parameter definition is in Annex 3.

 D5.2 COLA Application Templates

Work Package WP5 Page 24 of 40

11. Conclusions

This deliverable continues the investigation on the best approach for the description of
applications in the COLA project. Deliverable D5.1 detailed the reasons that lead to the choice
of TOSCA and, based on this decision, the investigation focused on how to propose a TOSCA-
based structure to define the multi-layer application proposed in COLA’s DoW and how to best
represent policies that can be applied to one or more services or to the entire application in
different stages to its lifecycle.
At the time of writing of this Deliverable, there were some open issues both conceptual and
technical that will be object of further investigation in conjunction with other COLA work
packages.

Priority Conflict. The case in which two policies with priority set to 100 are in conflict has not
solution to the moment being.

Hidden Policies. TOSCA supports the description of hidden policies (particularly regarding
deployments) that are implemented with node filtering in the overall topology. There is no
consensus as of now on how to address possible conflicts between these implicit policies and
those that are explicitly declared as policy types.

Incomplete Hierarchies: As of now, the policy hierarchies are in draft status and they will be
further detailed and modified. More specifically, Cost-Based Policies and Quality of Service
Policies must be introduced, Deployment and Scaling Policies must be reviewed and detailed
further and Security Policies must be reviewed when the Security Architecture will be released
in its final version

 D5.2 COLA Application Templates

Work Package WP5 Page 25 of 40

12. References

[1] Various, “TOSCA Simple Profile in YAML Version 1.0,” 2014. [Online]. Available:

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-
Profile-YAML-v1.0.html. [Accessed: 20-Jul-2017].

[2] A. Brogi, J. Soldani, and P. Wang, “TOSCA in a Nutshell: Promises and Perspectives,”
Lect. Notes Comput. Sci., pp. 8745171–186, 2014.

[3] Various, “Pure-Play Cloud Orchestration & Automation Based on TOSCA |
Cloudify.” [Online]. Available: http://cloudify.co/. [Accessed: 26-Jul-2017].

[4] Various, “Apache Mesos.” [Online]. Available: http://mesos.apache.org/. [Accessed: 26-
Jul-2017].

[5] T. Binz et al., “OpenTOSCA – A Runtime for TOSCA-Based Cloud Applications,”
Springer, Berlin, Heidelberg, 2013, pp. 692–695.

[6] “OpenTOSCA Eco System.” [Online]. Available: http://install.opentosca.org/.
[Accessed: 26-Jul-2017].

[7] “IAAS | OpenTOSCA.” [Online]. Available: http://www.iaas.uni-
stuttgart.de/OpenTOSCA/. [Accessed: 26-Jul-2017].

[8] Various, “Docker - Build, Ship, and Run Any App, Anywhere.” [Online]. Available:
https://www.docker.com/. [Accessed: 26-Jul-2017].

[9] O. Kopp, T. Binz, U. Breitenbücher, F. Leymann, and U. Breitenb, “Winery – A Modeling
Tool for TOSCA-based Cloud Applications Title = {{Winery} --Modeling Tool for
{TOSCA}-based Cloud Applications} Institute of Architecture of Application Systems
Winery – A Modeling Tool for TOSCA-based Cloud Applications.”

[10] Various, “Policy in Tosca - Domino - OPNFV Wiki.” [Online]. Available:
https://wiki.opnfv.org/display/domino/Policy+in+Tosca. [Accessed: 26-Jul-2017].

[11] T. Waizenegger et al., “Policy4TOSCA: A Policy-Aware Cloud Service Provisioning
Approach to Enable Secure Cloud Computing,” Springer, Berlin, Heidelberg, 2013, pp.
360–376.

[12] Various, “The Official YAML Web Site.” [Online]. Available: http://yaml.org/. [Accessed:
24-Jul-2017].

