
D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 1 of 54

Cloud Orchestration at the Level of Application

Project Acronym: COLA

Project Number: 731574

Programme: Information and Communication Technologies
Advanced Computing and Cloud Computing

Topic: ICT-06-2016 Cloud Computing

Call Identifier: H2020-ICT-2016-1

Funding Scheme: Innovation Action

Start date of project: 01/01/2017 Duration: 30 months

Deliverable:

D5.3 Integration of the Templates with the Selected

Application Description Approach

Due date of deliverable: 31/10/2017 Actual submission date: 03/11/2017

WPL: Gabriele Pierantoni

Dissemination Level: PU

Version: Final

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 2 of 54

1. Table of Contents

1. Table of Contents 2

2. List of Figures and Tables 3

3. Status, Change History and Glossary 4

4. Glossary 5

5. Introduction 6

6. Relationship with other Work Packages and Deliverables 8

7. Application Descriptions within COLA and the three Use Cases 9

a) The MiCADO Framework 10

b) Application Topologies 11

c) Policies 11

8. Use Case Overview 15

8.1 Use Case1: Scalable hosting, testing and automation for SMEs and public sector
organisations - Outlandish and The Audience Agency 16

8.2 Use Case 2: Bursting onto the Cloud from SakerGrid – Brunel University and Saker
Solutions 23

8.3 Use Case 3 – Social media data analytics for public sector organisations Inycom
and SARGA 28

9. Implementation of the Application Description Templates. 32

10. Conclusions 35

11. References 36

12. Annex A 37

13. Annex B 47

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 3 of 54

2. List of Figures and Tables
Figures

Figure 1, Example of the COLA three layers ... 9
Figure 2, Interaction between Application Description Templates and the relevant
components of the COLA Platform. ... 10
Figure 3, Application Description Templates and the COLA Architecture 10
Figure 4, TOSCA specification of the COLA application architecture 11
Figure 5, Policies Structure and Potential Conflicts ... 12
Figure 6, Abstract Policy Hierarchy ... 13
Figure 7, Policies and sub-policies at Application, Service and Resource Level 13
Figure 8, Generic Policy Structure... 14
Figure 9, Architecture Overview of Use Case 1 ... 16
Figure 10, Architectural Overview of the Implementation Step A of Use Case 1 17
Figure 11, Use Case 1, Application Description Template ... 19
Figure 12, Parameters of Policy 1.1 of Use Case 1 ... 20
Figure 13, Parameters of Policy 1.2 of Use Case 1 ... 20
Figure 14, Parameters of Policy 1.3 of Use Case 1 ... 21
Figure 15, Parameters of Policy 1.4 of Use Case 1 ... 21
Figure 16, Parameters of Policy 1.6 of Use Case 1 ... 22
Figure 17, Parameters of Policy 1.5 and 1.7 of Use Case 1 .. 22
Figure 18, Architecture Overview of Use Case 2 ... 23
Figure 19, Architectural Overview of the Implementation of Use Case 2 - Evacuation
Simulation ... 24
Figure 20, Architectural Overview of the Implementation of Use Case 2– Repast Simulation
 ... 24
Figure 21, Use Case 2, Application Description Template for the Evacuation Simulation 26
Figure 22, Use Case 2, Application Description Template for the REPAST simulation 26
Figure 23, Parameters of Policy 2.1 of Use Case 2 ... 27
Figure 24, Architecture Overview of Use Case 3 ... 28
Figure 25, Architectural Overview of the Implementation of Use Case 3 29
Figure 26, Use Case 3, Application Description Template ... 30
Figure 27, Parameters of Policy 3.1 of Use Case 3 ... 31
Figure 28, Parameters of Policy 3.3 of Use Case 3 ... 31
Figure 29, Three Layered Topology of Use Case 1 edited on Winery 32
Figure 30, Short Parser Log of the Compressed Application Description Template for Use
Case 1 .. 33
Figure 31, Various Policies Types used in the three Use Cases ... 35

Tables

Table 1, Status Change History .. 4
Table 2, Deliverable Change History ... 4
Table 3, Glossary .. 5
Table 4, Policies of Use Case 1 .. 18
Table 5, Policies of Use Case 2 .. 25
Table 6, Policies of Use Case 3 .. 29

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 4 of 54

3. Status, Change History and Glossary

Status: Name: Date: Signature:

Draft: Gabriele Pierantoni 22/10/17 Gabriele Pierantoni

Reviewed: Alex Worrad Andrews 29/10/17 Alex Worrad Andrews

Approved: Tamas Kiss 03/11/17 Tamas Kiss

Table 1, Status Change History

Version Date Pages Author Modification

V0.1 13/10 ALL G. Pierantoni Skeleton

V0.2 19/10 ALL G. Pierantoni Architecture and Policies diagrams and
tables

V0.3 20/10 ALL G. Pierantoni Formatting and list of todos

V1.0 21/10 ALL G. Pierantoni First Complete Draft

V1.1 22/10 ALL G. Pierantoni Addressed some of Gabor’s Corrections
and feedback

V1.2 29/10 ALL G. Pierantoni Addressed Gabor and Tamas Corrections
and feedback for Sections 5,6 and part of
7

V1.3 30/10 ALL G. Pierantoni Addressed Gabor and Tamas Corrections
and feedback for Sections 8 and 9,
updated Outlandish Use case based on
the feedback of 30.10.17 Teleconference

V1.4 31/10 ALL G. Pierantoni Addressed Gabor and Tamas Corrections
and feedback for Sections 8 and 9,
updated Outlandish Use case based on
the feedback of 30.10.17 Teleconference

V1.5 01/11 ALL G. Pierantoni Addressed Gabor and Jose Comments

V1.6 02/11 ALL G. Pierantoni Some final corrections

V1.7 03/11 ALL G. Terstyanszky
G. Pierantoni

Final Corrections

Table 2, Deliverable Change History

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 5 of 54

4. Glossary

API Application Programming Interface

CAMP Cloud Application Management for Platforms

COLA Cloud Orchestration at the level of Application

CLI Command Line Interface

DoW Description of Work

GUI Graphical User Interface

IaaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

TOSCA
Topology Orchestration Specification for Cloud
Application

Table 3, Glossary

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 6 of 54

5. Introduction

COLA DoW specifies Deliverable D5.3 “Integration of the Templates with the selected
application description approach” as follows: “This deliverable will report on the
implementation of the application template and its integration with the selected application
description approach.”

It describes how the abstract Application Descriptions Templates developed by Work
Package 5 are integrated to implement three Use Cases proposed by the COLA Industrial
and Academic partners. Albeit limited in their scope, these initial three use cases are
representative both of the applications that will be ported to the COLA infrastructure and of
the capabilities of the selected approach to the Application Description Templates.

Whenever an existing application is ported to the COLA infrastructure (or an entirely new
one is developed), all the different facets of the application have to be expressed and
catered for by this infrastructure. These entail the description of two main characteristics of
an application:

 the Topology that represents its components and how they are connected, and,

 the Policies that represent how the modalities of the various steps of the application

lifecycle will be implemented for example how will be deployed, executed and un-

deployed.

The Application Description Templates developed in COLA, capture these two
characteristics of applications. The management of the applications by the infrastructure will,
in turn, require certain infrastructure-level functionalities (E.g. Security Infrastructure,
Container Management, Monitoring, etc.) that are developed by other work packages.

As the COLA infrastructure is currently being developed and the Cloud Orchestrator (
MiCADO [1][2]) component does not yet parse a fully TOSCA [3] compliant description, it is
impossible at the moment to directly test the deployment and execution of the selected
applications with the Application Description Templates described in this document. Instead
of this direct test (which will be implemented with the future releases of MiCADO), the
validity of the implemented Application Description Templates has been tested with two
different approaches:

 Syntactical Consistency has been tested by running the developed templates with

the OpenStack TOSCA parser [4], and,

 Semantic Consistency has been tested by manually checking that the information

expressed by the Application Description Templates matches the behaviour of the

current implementation of the MiCADO framework and is not contradictory with the

specifications of the Security Infrastructure and future MiCADO releases.

This deliverable is the third deliverable of Work Package 5 “Application Description
Templates” and is an open document which visibility is allowed to both internal and external
readers. The intended audience of this deliverable is application developers those are
involved in either developing new applications or porting existing ones to the COLA
infrastructure.

Deliverable D5.3 is structured as follows:

1. Section 5 – Offers an introduction to the Deliverable introducing general concepts
and its relevance within the COLA project.