 D5.2 COLA Application Templates

Work Package WP5 Page 26 of 40

Annex 1. COLA Policy Template

The following defines the structure of a COLA Policy Template, for the sake of conciseness and clarity
only the relevant fields are added

Policy Description

Description:

Name of the Policy
type: string
required: yes
Name:

Name of the Type of the Policy, this defines which policy type is used to derive the policy
template from the policy hierarchy
type: TOSCA type
required: yes
Type:

A textual description of the policy
type: string
required: yes
Description:

Properties:

Common Properties

List of target nodes that Defines the technological layer where the policy has to be applied:
required: yes
Type: List of Tosca Node(s)
Targets:

List of stages of the nodes to which the policy applies (Deployment, Execution, etc…)
required: yes
Type: Defined as per normative TOSCA node states

 Stage:

Defines importance of the policy in a range from 0 (lowest priority) to 100 (highest priority)
to resolve possible conflicts with other policies
required: yes
Type: Integer

 # Expected values: 0 -100
Priority:

The trigger(s) that are used to activate/deactivate the policies

 D5.2 COLA Application Templates

Work Package WP5 Page 27 of 40

The trigger identifier
required: no
Type: Tosca Parameter
Trigger_Id:

The trigger namespace
required: no
Type: Tosca Parameter
Trigger_Namespace:

Specific Properties

Each Property that is specific to the policy will be defined as a Tosca Parameter Type
required: yes/no
Type: Tosca Parameter (detailed in Annex 3)
Property_X:

 D5.2 COLA Application Templates

Work Package WP5 Page 28 of 40

Annex 2: Minimum TOSCA Service Template

tosca_definitions_version:

Required TOSCA Definitions version string

// Optional metadata keyname: value pairs
metadata:

template_name:
Optional name of this service template

template_author:
Optional author of this service template

template_version:
Optional version of this service template

description: <template_type_description>

dsl_definitions:

list of YAML alias anchors (or macros)repositories:
repositories:

list of external repository definitions which host TOSCA artifactsimports:
imports

ordered list of import definitions

artifact_types:

list of artifact type definitions
derived_from: <parent_artifact_type_name>
version: <version_number>
description: <artifact_description>
mime_type: <mime_type_string>
file_ext: [<file_extensions>]
properties:

<property_definitions>

data_types:

list of datatype definitions
capability_types:

list of capability type definitions
interface_types

list of interface type definitions

relationship_types:

list of relationship type definitions
tosca.relationships.Root:
description: The TOSCA root Relationship Type all other TOSCA base Relationship
Types derive from
attributes:

tosca_id:
type: string

 D5.2 COLA Application Templates

Work Package WP5 Page 29 of 40

tosca_name:
type: string

interfaces:
Configure:

type: tosca.interfaces.relationship.Configure

node_types:

list of node type definitions
derived_from: <parent_node_type_name>
version: <version_number>
description: <node_type_description>
properties:

<property_definitions>
attributes:

<attribute_definitions>
requirements:

- <requirement_definitions>

group_types:

list of group type definitions
derived_from: <parent_group_type_name>
version: <version_number>
description: <group_description>
properties:

<property_definitions>
targets: [<list_of_valid_target_types>]
interfaces:

<interface_definitions>

policy_types:

list of policy type definitions

topology_template:

topology template definition of the cloud application or service

 D5.2 COLA Application Templates

Work Package WP5 Page 30 of 40

Annex 3: Complete TOSCA Parameter Definition

 parameter_name: represents the required symbolic name of the parameter as a string.

 parameter_description: represents the optional description of the parameter.

 parameter_type: represents the optional data type of the parameter. Note, this

keyname is required for a TOSCA Property definition, but is not for a TOSCA

Parameter definition.

 parameter_value, parameter_value_expresssion: represent the type-compatible value

to assign to the named parameter. Parameter values may be provided as the result

from the evaluation of an expression or a function.

 parameter_required: represents an optional boolean value (true or false) indicating

whether or not the parameter is required. If this keyname is not present on a parameter

definition, then the property SHALL be considered required (i.e., true) by default.

 default_value: contains a type-compatible value that may be used as a default if not

provided by another means.

 status_value: a string that contains a keyword that indicates the status of the parameter

relative to the specification or implementation.

 parameter_constraints: represents the optional sequenced list of one or more

constraint clauses on the parameter definition.

 entry_description: represents the optional description of the entry schema.

 entry_type: represents the required type name for entries in a list or map parameter

type.

 entry_constraints: represents the optional sequenced list of one or more constraint

clauses on entries in a list or map parameter type.