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 7 of 54

2. Section 6 – Further details the topics introduced in Section 5 by describing the
mutual dependencies among this Deliverable with the other most relevant Project
Deliverables.

3. Section 7 – Recapitulates the COLA approach to Application Description Templates
describing how the proposed Templates span three conceptual levels for each
applications: Application Level, Service Level and Resource Level and how the
behaviour of each of the application components can be specified by different
policies.

4. Section 8 – Introduces the three Use Cases.
5. Section 8.1 – Describes the Application Description Template for Use Case 1 -

Scalable hosting, testing and automation for SMEs and public sector organisations -
Outlandish and The Audience Agency

6. Section 8.2 – Describes the Application Description Template for Use Case 2 -
Bursting onto the Cloud from SakerGrid – Brunel University and Saker Solutions.

7. Section 8.3 – Describes the Application Description Template for Use Case 3 -
Social media data analytics for public sector organisations Inycom and SARGA

8. Section 9 – Offers information on the implementation details of the components that
process the Application Description Templates.

9. Section 10 – Concludes the Deliverable by drawing some final remarks. The
relevance of the implementation of these three Use Cases is analysed in relation to
the generic description of applications and the various components of the COLA
architecture.

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 8 of 54

6. Relationship with other Work Packages and
Deliverables

As introduced in Section 5, the Application Description Templates are closely related to
various fundamental aspects of the COLA project:

 the applications that are to be ported to the COLA infrastructure,

 the COLA infrastructure itself, and,

 the abstract approach to describe the applications.

As a result, this deliverable is closely related to Work Packages and Deliverables that
describe the concepts highlighted in the previous paragraph.

Deliverable 5.3 has been published by Work Package 5 – Application Definition
Templates. This work package has published two Deliverables: D5.1 – “Analysis of
existing Application Description Approaches”, and D5.2 – “Specification of the
Application Description Concept”. D5.1 offers a state of the art overview of the application
description and execution while D5.2 describes the COLA proposed approach to the
problem: a three-layered Application Description Template based on the TOSCA [5][6]
language specifications which also defines policies at each of its layers.

The Application Description Templates are interpreted by the MiCADO framework, hence the
dependencies with Work Package 6 – “MicroServices deployment and execution layer”,
particularly with Deliverables D6.1 – “Prototype and Documentation of the Cloud
Deployment Orchestrator Service” and D6.2 - “Prototype and Documentation of the
Monitoring Service”).

The Application Description Templates are also closely related to security issues and
concerns, hence the dependencies with Work Package 7 – “Security, privacy and trust at
the level of cloud applications”, particularly with, Deliverables D7.1 – “Security
Requirements” and D7.2 – “Security Architecture Specifications”.

Mutual dependencies among WP5, WP6 and WP7 are of a technical nature and it is
important that the information defined in the Application Description Templates can be
understood, acted upon and enforced by the MiCADO framework, particularly by the Cloud
Orchestrator and the Security Infrastructure.

Deliverable D5.3 is also closely linked to Work Package 8 – “SME and public sector use-
case pilots and demonstrators, particularly with Deliverable D8.1 – “Business and
Technical Requirements of COLA Use Cases”. WP5 interactions with WP8 will ensure
that the Use Cases of Work Package 8 can be supported by the Application Descriptions
Templates.

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 9 of 54

7. Application Descriptions within COLA and the three Use
Cases

This section briefly recapitulates the salient aspects of the Application Description Templates
approach detailed in Deliverable D5.2 – “Specification of the Application Description
Concept”. It also contextualizes its implementation with reference of the COLA architecture
and its current implementation status.

As mentioned in Section 5 Introduction, describing an application in COLA covers two main
and equally important requirements:

 the Topology that represents the graph of the various components that constitute

each application, and,

 the Policies that govern how the application is managed by the infrastructure during

its lifecycle.

In addition to these two fundamental requirements, there are further requirements that
helped in the definition of the following design guidelines:

 The Application Description Templates must minimize the application developers’

efforts required to specify applications. This can be achieved by decomposing the

application’s topology and policies into components that are as re-usable as possible

by application developers. See Fig. 1.

 The Application Description Templates must support the definition of policies that

regulate the deployment, execution and un-deployment of the application.

 The Application Description Templates must support an incremental development of

the COLA architecture.

 The Application Description Templates should reflect the conceptual layers of an

application (Application , Service and Resource layer) and the related concepts in

Cloud Computing: Software as a Service (PAAS), Platform as a Service (PAAS) and

Infrastructure as a Service (IAAS) [7].

Figure 1, Example of the COLA three layers

The Topology (alongside with the policies that will be described later in this Section) are
described with Application Description Templates that are used by various components of
the COLA architecture as illustrated in Figure 2.

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 10 of 54

Figure 2, Interaction between Application Description Templates and the relevant components of the COLA

Platform.

Application Developers can build Application Description Templates (Application Topologies)
by assembling existing Nodes Types and setting their values (or overriding default values).

Policies are selected and composed in a similar fashion and attached to the relevant nodes
of the topology. This approach maximizes re-usability as Application Developers will be able
to re-use entire topologies (when they are available), nodes and policies.
Once an Application Developer has defined the Application Description Template, it is
passed to the MiCADO framework that will care of the management of application
throughout its entire lifecycle in compliance to the defined policies. The interactions of the
Application Description Template with the MiCADO platform are detailed in Figure 3.

a) Application Topologies

Figure 3, Application Description Templates and the COLA Architecture

The MiCADO Submitter [8] will contain a TOSCA Parser and TOSCA Translator. The
TOSCA Parser will check the validity of the YAML [9] code of the Application Description
Templates. It will pass the TOSCA descriptions to the TOSCA Translator that will instruct
three components: The Cloud Orchestrator, the Container Orchestrator and the Policy
Keeper.
For the moment being, the Cloud Orchestrator is implemented as the latest release of
Occopus [10], and the Container Orchestrator as an instance of Docker Swarm [11]. The

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 11 of 54

current implementation of the Cloud Orchestrator provides automatic features for
configuring and orchestrating distributed applications on single or multi cloud systems.
Occopus can be used by application developers and application controllers to manage
virtual infrastructures at deployment time and at runtime to create and provide complex
virtual infrastructures. Occopus uses a descriptor that defines the services to be deployed in
the Cloud and the order of their deployment. The Container Orchestrator is a clustering
and scheduling tool for Docker containers that allows administrators and developers to
manage a cluster of Docker nodes as a single virtual system.

The Policy Keeper will enforce the policies by matching its values to those provided by the
components that monitor the infrastructure and will instruct the Cloud and Container
Orchestrator accordingly

As introduced in the previous sections, the Application Description Templates cover two
main aspects: the application topology and the policies which will be detailed in the following
sections.

b) Application Topologies
COLA applications are composed of various elements (service instances) that may run on a
single or multiple servers considering user demands. COLA describes these applications
using the TOSCA meta-model which defines generalized and base node types such as
application server, web server, database, compute node, storage node etc. These elements
are arranged in three layers: application, service, and resource layer (an example of a
standard Proxy-Service-Database application is described in Figure 4).

Figure 4, TOSCA specification of the COLA application architecture

As COLA applications can run either on Linux or on Windows operating system, support for
virtualization must be provided. Some Windows applications could be too heavy for Docker
containers, and in this case, the MiCADO framework has to support running Linux based
applications in containers and Windows-based application in virtual machines. But as
container technology evolves, it is possible (if not likely) that it would be feasible to run all
applications (both Linux and Windows) inside Docker Containers.

c) Policies
The description and enforcement of policies in TOSCA is an additional dimension to the
description of the application topologies. Policies define and enforce the modalities that

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 12 of 54

regulate the application lifecycle.

The design proposed in this Deliverable is based on the following assumptions and
restrictions

 Declarative Model. The policies description follows the Declarative Model. They

describe a policy but they do not imperatively describe how to implement the policy,

which is left to the proper components of the COLA architecture

 Policies can be selected and combined. Users can select and combine policies

from a basket of existing policies but cannot create new policies

 Modular Policies. Users can select and specify the parameters of atomic (that

cannot be decomposed further) policies that cover the various features of the service.

These policies are combined for each service to define overall policies of that service

and the overall policies of each service are then merged in the overall policies that

govern the complete service topology (the application).

 User-defined Policy Parameters. Users can define parameters of the selected

policies

 No Consistency is ensured. Policies may be contradictive, at this stage of the

policies description, only a priority level will be offered to the user to define which

policy has the highest priority.

The concepts of modularity and consistency are further explained in Figure 5 below. Policies
that define certain aspects of the entire application topology (and hence each of the services
that compose the application) may raise conflicts with policies that define aspects of a
specific service. Furthermore, policies that define the various aspects of the policies of
individual services may also raise conflicts.

Figure 5, Policies Structure and Potential Conflicts

TOSCA allows the definition of type hierarchies of arbitrary complexity. COLA defines a
three-layered hierarchy of policies that all derive from the TOSCA Root Policy. Each Policy
Type will then be further detailed in its sub-types. A partial set of the Abstract Hierarchy of
Policy Types is depicted in Figure 6.

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 13 of 54

Figure 6, Abstract Policy Hierarchy

After they have been selected from the policy hierarchy, policies have to be placed at the
right level of the topology to define which elements of the topology will be regulated by it.
This is obtained by linking the policy to the related node.

It is important to highlight how the policies placed at application level, may well be applied to
lower levels of the topology. As an example, a scalability policy for an application, will affect
all the services it is based upon and, ultimately, it will be enforced by deploying/undeploying
containers at the resource level. To facilitate the application of policies at the various levels,
each policy defines the nodes it has to be applied to. For each node, the overall policy is
composed of sub-policies that describe the various features such as security, scalability, etc.
These sub-policies are selected from the Abstract Policy Hierarchy of Figure 6. The structure
and relationship of policies with the other component of the topology is illustrated in Figure 7.

Figure 7, Policies and sub-policies at Application, Service and Resource Level

Finally, each policy value and element has to be described. WP5 has proposed the generic
structure for policy description as drafted in Figure 8.

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 14 of 54

Figure 8, Generic Policy Structure

Each policy type is divided into two main sections:

 A Description Section: This section of the Policy is composed of different fields that

give its overall description. It comprises meta-data composed of the following fields:

o Name: A string that represents the name of the Policy.

o Type: The type defined in the policy hierarchy. This field defines the link with

the first level of policy structure (Abstract Policy Hierarchy Type).

o Description: A textual description of the policy.

 A Properties Section: This section contains the actual data of the policy. Such data
fall under two kinds of parameters: those that are common to all COLA policies types,
and those that are specific to each policy type.

o Common Properties that are present in all COLA Policies are:
 Target: defines the Topology Layers to which the policy has to be

applied.
 Stage: defines at which stage of the lifecycle of the element the policy

is applied.
 Priority: This is an arbitrary integer of 0 to 100 used to define the

priority with which the policy will be implemented. It is used to resolve
possible conflicts with other policies.

o Specific Properties are specific to each Policy. These parameters vary
depending on the nature of the policy itself, as an example: a scalability policy
based on a deadline will define the maximum amount of time in which the
process will have to complete; a deployment policy will define the minimum
number of CPUs required, etc.
Properties are defined as a list of TOSCA properties definitions as specified in
section 3.5.12 of the TOSCA Simple Profile[12] each contain various
parameters definition including type, constraints and other useful fields.

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 15 of 54

8. Use Case Overview

Section 7 has described the language that COLA proposes to adopt to describe the
applications. Still, this approach has to be implemented and integrated within COLA and this
is an ongoing process.

Throughout the entire duration of the project, multiple applications will be ported into COLA.
Three Use Cases must reach near production stage and up to twenty other scenarios will
have to reach proof of concept stage; it is possible that the present approach to the
Application Description Templates may have to be further modified to cater for all future
applications and scenarios.

At the moment, the three Use Cases described in this Deliverable have been selected for
their relevance to the SMEs and public sector organisations that participate in COLA. At the
same time, the implementation of these Use Cases also represents the first proof of concept
validation test for the proposed Application Description Templates. For this reason, the three
Use Cases are related to a variety of aspects (complexity of the topology, type of policies
and virtualization levels) that cover many of the project relevant aspects.

A brief overview of the three use cases is provided at the beginning of each Use Case
Section while full details of each Use Case are available in Deliverable D8.1. The information
contained in D8.1 has been further integrated and updated with “vis-à-vis” meetings during
the COLA annual project meeting, teleconferences, and exchange of emails and draft notes.
In each section, the Use Cases are briefly described, decomposed in their various
components and a three-layered architecture with the related policies is described. For each
of the components, implementation details of the policies are described.

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 16 of 54

8.1 Use Case1: Scalable hosting, testing and automation for SMEs and public
sector organisations - Outlandish and The Audience Agency

Use Case 1 - Scalable hosting, testing and automation for SMEs and public sector
organisations (in this case specifically for The Audience Agency’s Audience Finder
application) is an application that performs data-mining analysis regarding the audience of
different sources, such as Theatres, Museums, etc.

This use case describes a three-tier application with a Web Interface, a Controller Module
and a Database backend. Scalability of the application is based on two main aspects. First,
the web interface has to respond to fluctuations in the number of connections, and second,
the computational requirements needed to fulfil the queries that can vary significantly from
case to case. In order to meet the computational requirements of the queries a Caching
Service has been implemented to pre-calculate a set of queries to shorten the computational
times. The Caching Service is executed at regular intervals (it is implemented as a Cron Job
in Linux). The system is connected to two Databases. The Box Office Database holds the
ticketing information and is used to share data between the AFA Web Application and the
Caching Service. The second database is the WordPress database.

Use Case 1 is introduced in pages 5 to 17 of deliverable D8.1. This initial description was
updated during interactions between WP5 leader, Outlandish and the Audience Agency. The
overall architecture of Use Case 1 is drafted in Figure 9.

Figure 9, Architecture Overview of Use Case 1

The components are:

 Proxy: The proxy will offer a single point of contact to potentially multiple copies of
the web interface (for scalability reasons) by redirecting the incoming connections to
the proper instance of the AFA Web Application.

 AFA Web Application: The GUI with which the client interacts. The AFA Web
Application is written in PHP and is developed on the WordPress framework.

 The Caching Service is based on the same technology of the AFA Web Application,
it executes a set of queries that are pre-calculated from aggregate metrics and stored

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 17 of 54

in the Box Office Database. The Caching Service also connects to the WordPress
External Database and to Gmail as it uses the OAuth Authorization System

 The Box Office database contains the source and target data of the Caching
Service that is queried by the web application. It is a MySQL Database.

 The WordPress database contains all the configuration information for the AFA Web
Application and the Caching Service.

The components fall into two separate categories: Internal (depicted in red colour) and
External (depicted in blue colour) Components. Internal Components will be modelled with
the COLA extension of the TOSCA language, while external components will be not be
covered, and the COLA description and related deployment only have to ensure that such
external services can be reached. The two components that will be ported into the MiCADO
framework and have to be described in the Application Description Template are the AFA
Web Application and the Caching Service. The Application Description Template will define
the topology and policies drafted in Figure 10.

Figure 10, Architectural Overview of the Implementation Step A of Use Case 1

The policies that govern the deployment and scaling during execution of the various components are
detailed in the table below.

Architectural
Level

AFA Web Application Caching Service

Application Scalability Policy (P1.1)
It defines the deployment of a new
instance under condition that the
number of inbound connections is
greater that a defined threshold

Authorization Policy (P1.2)
It defines that the component uses an
external Authorization Service (This
service is based on OAUTH and requires
a connection to a GMAIL account)
Scalability Policy (P1.3)
It defines the deployment of a new
instance under condition that the

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 18 of 54

expected completion time of pre-
computed datasets to be calculated is
greater that the given threshold.
Execution Policy (P1.4)
It defines that the component has to be
executed at fixed interval times

Service No specific Policy at this level No specific Policy at this level

Container Deployment Policy (P1.5)
It dictates that the container must be
capable of reaching the set of
addresses (with the related ports and
protocols) needed by all the external
components

Deployment Policy (P1.6)
It dictates that the container must have
at least the specified characteristics
(CPU, RAM, DISK)
Deployment Policy (P1.7)
It dictates that the container must be
capable of reaching the set of addresses
(with the related ports and protocols)
needed by all the external components

Table 4, Policies of Use Case 1

It is worth noticing here an apparent contradiction on the level to which policies are linked.
The Scalability Policies are defined at Application Level (it is the application that is being
scaled) but they are then applied at Container Level (it is the container that includes the
application that is being deployed or un-deployed. It will be the duty of the TOSCA parser
within the MiCADO framework to apply the policy at the right level. To simplify this process,
policies themselves contain a list of the levels to which they will be applied.

Another interesting aspect of this use case is the presence of a Cron Job that is
automatically executed at pre-defined times. At the moment being, although such scenario
has not been explicitly analysed in COLA, there are two possible solutions.