 D5.2 COLA Application Templates

Work Package WP5 Page 31 of 40

Annex 4: Scaling Policies

Scaling Policies define how services should be scaled up or down. We have isolated two main
classes of scaling policies: consumption based policies that scale up or down one or more
services based on the consumption of some metrics obtained by the infrastructure monitoring
and performance-based. The Scaling Policies Hierarchy as defined at the moment of this
Deliverable (the Hierarchy is likely to be extended in the future) is represented in Figure 19

Figure 19, Scaling Policies Hierarchical Structure

Simple Consumption-Based Scaling Policy Example
One example of a Consumption-Based Policy expressed with the COLA Policy Template is
described below:

Simple CPU Consumption Scaling Policy

Description:

Name: SimpleCPUConsumption
Type: Tosca.Policy.Scaling.Consumption.SimpleCPU
Description: This policy dictates that a new instance of the listed services is deployed when
the CPU consumption exceeds the given threshold for more than the defined trigger time. The
additional instances of the service are undeployed when the CPU consumption falls below the
lower threshold for more than the defined trigger time.

Properties:

Common Properties

List of target nodes that Defines the technological layer where the policy has to be applied:
required: yes
Type: List of Tosca Node(s)
Targets: [TopologyTemplate.NoteTemplates.ServiceX]

List of stages of the nodes to which the policy applies (Deployment, Execution, etc…)
required: yes
Type: Defined as per normative TOSCA node states

 Stage: Started

 D5.2 COLA Application Templates

Work Package WP5 Page 32 of 40

Defines importance of the policy in a range from 0 (lowest priority) to 100 (highest priority)
to resolve possible conflicts with other policies
required: yes
Type: Integer

 # Expected values: 0 -100
Priority: 100

The trigger(s) that are used to activate/deactivate the policies

The trigger identifier
required: no
Type: Tosca Parameter
Trigger_Id: CPU_TIME

The trigger namespace
required: no
Type: Tosca Parameter
Trigger_Namespace: Prometheus

Specific Properties

Each Property that is specific to the policy will be defined as a Tosca Parameter Type
required: yes/no
Type: Tosca Parameter (detailed in Annex 3)
Property1:

Parameter_name: max_cpu_threshold
Parameter_description: the max cpu above which the service(s) will be scaled up

by deploying new instance.
Parameter_type: integer
Parameter_value: 80
Parameter_required: true
Default_Value: 80
Parameter_contraints: [0, 100]

Property2:
Parameter_name: min_cpu_threshold
Parameter_description: the min cpu below which the service(s) will be scaled down

by undeploying one instance.
Parameter_type: integer
Parameter_value: 20
Parameter_required: true
Default_Value: 20
Parameter_contraints: [0, 100]
Parameter_trigger: CPU_CONSUMPTION
Parameter_trigger_namespace: PROMETHEUS

Property3:

 D5.2 COLA Application Templates

Work Package WP5 Page 33 of 40

Parameter_name: cpu_reaction_time
Parameter_description: the time (in seconds) in which the trigger must be above or

below the threshold before the policy is enforced.
Parameter_type: integer
Parameter_value: 600
Parameter_required: true
Default_Value: 600
Parameter_contraints: [0, 3600]

 D5.2 COLA Application Templates

Work Package WP5 Page 34 of 40

Annex 5: Placement Policies

Deployment (or placement) Policies define where services should be deployed. We have
isolated two main classes of deployment policies: Resource based policies that decide where
to deploy a service based on the resources available (Computational and Storage Resources
or even available services) or Location Based Deployment that decide where to deploy a
service based on its geographical location (as an example for data protection/privacy law
compliancy). The Deployment Policies Hierarchy as defined at the moment of this Deliverable
(the Hierarchy is likely to be extended in the future) is represented in Figure 19. TOSCA does
provide the possibility to define implicit deployment policies (by node matching and filtering)
without having to explicitly declare a policy but in COLA, we suggest to try to avoid this solution
as it will not result visible as a policy to application developers.