 One, proposed in this Deliverable, is to define execution policies that specify the

timing of the execution of a component of an application. The information of the

execution policy will then be acted upon by an appropriate component of the

MiCADO framework.

 A second solution is to modify the Application Topology Template adding one node

with a timer application that will execute the Cron Job at fixed intervals.

We suggest the first solution as it does not require modification of the topology of the
Application Description Template and it is a more generic solution to the problem.

Application Description Skeleton

The AFA Web Application is governed by an application-level scalability policy (P1.1) that
will create and launch a new container with a web-application and a word-press instance
when a certain number of connection requests are reached. The service that provides the
information on the number of connections and its namespace is defined in the specific
parameters of the policy. This horizontal scalability policy is defined at Application Level but
it is enforced at Resource Level by deploying or un-deploying Docker [13] containers with
the required software stack. At Resource Level, there is a Deployment Policy (P1.5) that will
select the Resources on which the Containers are executed so that the list of required
external services can be reached.

The Caching Service is governed by slighter more complex set of policies, at application

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 19 of 54

level, there are three main policies. The Authorization Policy (P1.2) defines that an external
service will be used for Authorization. This policy indirectly relates to the Deployment Policy
at Resource Level (P1.6) as the Authorization Service must be reachable. The Caching
Service is the component that is most likely to reap the maximum benefit from the MiCADO
framework. Its scalability is a fundamental concern which is now tackled by deploying the
component on a multi-core auto-scale AWS instance [14]. In COLA, the Caching Service will
be governed by an Application-Level Horizontal Scalability Policy (P1.3) that will determine
the amount of instances being deployed depending on the expected completion time of the
query executions. This policy is similar to the Scaling Policy of Use Case 2 discussed in
Section 0. At Application-Level, we also define an Execution Policy (P1.4) that defines the
time at which the application must start in a similar fashion to that of a Cron Job. The
Resource-Level of the Caching Service also defines two additional policies: Deployment
Policy (P1.6) that will determine the minimum resource requirements for the deployment of
containers and Deployment Policy (P1.7) that would be similar to Deployment Policy (P.1.2)
and will define that a certain list of services must be reachable from the Resource. The
overall topology of the Application Description Template is depicted in Figure 11.

Figure 11, Use Case 1, Application Description Template

The policy that governs the horizontal scalability of the AFA Web Application (P1.1) is
defined in the COLA Abstract Policy Hierarchy as a “Performance Based Scalability” policy
and it is detailed by the parameters of Figure 12.

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 20 of 54

Figure 12, Parameters of Policy 1.1 of Use Case 1

The policy that describes the Authorization of the Cache Server (P1.2) is defined in the
COLA Abstract Policy Hierarchy as an “Authorization” policy and it is detailed by the
parameters of Figure 13.

Figure 13, Parameters of Policy 1.2 of Use Case 1

The policy that governs the horizontal scalability of the Caching Service (P1.3) is defined in
the Abstract Policy Hierarchy as a “Performance Based Scalability” policy and it is detailed
by the parameters of Figure 14.

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 21 of 54

Figure 14, Parameters of Policy 1.3 of Use Case 1

The policy, that governs the execution time, has not been added yet to the Abstract Policy
Hierarchy, a proposal of its parameters are described in Figure 15.

Figure 15, Parameters of Policy 1.4 of Use Case 1

The policy (P1.6) that governs the deployment requirements of the container hosting the
Caching Service is defined in the Abstract Policy Hierarchy as a “Resource Based
Placement” policy and it is detailed by the parameters of Figure 16.

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 22 of 54

Figure 16, Parameters of Policy 1.6 of Use Case 1

The policies (P1.5 and P1.7) that govern the deployment requirements of the Containers
hosting the AFA Web Application and the Cache Server are defined in the Abstract Policy
Hierarchy as a “Resource Based Placement” policy and they are detailed by the parameters
of Figure 17.

Figure 17, Parameters of Policy 1.5 and 1.7 of Use Case 1

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 23 of 54

8.2 Use Case 2: Bursting onto the Cloud from SakerGrid – Brunel University
and Saker Solutions

Use Case 2 deals with a simulation platform that has been developed by Saker Solutions
and Brunel University to reduce the amount of time required executing simulations. The
solution is to extend to the Cloud the Distributed Computing Environment, now based on a
desktop grid (SakerGrid) which achieves a near linear improvement in response
performance.

The application follows a standard job-submission system architecture and consists of three
main components:

• the User Interface
• the Worker Node,
• the Job Manager, and,
• the Simulation Database

Porting Use Case 2 into the MiCADO framework requires deployment of the Job Manager
and the Worker Nodes to support two main types of simulations: the REPAST open source
agent-based simulator[15], and the Evacuation Simulation scenario that is developed by
Saker Solutions using the proprietary Flexsim discrete event simulation package [16].
Use Case 2 is introduced in pages 18 to 26 of deliverable D8.1. This initial description was
updated during interactions between WP5 leader and Brunel University. The overall
architecture of Use Case 2 is presented in Figure 18.

Figure 18, Architecture Overview of Use Case 2

This use case can be decomposed into two separate cases depending on the type of
simulation being executed. They both share some common traits however, at the moment,
the evacuation simulation jobs will require to be executed in a Windows environment
(Windows Virtual Machine), while the REPAST jobs can be executed on a Linux machine.
The architectural overviews of these two sub-cases are depicted in Figure 19 and Figure 20.

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 24 of 54

Figure 19, Architectural Overview of the Implementation of Use Case 2 - Evacuation Simulation

Figure 20, Architectural Overview of the Implementation of Use Case 2– Repast Simulation

The Job Manager does not require any specific policy either at application, service or
deployment level but the worker node will be governed by a performance-based scalability
policy (new instances will be deployed if the deadline for the completion of the simulation is
likely to be missed), and a resource-based placement policy for the container will govern the
placement of the worker nodes. The policies that govern the deployment and scaling during
execution of the various components are summarized in Table 5, Policies of Use Case 2.

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 25 of 54

Architectural
Level

Job Manager Simulation Job

Application No specific Policy at this level Scalability Policy (P2.1)
The Entire application is constrained by a
high priority scaling policy whereby the
user specifies an overall deadline and an
estimate of the duration of each job and
MiCADO will deploy new instances of the
Workers to meet the deadline

Service No specific Policy at this level No specific Policy at this level

Resource No specific Policy at this level Deployment Policy (P2.2)
It dictates that the container must have
at least the following characteristics (ex
CPU, RAM, DISK)
Deployment Policy (P2.3)
It dictates that the container must be
capable of reaching the set of addresses
(with the related ports and protocols)
needed by all the external components:
mainly the external database

Table 5, Policies of Use Case 2

The evacuation simulation requires to be deployed on a completely self-contained and
isolated infrastructure for security reasons but this requirement cannot be expressed as an
application level policy as it is an infrastructure-level requirement.

Application Description Skeleton

The topology branch that models the Job Manager is not governed by any specific policy
while the branch that models the worker nodes is governed by application and container-
level policies. The overall topology of the Application Description Template for Use Case two
are described in Figure 21 and Figure 22.

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 26 of 54

Figure 21, Use Case 2, Application Description Template for the Evacuation Simulation

Figure 22, Use Case 2, Application Description Template for the REPAST simulation

The policy that governs the horizontal scalability of the Simulation Job is defined in the
abstract policy hierarchy as a “Performance Based Scalability” policy and it is detailed by the
parameters of Figure 23. Please note that horizontal Scalability Policies are the same for
both the Repast and Evacuation Simulation scenarios. The Deployment Policy dictating the
minimum requirements and the connection requirements are the same as of Use Case 1:

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 27 of 54

Policies P1.5, P1.6 and P1.7

Figure 23, Parameters of Policy 2.1 of Use Case 2

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 28 of 54

8.3 Use Case 3 – Social media data analytics for public sector organisations
Inycom and SARGA

Use Case 3 deals with a modified version of the Eccobuzz [17] platform with enriched
functionalities called Magician [18] (see D8.1 for details). Eccobuzz allows its users to
monitor internet resources for specified information and it provides structured results by the
means of reports that are received automatically by email. Use Case 3 focuses on the
deployment of the Motor Engine of Eccobuzz and its Configuration Database (based on
MongoDB [19]). The deployment in MiCADO aims at achieving greater scalability.

Use Case 3 is introduced in pages 26 to 38 of deliverable D8.1. This initial description was
updated during interactions between WP5 leader and Inycom. The overall architecture of
Use Case 3 is drafted in Figure 24.

Figure 24, Architecture Overview of Use Case 3

The main functionalities are provided by the Motor Engine which uses a Configuration
Database based on MongoDB. The Motor Engine uses two external services: a Crawler
and a Semantic Processing Database based on a SOLr [20] database where the Motor
stores its results. One single container can be used to contain both the Motor Engine and the
Configuration Database on MiCADO. The architectural overview of the implementation of
Use Case 3 is described in Figure 25.

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 29 of 54

Figure 25, Architectural Overview of the Implementation of Use Case 3

The policies that govern the deployment and scaling of the various components during execution are
in Table 6.

Architectural
Level

Motor Engine Configuration Database

Application Scalability Policy (P3.1)
It defines the deployment of a new instance under a consumption requirement
based on CPU usage.

Service No specific Policy at this level

Resource Deployment Policy (P3.2)
It dictates that the container must have at least the following characteristics (ex
CPU, RAM, DISK)
Deployment Policy (P3.3)
It dictates that the container must be capable of reaching the set of addresses
(with the related ports and protocols) needed by all the external components.
Deployment Policy (P3.4)
It dictates that the container must be physically located in the European Union

Table 6, Policies of Use Case 3

Application Description Skeleton

As detailed in Table 6, Policies of Use Case 3, both applications and the services deployed
on the platform are modelled within the same topology which is governed by four separate
policies.
An Application-Level Scalability Policy (P3.1) will define the conditions under which new

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 30 of 54

instances will be deployed. At Resource level, there are three policies. A Deployment Policy
(P3.4) related to privacy concerns will restrict the geographical location where the container
can be deployed. Two additional Deployment Policies (P3.2 and P3.3) will dictate the
capabilities (CPU, RAM, and DISK) of the resources and the services that can be reached.
Policy 3.2 is the same of Policy P2.2 of Use Case 2 and Policy P3.4 is the same of Policy
P2.3 of Use Case 2. The overall topology of the Application Description Template is
described in Figure 26.

Figure 26, Use Case 3, Application Description Template

The policy that governs the horizontal scalability of the Motor Engine and Configuration
Database is defined in the abstract policy hierarchy as a “Consumption Based Scalability”
policy and it is detailed in Figure 27.

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 31 of 54

Figure 27, Parameters of Policy 3.1 of Use Case 3

The policy that governs the acceptable geographical locations requires the presence of a
service (and his related namespace) capable of returning the geographical coordinates of
the resources that will be used. COLA components that can implement such functionality
can be the Services R2 – Workload Node Verifier and Service R4 – Workload Node
Selector defined in page 29 of the Deliverable D7.1 – COLA Security Requirements. The
policy defines a series of acceptable locations that will be matched against. The parameters
of the policy are detailed in Figure 28

Figure 28, Parameters of Policy 3.3 of Use Case 3

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 32 of 54

9. Implementation of the Application Description
Templates.

As introduced in Sections 5 and Section 7, the Application Description Templates are
composed, edited and validated using a variety of tools. This section gives some details on
which tools are currently used in each of these steps.

Application Description Template Repository: At the moment being, no Application
Description Repository has been implemented and GitHub is being used as a temporary
solution: https://github.com/COLAProject/ColaPolicies. It is also possible, if not likely, that
GitHub will be adopted as a final solution for the Application Description Template
Repositories.

Application Description Template Editors: Two main tools have been investigated to edit
the Application Description Templates: Winery [21] and Alien4Cloud [22]. As Alien4Cloud
defines its own description language that is not fully TOSCA-Compliant, its adoption in
COLA has been abandoned. Until version 2.0.0, Winery
(https://github.com/OpenTOSCA/winery) produced XML-based TOSCA code which became
incompatible with the new TOSCA specification (based on YAML1.0); the Docker Version of
Winery (https://github.com/OpenTOSCA/opentosca-docker), produces YAML1.1-based code
but it is currently still under development. Figure 31 shows the Three Layered Application
Description Template edited using Winery.

Figure 29, Three Layered Topology of Use Case 1 edited on Winery

Application Description Template Parses: The syntactical validity of the Application
Description Templates is checked by parsing them with the OpenStack TOSCA Parser [4],
that currently processes only YAML1.0-based code; this YAML-version difference requires
manual code corrections in the Application Description Templates.

https://github.com/COLAProject/ColaPolicies
https://github.com/OpenTOSCA/winery
https://github.com/OpenTOSCA/opentosca-docker

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 33 of 54

Implementation of the Application Description Templates: the full three-layered
Application Description Templates offer flexibility and composability to the Application
Developers allowing also for the definition of expressive policies at each of its layers.
However its structure poses conceptual challenges when it is used at the Infrastructure
Level. The MiCADO components of the COLA infrastructure, will use the Application
Description Templates to select the best Container or Virtual machine for its deployment and
will take appropriate actions to enact its policies, this is complicated when the policies are
spread over the three layers of the Application Description Templates. To facilitate the
selection of the optimal Container/Virtual machine and the enforcement of the related
policies, the full topology of the Three Layered Application Description Template is reduced
to a “Compressed Topology”, containing a single node per Container/Virtual machine
detailing the list of needed services and the policies (Annexe A and B contain the listing of
the Three Layered and Compressed Topology Application Description Template for Use
Case 1). Figure 30 shows the parser output of the compressed Topology Application
Description Template for Use Case 1.

Figure 30, Short Parser Log of the Compressed Application Description Template for Use Case 1

Mapping of Application to Existing Containers: The mapping of existing containers to
the requirements expressed in the Application Description Templates poses different
challenges and trade-offs that are currently investigated. On one end, a minimalistic

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 34 of 54

approach suggests to have a minimal set of Containers and Virtual Machines (possibly with
just an Operating System installed) to minimize the complexity of their management and
updates. This approach requires re-creating all the Service Layer every time and this has
significant drawbacks both on the complexity of the Application Description Template - that
will have to define installation scripts and data (Artefacts) for various Services - and on the
execution time overhead (especially for rapidly-changing scalability reactions). On the other
end, we can have all possible combinations of Services already available as images. This
approach reduces the installation complexity to a minimum but there exists a risk of
combinatorial explosions of available Container/Virtual machines images and the related
complexity of maintaining and updating them.

The Implementations of the Three Layered and Compressed Topology Application
Description Templates are also available in the GitHub repository under:
https://github.com/COLAProject/ColaPolicies/tree/master/use_case_1

https://github.com/COLAProject/ColaPolicies/tree/master/use_case_1

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 35 of 54

10. Conclusions

The three Use Cases analysed in this document cover several relevant aspects of the policy
extensions of the TOSCA Application Description Template defined and outlined in D5.2.

The three layered approach for the Application Description Template have highlighted
several node components that can be re-used in further use cases, more specifically the
nodes that describe generic services such as WordPress and MongoDB.

The description of the three COLA use cases with the Application Description Templates
constitutes a proof of concept of its applicability and feasibility, particularly how to manage
policies of these use cases. Figure 31 gives an overview of these policies. The policies
initially proposed in D5.2 were expressive enough to cover all the use cases except Use
Case 1.
It requires a new Execution Policy to schedule the execution of applications in the same
fashion as a Cron Job. Such a policy was not envisaged in the D5.2. For the moment being,
we can envisage a set of Execution Policies of which Scheduling could be a sub-type.

Figure 31, Various Policies Types used in the three Use Cases

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 36 of 54

11. References
[1] Tamas Kiss, Peter Kacsuk, Jozsef Kovacs, Botond Rakoczi, Akos Hajnal, Attila

Farkas, Gregoire Gesmier, Gabor Terstyanszky: MiCADO –Microservice-based Cloud
Application-level Dynamic Orchestrator, in Future Generation Computing Systems,
https://doi.org/10.1016/j.future.2017.09.050.

[2] “MiCADO Developer Tutorials Online – Cloud Orchestration at the Level of
Application.” [Online]. Available: http://project-cola.eu/micado-tutorials-online/.
[Accessed: 28-Oct-2017].

[3] “TOSCA_overview.”
[4] “TOSCA-Parser - OpenStack.” [Online]. Available:

https://wiki.openstack.org/wiki/TOSCA-Parser. [Accessed: 29-Oct-2017].
[5] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “TOSCA: Portable Automated

Deployment and Management of Cloud Applications.”
[6] “Topology and Orchestration Specification for Cloud Applications Version 1.0.”

[Online]. Available: http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-
os.html. [Accessed: 30-Mar-2017].

[7] S. Khurana and A. G. Verma, “Comparison of Cloud Computing Service Models:
SaaS, PaaS, IaaS,” vol. 4.