Figure 20, Deployment Policies Hierarchical Structure

Simple Resource Based Deployment Policy Example
One example of a Simple Resource Deployment Policy expressed with the COLA Policy
Template is described below:

Simple CPU-Based Resource Deployment Policy

Description:

Name: SimpleCPUDeployment
Type: Tosca.Policy.Deployment.ResourceBased.SimpleCPU
Description: This policy dictates that the services specified must be deployed on resources
with a number of CPU greater to the specified value.

Properties:

Common Properties

List of target nodes that Defines the technological layer where the policy has to be applied:
required: yes
Type: List of Tosca Node(s)
Targets: [TopologyTemplate.NoteTemplates.ServiceX]

 D5.2 COLA Application Templates

Work Package WP5 Page 35 of 40

List of stages of the nodes to which the policy applies (Deployment, Execution, etc…)
required: yes
Type: Defined as per normative TOSCA node states

 Stage: Initial

Defines importance of the policy in a range from 0 (lowest priority) to 100 (highest priority)
to resolve possible conflicts with other policies
required: yes
Type: Integer

 # Expected values: 0 -100
Priority: 100

The trigger(s) that are used to activate/deactivate the policies.
This policy has not triggers

Specific Properties

Each Property that is specific to the policy will be defined as a Tosca Parameter Type
required: yes/no
Type: Tosca Parameter (detailed in Annex 3)
Property1:

Parameter_name: min_available_cpu
Parameter_description: the minimum number of cpu that must be available for the

service to be deployed.
Parameter_type: integer
Parameter_value: 4
Parameter_required: true
Default_Value: 4
Parameter_contraints: [0, 64]

 D5.2 COLA Application Templates

Work Package WP5 Page 36 of 40

Annex 6: Security Policies

Security Policies have been the topic of active cooperation between WP5 and WP7 and are
at the moment, more detailed than the other basic types, their hierarchical structure is shown
in Figure 21

Figure 21, Security Policies Hiearchical Structure

Security Policies Types cover the following main aspects:

The Authentication policy defines the communication channel that will be used between the
server and the entities that wish to authenticate themselves as well as the possible ways that
an entity can be authenticated (e.g. providing a valid certificate). In addition to that,
authentication policy is responsible for defining parameters such as the expiration of a session,
how the log files will be stored and how many failure authentication requests are allowed by a
user.

The Authorization policy controls the authorization of components, in the sense of granting
a component access to a resource. Note that the component may need to be authenticated,
as a pre-condition of being authorized to access a certain resource. This is a targeted policy,
which is applicable to the top layer of the COLA Architecture, namely the service layer.

The Resource Colocation policy controls the colocation of components, in the sense of
sharing the underlying physical of virtual platform with peer components. This is a recursive
policy, which is applicable – with respective modifications – to several layers of the COLA
Architecture.

The Disk Encryption policy describes the confidentiality mechanisms that will be responsible
for protecting sensitive data from external attacks. The policy allows to define the encryption
algorithm that will be used for the encryption of a storage resource as well as the length of the
underlying encryption key.

The Data Location policy controls the placement of data across geographically distributed
sites. Such sites may be located in different availability zones or different jurisdictions. The
policy views the sites as passive endpoints capable of reading and writing data. The sites are
not able to perform actions such as modification or analysis of the stored data.

 D5.2 COLA Application Templates

Work Package WP5 Page 37 of 40

The Integrity Attestation policy ensures that a cloud host is running in a trusted state. A
trusted state is defined based on a set of predefined security profiles.

The Service Quarantine policy defines the behaviour in the situation when a service site must
be quarantined. The policy states the conditions of quarantine and remediation actions to
maintain availability in such situations.

The Resource Teardown policy controls the decommissioning of components, in the sense
of withdrawing them from the deployment – either temporarily or permanently. The goal of the
policy is to ensure that components are decommissioned without the risk of exposing user
code, data or configuration. This is a recursive policy, which is applicable – with respective
modifications – to several layers of the COLA Architecture.