[8] “tosca-primer-v1.0.”
[9] “The Official YAML Web Site.” .
[10] “Welcome - Occopus.” [Online]. Available: http://occopus.lpds.sztaki.hu/. [Accessed:

30-Mar-2017].
[11] “Docker Swarm overview - Docker Documentation.” [Online]. Available:

https://docs.docker.com/swarm/overview/. [Accessed: 30-Mar-2017].
[12] “TOSCA-spec-v1.0.”
[13] “Docker - Build, Ship, and Run Any App, Anywhere.” [Online]. Available:

https://www.docker.com/. [Accessed: 30-Mar-2017].
[14] “AWS | Auto Scaling.” [Online]. Available: https://aws.amazon.com/autoscaling/.

[Accessed: 02-Nov-2017].
[15] “Repast Suite Documentation.” [Online]. Available: https://repast.github.io/.

[Accessed: 02-Nov-2017].
[16] “Simulation software for manufacturing, material handling, healthcare, etc. - FlexSim

Simulation Software.” [Online]. Available: https://www.flexsim.com/. [Accessed: 02-
Nov-2017].

[17] “EccoBuzz | Manage your buzz around.” [Online]. Available:
http://www.eccobuzz.com/. [Accessed: 02-Nov-2017].

[18] “Soluciones Magician - Business Analytics | INYCOM.” [Online]. Available:
http://www.inycom.es/soluciones-y-servicios-informatica/business-
analytics/soluciones-magician. [Accessed: 02-Nov-2017].

[19] “MongoDB for GIANT Ideas | MongoDB.” [Online]. Available:
https://www.mongodb.com/. [Accessed: 30-Apr-2017].

[20] “Apache Solr -.” [Online]. Available: http://lucene.apache.org/solr/. [Accessed: 01-Nov-
2017].

[21] O. Kopp, T. Binz, U. Breitenbücher, F. Leymann, and U. Breitenb, “Winery – A
Modeling Tool for TOSCA-based Cloud Applications.”

[22] “ALIEN 4 Cloud.” [Online]. Available: https://alien4cloud.github.io/#alien-for-cloud-
high-level-concept. [Accessed: 31-Oct-2017].

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 37 of 54

12. Annex A

This Annex contains the Three Layered Application Description Template (audience-
finder.yaml and topology.yaml) of Use Case 1.

audience-finder.yaml defines the node types that are used in the Three-Layered
Application Description Template of use case 1

tosca_definitions_version: tosca_simple_yaml_1_0

node_types:
 tosca.nodes.Container.Application.AFA:
 derived_from: tosca.nodes.Container.Application
 requirements:
 - proxy: tosca.capabilities.Endpoint
 - boxoffice-database: tosca.capabilities.Endpoint
 - wordpress-database: tosca.capabilities.Endpoint
 - wordpress:
 node: tosca.nodes.Container.Application.WordPress
 relationships: HostedOn

 tosca.nodes.Container.Application.CachingService:
 derived_from: tosca.nodes.Container.Application
 requirements:
 - wordpress-database: tosca.capabilities.Endpoint
 - boxoffice-database: tosca.capabilities.Endpoint
 - external-database: tosca.capabilities.Endpoint
 - gmail-api-url: tosca.capabilities.Endpoint
 - wordpress:
 node: tosca.nodes.Container.Application.WordPress
 relationships: HostedOn

 tosca.nodes.Container.Application.WordPress:
 derived_from: tosca.nodes.Container.Application
 requirements:
 - container:
 capability: tosca.capabilities.Endpoint
 node: tosca.nodes.Container.Application.Docker.Container
 relationships: HostedOn
 capabilities:
 wordpress:
 type: tosca.capabilities.Endpoint

 tosca.nodes.Container.Application.Docker.Container:
 derived_from: tosca.nodes.Container.Application.Docker
 capabilities:
 container:
 type: tosca.capabilities.Endpoint

policy_types:
 tosca.policies.Security.Authorization:

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 38 of 54

 derived_from: tosca.policies.Security
 description: authorization policy derived from security

 tosca.policies.Scaling.Performance:
 derived_from: tosca.policies.Scaling
 description: Performance policy derived from scaling

 tosca.policies.Deployment.Ressource:
 derived_from: tosca.policies.Deployment
 description: Ressource policy derived from Deployment

 tosca.policies.Execution.Schedule:
 derived_from: tosca.policies.Execution
 description: Schedule policy derived from Execution

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 39 of 54

topology.yaml defines the Three-Layered Application Description Template of use case 1

tosca_definitions_version: tosca_simple_yaml_1_0

imports:
 - audience_finder.yaml

repositories:
 docker_hub: https://registry.hub.docker.com/

description: Template with requirements against hosting infrastructure.

topology_template:
 inputs:
 proxy_url:
 type: string
 description: endpoint for the proxy
 external_database_url:
 type: string
 description: enpoint for the external database connected to the caching service
 Word_Press_url:
 type: string
 description: endpoint for the WordPress database
 Box_Office_url:
 type: string
 description: endpoint for the box office database
 Gmail_API_url:
 type: string
 description: endpoint to connect to the gmail API url

 node_templates:
 Container_for_Caching:
 type: tosca.nodes.Container.Application.Docker.Container
 capabilities:
 container:
 properties:
 protocol: tcp
 secure: false
 network_name: PRIVATE
 initiator: source
 url_path: { get_attributes: [SELF, private_ip]}

 WordPress_for_Caching:
 type: tosca.nodes.Container.Application.WordPress
 requirements:
 - container:
 node: Container_for_Caching
 relationship: my_connection
 capabilities:
 wordpress:

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 40 of 54

 properties:
 protocol: tcp
 secure: false
 network_name: PRIVATE
 initiator: source
 url_path: { get_attributes: [SELF, private_ip]}

 CachingService:
 type: tosca.nodes.Container.Application.CachingService
 requirements:
 - host:
 node_filter:
 capabilities:
 - host:
 properties:
 - num_cpus: { in_range: [min, max] }
 - mem_size: { in_range: [min, max] }
 - disk_size: { in_range: [min, max] }
 - wordpress-database:
 node_filter:
 capabilities:
 - host:
 properties:
 - url_path: { get_property: [cacheservice.connection.deployment.requirement,
specific_parameter_1, property_value] }

 - boxoffice-database:
 node_filter:
 capabilities:
 - host:
 properties:
 - url_path: { get_property: [cacheservice.connection.deployment.requirement,
specific_parameter_2, property_value] }
 - external-database:
 node_filter:
 capabilities:
 - host:
 properties:
 -url_path: { get_property: [cacheservice.connection.deployment.requirement,
specific_parameter_3, property_value] }
 - gmail-api-url:
 node_filter:
 capabilities:
 - host:
 properties:
 -url_path: { get_property: [cacheservice.connection.deployment.requirement,
specific_parameter_4, property_value] }

 - wordpress:
 node: WordPress_for_Caching
 relationship: my_connection

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 41 of 54

 Container_for_AFA:
 type: tosca.nodes.Container.Application.Docker.Container
 capabilities:
 container:
 properties:
 protocol: tcp
 secure: false
 network_name: PRIVATE
 initiator: source
 url_path: { get_attributes: [SELF, private_ip]}

 WordPress_for_AFA:
 type: tosca.nodes.Container.Application.WordPress
 requirements:
 - container:
 node: Container_for_Caching
 relationship: my_connection
 capabilities:
 wordpress:
 properties:
 protocol: tcp
 secure: false
 network_name: PRIVATE
 initiator: source
 url_path: { get_attributes: [SELF, private_ip]}

 AudienceFinder:
 type: tosca.nodes.Container.Application.AFA
 requirements:
 - proxy:
 node_filter:
 capabilities:
 - host:
 properties:
 - url_path: {get_property: [afa.connection.deployment.requirement,
specific_parameter_1, property_value] }
 - boxoffice-database:
 node_filter:
 capabilities:
 - host:
 properties:
 - url_path: {get_property: [afa.connection.deployment.requirement,
specific_parameter_2, property_value] }
 - wordpress-database:
 node_filter:
 capabilities:
 - host:
 properties:
 - url_path: {get_property: [afa.connection.deployment.requirement,
specific_parameter_3, property_value] }

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 42 of 54

 - wordpress:
 node: WordPress_for_Caching
 relationship: my_connection

 relationship_templates:
 my_connection:
 type: ConnectsTo
 interfaces:
 Configure:
 inputs:
 targ_notify_port: "some port"

 policies:
 - afa.application.scalability:
 type: tosca.policies.Scaling.Performance
 description: spins one instance when the threshold connection is reached
 properties:
 property_target:
 property_name: Application, Service, Resource
 property_description: The levels that will be affected by the policy
 property_type: tosca.nodes
 property_stage:
 property_name: execution
 property_description: The stage that will be affected by the policy
 property_type: string
 property_priority:
 property_name: 100
 property_description: the priority with which the policy will be executed
 property_type: integer
 property_trigger_1_ID:
 property_name: connection threshold
 property_description: defines the trigger (threshold that will spin up/down the
instances)
 property_type: string
 property_trigger_1_Namespace:
 property_name: connection meter
 property_description: defines the namespace of the service that is monitoring the
connections
 property_type: string
 specific_parameter_1:
 property_name: max connections
 property_description: defines the maximum defines the maximum number of
connections above which the new instance will be deployed
 property_type: integer
 specific_parameter_2:
 property_name: min connections
 property_description: defines the minimum number of connections above wich the
new instance will be deployed
 property_type: integer

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 43 of 54

 - application.authorization:
 type: tosca.policies.Security.Authorization
 description: requires connection to Remote Autorization Service
 properties:
 property_target:
 property_name: Application, Resource
 property_description: The levels that will be affected by the policy
 property_type: tosca.nodes
 property_stage:
 property_name: deployment
 property_description: the stage that will be affected by the policy
 property_type: string
 property_priority:
 property_name: 100
 property_description: the priority with which the policy will be executed
 property_type: integer
 specific_parameter_1:
 property_name: service address
 property_description: define the url of the remote authorization service
 property_type: url
 specific_parameter_2:
 property_name: service port
 property_description: defines the port of the remote aythorization Service
 property_type: integer
 specific_parameter_3:
 property_name: service protocol
 property_description: defines the connection protocol of the remote Authorization
Service
 property_type: string
 specific_parameter_4:
 property_name: service name
 property_description: defines the name of the remote Autorization Service
 property_type: string

 - cache.service.application.Scalability:
 type: tosca.policies.Scaling.Performance
 description: spins one instance when the estimated of completion time is above
threshold
 properties:
 property_target:
 property_name: Application, Service, Resource
 property_description: The levels that will be affected by the policy
 property_type: tosca.nodes
 property_stage:
 property_name: execution
 property_description: The stage that will be affected by the policy
 property_type: string
 property_priority:
 property_name: 100
 property_description: the priority with which the policy will be executed

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 44 of 54

 property_type: integer
 property_trigger_1_ID:
 property_name: estimated completion time
 property_description: defines the trigger (threshold that will spin up/down the
instances)
 property_type: time
 property_trigger_1_Namespace:
 property_name: cache server
 property_description: defines the namespace of the service that is monitoring the
number of queries that must be executed
 property_type: string
 specific_parameter_1:
 property_name: max estimated time of completion
 property_description: defines the latest time of completion above which the new
instance will be deployed
 property_type: time
 specific_parameter_2:
 property_name: min estimated time of completion
 property_description: defines the earliest time of completion under which the new
instance will be undeployed
 property_type: time

 - application.execution.time:
 type: tosca.policies.Execution.Schedule
 description: executes the application following a cron job like syntax
 properties:
 property_target:
 property_name: Application, Service, Container
 property_description: the node that will be affected by the policy
 property_type: tosca.nodes
 property_stage:
 property_name: execution
 property_description: the stage that will be affected by the policy
 property_type: string
 property_priority:
 property_name: 100
 property_description: the priority with which the policy will be executed
 property_type: integer
 specific_parameter_1:
 property_name: cron-job arg
 property_description: a cron-job like argument list
 property_type: string

 - container.resource.deployment.requirements:
 type: tosca.policies.Deployment.Ressource
 description: defines the minimum requirements for the container
 properties:
 property_target:
 property_name: container
 property_description: the container that will be affected by the policy
 property_type: tosca.nodes

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 45 of 54

 property_stage:
 property_name: deployment
 property_description: the stage that will be affected by the policy
 property_type: string
 property_priority:
 property_name: 100
 property_description: the priority with which the policy will be executed
 property_type: integer
 specific_parameter_1:
 property_name: min cpu
 property_description: the minimum number of cpus
 property_type: integer
 specific_parameter_2:
 property_name: min ram
 property_description: the minimum amount of Memory
 property_type: integer
 specific_parameter_3:
 property_name: min disk
 property_description: the minimum size of disk
 property_type: integer

 - cacheservice.connection.deployment.requirement:
 type: tosca.policies.Deployment.Ressource
 description: defines the connection requirements for the container
 properties:
 property_target:
 property_name: Resource
 property_description: the container that will be affected by the policy
 property_type: tosca.nodes
 property_stage:
 property_name: deployment
 property_description: the stage that will be affected by the policy
 property_type: string
 property_priority:
 property_name: 100
 property_description: the priority with which the policy will be executed
 property_type: integer
 specific_parameter_1:
 property_name: Word_Press_url
 property_description: the url of the Word_Press database that must be reachable
 property_type: url
 property_value: http://some_word_press_database_url
 specific_parameter_2:
 property_name: Box_Office_url
 property_description: the url of the Box_Office database that must be reachable
 property_type: url
 property_value: http://some_external_box_office_database_url
 specific_parameter_3:
 property_name: external_database_url
 property_description: the url of the external_database that must be reachable
 property_type: url

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 46 of 54

 property_value: http://some_external_database_url
 specific_parameter_4:
 property_name: Gmail_API_url
 property_description: the url of the Gmail_API that must be reachable
 property_type: url
 property_value: http://some_gmail_api_url

 - afa.connection.deployment.requirement:
 type: tosca.policies.Deployment.Ressource
 description: defines the connection requirements for the container
 properties:
 property_target:
 property_name: Resource
 property_description: the container that will be affected by the policy
 property_type: tosca.nodes
 property_stage:
 property_name: deployment
 property_description: the stage that will be affected by the policy
 property_type: string
 property_priority:
 property_name: 100
 property_description: the priority with which the policy will be executed
 property_type: integer
 specific_parameter_1:
 property_name: Word_Press_url
 property_description: the url of the Word_Press database that must be reachable
 property_type: url
 property_value: http://some_word_press_database_url
 specific_parameter_2:
 property_name: Box_Office_url
 property_description: the url of the Box_Office database that must be reachable
 property_type: url
 property_value: http://some_box_office_database_url
 specific_parameter_3:
 property_name: proxy_url
 property_description: the url of the poxy that must be reachable
 property_type: url
 property_value: http://some_proxy/

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 47 of 54

13. Annex B

This Annex contains the Compressed Topology Application Description Template
(audience-finder.yaml and topology.yaml) of Use Case 1.

audience-finder.yaml defines the node types that are used in the Compressed Topology
Application Description Template of Use Case 1

tosca_definitions_version: tosca_simple_yaml_1_0

node_types:
 tosca.nodes.Container.Application.Docker.AFA:
 derived_from: tosca.nodes.Container.Application.Docker

 requirements:

 - proxy: tosca.capabilities.Endpoint
 - boxoffice-database: tosca.capabilities.Endpoint
 - wordpress-database: tosca.capabilities.Endpoint

 tosca.nodes.Container.Application.Docker.CachingService:
 derived_from: tosca.nodes.Container.Application.Docker
 requirements:
 - wordpress-database: tosca.capabilities.Endpoint
 - boxoffice-database: tosca.capabilities.Endpoint
 - external-database: tosca.capabilities.Endpoint
 - gmail-api-url: tosca.capabilities.Endpoint

policy_types:
 tosca.policies.Security.Authorization:
 derived_from: tosca.policies.Security
 description: authorization policy derived from security

 tosca.policies.Scaling.Performance:
 derived_from: tosca.policies.Scaling
 description: Performance policy derived from scaling

 tosca.policies.Deployment.Ressource:
 derived_from: tosca.policies.Deployment
 description: Ressource policy derived from Deployment

 tosca.policies.Execution.Schedule:
 derived_from: tosca.policies.Execution
 description: Schedule policy derived from Execution

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 48 of 54

topology.yaml defines the Compressed Topology Application Description Template of Use
Case 1

tosca_definitions_version: tosca_simple_yaml_1_0

imports:
 - audience_finder.yaml

repositories:
 docker_hub: https://registry.hub.docker.com/

description: Template with requirements against hosting infrastructure.