Authentication Policy Example
One example of an Authentication Policy expressed with the COLA Policy Template is
described below:

Simple CPU-Based Resource Placement Policy

Description:

Name: Authentication
Type: Tosca.Policy.Security.Authentication
Description: The authentication policy defines the communication channel that will be used
between the server and the entities that wish to authenticate themselves as well as the
possible ways that an entity can be authenticated (e.g. providing a valid certificate). In
addition to that, authentication policy is responsible for defining parameters such as the
expiration of a session, how the log files will be stored and how many failure authentication
requests are allowed by a user.

Properties:

Common Properties

List of target nodes that Defines the technological layer where the policy has to be applied:
required: yes
Type: List of Tosca Node(s)
Targets: [TopologyTemplate.NoteTemplates.ServiceX]

List of stages of the nodes to which the policy applies (Deployment, Execution, etc…)
required: yes
Type: Defined as per normative TOSCA node states

 Stage: Initial, Created, Configured, Started

Defines importance of the policy in a range from 0 (lowest priority) to 100 (highest priority)
to resolve possible conflicts with other policies
required: yes
Type: Integer

 # Expected values: 0 -100
Priority: 100

 D5.2 COLA Application Templates

Work Package WP5 Page 38 of 40

The trigger(s) that are used to activate/deactivate the policies.
This policy has not triggers

Specific Properties

Each Property that is specific to the policy will be defined as a Tosca Parameter Type
required: yes/no
Type: Tosca Parameter (detailed in Annex 3)
Property1:

Parameter_name: communication_channel
Parameter_description: Boolean parameter to enforce the use of SSL/TLS.
Parameter_type: boolean
Parameter_value: true
Parameter_required: true
Default_Value: true

Property2:
Parameter_name: authentication_service_type
Parameter_description: defines which authentication service to be used
Parameter_type: String
Parameter_value: LDAP
Parameter_required: true

Property3:
Parameter_name: authentication_service_url
Parameter_description: defines which url of the authentication service to be used
Parameter_type: url
Parameter_value: ldap://ldap.example.com
Parameter_required: true

Property4:
Parameter_name: authentication_service_port
Parameter_description: defines which port of the authentication service to be used
Parameter_type: integer
Parameter_value: 389
Parameter_required: true

Property4:
Parameter_name: authentication_service_protocol
Parameter_description: defines which protocol to access the authentication service
Parameter_type: string
Parameter_value: TCP
Parameter_required: true

Property5:
Parameter_name: authentication_failure_limit
Parameter_description: A limit for available login failures
Parameter_type: integer
Parameter_value: 3

 D5.2 COLA Application Templates

Work Package WP5 Page 39 of 40

Parameter_required: true
Default_Value: 3
Parameter_constraints: [0, 100]

Property7:
Parameter_name: unlock_modality
Parameter_description: Describes which modality can be used to unlock the account

after the maximum number of failed attempts has been reached
Parameter_type: string
Parameter_value: time
Parameter_required: true
Default_Value: time
Parameter_constraints: {time, admin_reset}

Property8:
Parameter_name: unlock_time
Parameter_description: Describes how long (in seconds) the account must be

inaccessible after the maximum number of logins has been reached
Parameter_type: integer
Parameter_value: 600
Parameter_required: true
Default_Value: 600
Parameter_constraints: [0, 3600]

Property9:
Parameter_name: cookies_enabled
Parameter_description: Specifies if cookies will be enabled
Parameter_type: boolean
Parameter_value: true
Parameter_required: true
Default_Value: true

Property10:
Parameter_name: revalidate_cookies
Parameter_description: Specifies if a user can login by revalidating a valid cookie
Parameter_type: boolean
Parameter_value: false
Parameter_required: true
Default_Value: false

Property11:
Parameter_name: log_history
Parameter_description: Boolean parameter specifying if a log history should be kept
Parameter_type: boolean
Parameter_value: true
Parameter_required: true
Default_Value: true

Property11:
Parameter_name: log_history_encryption
Parameter_description: Boolean parameter specifying if a log history should be

encrypted
Parameter_type: boolean
Parameter_value: true

 D5.2 COLA Application Templates

Work Package WP5 Page 40 of 40

Parameter_required: true
Default_Value: true