topology_template:

 node_templates:
 CachingService:
 type: tosca.nodes.Container.Application.Docker.CachingService
 requirements:
 - host:
 node_filter:
 capabilities:
 - host:
 properties:
 - num_cpus: { in_range: [min, max] }
 - mem_size: { in_range: [min, max] }
 - disk_size: { in_range: [min, max] }
 - wordpress-database:
 node_filter:
 capabilities:
 - host:
 properties:
 - url_path: { get_property: [cacheservice.connection.deployment.requirement,
specific_parameter_1, property_value] }
 - boxoffice-database:
 node_filter:
 capabilities:
 - host:
 properties:
 - url_path: { get_property: [cacheservice.connection.deployment.requirement,
specific_parameter_2, property_value] }
 - external-database:
 node_filter:
 capabilities:
 - host:
 properties:
 - url_path: {get_property: [cacheservice.connection.deployment.requirement,
specific_parameter_3, property_value] }
 - gmail-api-url:
 node_filter:
 capabilities:

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 49 of 54

 - host:
 properties:
 - url_path: {get_property: [cacheservice.connection.deployment.requirement,
specific_parameter_4, property_value] }

 artifacts:
 file: CachingService
 type: tosca.artifacts.Deployment.Image.Container.Docker
 repository: docker_hub

 AudienceFinder:
 type: tosca.nodes.Container.Application.Docker.AFA
 requirements:
 - proxy:
 node_filter:
 capabilities:
 - host:
 properties:
 - url_path: { get_property: [afa.connection.deployment.requirement,
specific_parameter_1, property_value] }
 - boxoffice-database:
 node_filter:
 capabilities:
 - host:
 properties:
 - url_path: { get_property: [afa.connection.deployment.requirement,
specific_parameter_2, property_value] }
 - wordpress-database:
 node_filter:
 capabilities:
 - host:
 properties:
 - url_path: { get_property: [afa.connection.deployment.requirement,
specific_parameter_3, property_value] }

 artifacts:
 file: AFA
 type: tosca.artifacts.Deployment.Image.Container.Docker
 repository: docker_hub

 policies:
 - afa.application.scalability:
 type: tosca.policies.Scaling.Performance
 description: spins one instance when the threshold connection is reached
 properties:
 property_target:
 property_name: Application, Service, Resource
 property_description: The levels that will be affected by the policy
 property_type: tosca.nodes
 property_stage:
 property_name: execution

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 50 of 54

 property_description: The stage that will be affected by the policy
 property_type: string
 property_priority:
 property_name: 100
 property_description: the priority with which the policy will be executed
 property_type: integer
 property_trigger_1_ID:
 property_name: connection threshold
 property_description: defines the trigger (threshold that will spin up/down the
instances)
 property_type: string
 property_trigger_1_Namespace:
 property_name: connection meter
 property_description: defines the namespace of the service that is monitoring the
connections
 property_type: string
 specific_parameter_1:
 property_name: max connections
 property_description: defines the maximum defines the maximum number of
connections above which the new instance will be deployed
 property_type: integer
 specific_parameter_2:
 property_name: min connections
 property_description: defines the minimum number of connections above wich the
new instance will be deployed
 property_type: integer

 - application.authorization:
 type: tosca.policies.Security.Authorization
 description: requires connection to Remote Autorization Service
 properties:
 property_target:
 property_name: Application, Resource
 property_description: The levels that will be affected by the policy
 property_type: tosca.nodes
 property_stage:
 property_name: deployment
 property_description: the stage that will be affected by the policy
 property_type: string
 property_priority:
 property_name: 100
 property_description: the priority with which the policy will be executed
 property_type: integer
 specific_parameter_1:
 property_name: service address
 property_description: define the url of the remote authorization service
 property_type: url
 specific_parameter_2:
 property_name: service port
 property_description: defines the port of the remote aythorization Service
 property_type: integer

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 51 of 54

 specific_parameter_3:
 property_name: service protocol
 property_description: defines the connection protocol of the remote Authorization
Service
 property_type: string
 specific_parameter_4:
 property_name: service name
 property_description: defines the name of the remote Autorization Service
 property_type: string

 - cache.service.application.Scalability:
 type: tosca.policies.Scaling.Performance
 description: spins one instance when the estimated of completion time is above
threshold
 properties:
 property_target:
 property_name: Application, Service, Resource
 property_description: The levels that will be affected by the policy
 property_type: tosca.nodes
 property_stage:
 property_name: execution
 property_description: The stage that will be affected by the policy
 property_type: string
 property_priority:
 property_name: 100
 property_description: the priority with which the policy will be executed
 property_type: integer
 property_trigger_1_ID:
 property_name: estimated completion time
 property_description: defines the trigger (threshold that will spin up/down the
instances)
 property_type: time
 property_trigger_1_Namespace:
 property_name: cache server
 property_description: defines the namespace of the service that is monitoring the
number of queries that must be executed
 property_type: string
 specific_parameter_1:
 property_name: max estimated time of completion
 property_description: defines the latest time of completion above which the new
instance will be deployed
 property_type: time
 specific_parameter_2:
 property_name: min estimated time of completion
 property_description: defines the earliest time of completion under which the new
instance will be undeployed
 property_type: time

 - application.execution.time:
 type: tosca.policies.Execution.Schedule
 description: executes the application following a cron job like syntax

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 52 of 54

 properties:
 property_target:
 property_name: Application, Service, Container
 property_description: the node that will be affected by the policy
 property_type: tosca.nodes
 property_stage:
 property_name: execution
 property_description: the stage that will be affected by the policy
 property_type: string
 property_priority:
 property_name: 100
 property_description: the priority with which the policy will be executed
 property_type: integer
 specific_parameter_1:
 property_name: cron-job arg
 property_description: a cron-job like argument list
 property_type: string

 - container.resource.deployment.requirements:
 type: tosca.policies.Deployment.Ressource
 description: defines the minimum requirements for the container
 properties:
 property_target:
 property_name: container
 property_description: the container that will be affected by the policy
 property_type: tosca.nodes
 property_stage:
 property_name: deployment
 property_description: the stage that will be affected by the policy
 property_type: string
 property_priority:
 property_name: 100
 property_description: the priority with which the policy will be executed
 property_type: integer
 specific_parameter_1:
 property_name: min cpu
 property_description: the minimum number of cpus
 property_type: integer
 specific_parameter_2:
 property_name: min ram
 property_description: the minimum amount of Memory
 property_type: integer
 specific_parameter_3:
 property_name: min disk
 property_description: the minimum size of disk
 property_type: integer

 - cacheservice.connection.deployment.requirement:
 type: tosca.policies.Deployment.Ressource
 description: defines the connection requirements for the container
 properties:

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 53 of 54

 property_target:
 property_name: Resource
 property_description: the container that will be affected by the policy
 property_type: tosca.nodes
 property_stage:
 property_name: deployment
 property_description: the stage that will be affected by the policy
 property_type: string
 property_priority:
 property_name: 100
 property_description: the priority with which the policy will be executed
 property_type: integer
 specific_parameter_1:
 property_name: Word_Press_url
 property_description: the url of the Word_Press database that must be reachable
 property_type: url
 property_value: http://some_word_press_database_url
 specific_parameter_2:
 property_name: Box_Office_url
 property_description: the url of the Box_Office database that must be reachable
 property_type: url
 property_value: http://some_external_box_office_database_url
 specific_parameter_3:
 property_name: external_database_url
 property_description: the url of the external_database that must be reachable
 property_type: url
 property_value: http://some_external_database_url
 specific_parameter_4:
 property_name: Gmail_API_url
 property_description: the url of the Gmail_API that must be reachable
 property_type: url
 property_value: http://some_gmail_api_url

 - afa.connection.deployment.requirement:
 type: tosca.policies.Deployment.Ressource
 description: defines the connection requirements for the container
 properties:
 property_target:
 property_name: Resource
 property_description: the container that will be affected by the policy
 property_type: tosca.nodes
 property_stage:
 property_name: deployment
 property_description: the stage that will be affected by the policy
 property_type: string
 property_priority:
 property_name: 100
 property_description: the priority with which the policy will be executed
 property_type: integer
 specific_parameter_1:
 property_name: Word_Press_url

D5.3 Integration of the Templates with the Selected Application Description

Work Package WP5 Page 54 of 54

 property_description: the url of the Word_Press database that must be reachable
 property_type: url
 property_value: http://some_word_press_database_url
 specific_parameter_2:
 property_name: Box_Office_url
 property_description: the url of the Box_Office database that must be reachable
 property_type: url
 property_value: http://some_box_office_database_url
 specific_parameter_3:
 property_name: proxy_url
 property_description: the url of the poxy that must be reachable
 property_type: url
 property_value: http://some_proxy/

