
D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 1 of 60

Cloud Orchestration at the Level of Application

Project Acronym: COLA

Project Number: 731574

Programme: Information and Communication Technologies
Advanced Computing and Cloud Computing

Topic: ICT-06-2016 Cloud Computing

Call Identifier: H2020-ICT-2016-1

Funding Scheme: Innovation Action

Start date of project: 01/01/2017 Duration: 30 months

Deliverable:

D5.4 First Set of Templates and Services of Use Cases

Due date of deliverable: 31/12/2017 Actual submission date: 25/12/2017

WPL: Gabriele Pierantoni

Dissemination Level: PU

Version: Final

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 2 of 60

1. Table of Contents

1. Table of Contents 2

2. List of Figures and Tables 4

3. Status, Change History and Glossary 5

4. Glossary 6

5. Introduction 7

6. Relationship with other Work Packages and Deliverables 8

7. The Application Description Templates in COLA 9

8. Proposed steps to define the Application Description Templates in COLA 13

9. Examples of Application Description Templates in COLA 14

9.1 Introduction 14

9.2 Use Case 1 - Scalable hosting, testing and automation for SMEs and public sector
organisations 14

9.3 Use Case 2 - Bursting onto the Cloud from SakerGrid 17

9.4 Use Case 3 - Social media data analytics for public sector organisations 19

9.5 Use Case 4 – Data Avenue 21

10. Structure of the COLA Application Description Repository 23

11. Structure of the Topology Template 26

11.1 Declaration of the TOSCA Version 26

11.2 Import Section 26

11.3 Location of the Docker Images 26

11.4 Start of the main topology section 26

11.5 Input Section 27

11.6 Node Template Section 28

11.7 Output Section 29

11.8 Policies Section 29

12. Conclusions 31

13. References 32

14. Appendix A – Outlandish Topology Template 33

15. Appendix B – Repast Topology Template 38

16. Appendix C – Inycom Topology Template 41

17. Appendix D – DataAvenue Topology Template 45

18. Appendix E– Custom Types 48

19. Appendix F – TOSCA Policy Execution 53

20. Appendix G – TOSCA Policy Execution Schedule 54

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 3 of 60

21. Appendix H – TOSCA Deployment Connection 55

22. Appendix I – TOSCA Deployment Location 56

23. Appendix J – TOSCA Scalability Consumption 57

24. Appendix K – TOSCA Scalability Performance Completion 58

25. Appendix L – TOSCA Scalability Performance Completion Job 59

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 4 of 60

2. List of Figures and Tables

Figures

Figure 1, Connections among the Application Description Template and related components
of the COLA architecture. .. 9
Figure 2, Implementation of ADTs with respect of the three-layered design. 10
Figure 3, Mapping of Docker and Virtual Machine Images with ADTs 11
Figure 4, Mapping of Application Description Templates into Docker Images and Worker
Nodes ... 11
Figure 5, Structure of the Implementation of the Application Description Templates 12
Figure 6, Components and Policies of Use Case 1 ... 15
Figure 7, Implementation of Use Case 1 ... 15
Figure 8, Components and Policies of Use Case 2 ... 17
Figure 9, Implementation of Use Case 2 ... 18
Figure 10, Components and Policies of Use Case 3 ... 19
Figure 11, Implementation of Use Case 3 ... 20
Figure 12, Components and Policies of Use Case 4 ... 21
Figure 13, Implementation of Use Case 4 ... 22
Figure 14, Structure of the COLA repository in github ... 23

Tables

Table 1, Status Change History .. 5
Table 2, Deliverable Change History ... 5
Table 3, Glossary .. 6
Table 4, Policies applied to the implementation of Use Case 1 ... 16
Table 5, Policies applied to the implementation of Use Case 2 ... 18
Table 6, Policies applied to the implementation of Use Case 3 ... 20
Table 7, Policies applied to the implementation of Use Case 4 ... 22
Table 8, Custom Defined Node Types .. 23
Table 9, Custom Defined Capabilities Types ... 24
Table 10, Custom Defined Data Types ... 24
Table 11, Custom Defined Policy Types.. 24
Table 12, Files in which the custom policies are declared ... 25
Table 13, Files in which the topologies templates are defined ... 25

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 5 of 60

3. Status, Change History and Glossary

Status: Name: Date: Signature:

Draft: Gabriele Pierantoni 17/12/17 Gabriele Pierantoni

Reviewed: Anastasia Anagnostou 20/12/17 Anastasia Agnoustou

Approved: Tamas Kiss 25/12/17 Tamas Kiss

Table 1, Status Change History

Version Date Pages Author Modification

V0.1 07/12 ALL G. Pierantoni Skeleton

V1.0 16/12 ALL G. Pierantoni First Draft of the Deliverable

V1.1 17/12 ALL G. Pierantoni Second Draft to be reviewed.

V1.3 20/12 ALL G. Pierantoni Addressed Tamas remarks, added code
description

V1.4 22/12 ALL G. Pierantoni Addressed Anastasia (Reviewer)
remarks, added some corrections and
small text additions

Table 2, Deliverable Change History

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 6 of 60

4. Glossary

ADT Application Description Template

API Application Programming Interface

COLA Cloud Orchestration at the level of Application

CLI Command Line Interface

DoW Description of Work

GUI Graphical User Interface

IaaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

TOSCA
Topology Orchestration Specification for Cloud
Application

URI Uniform Resource Identifier

URL Uniform Resource Locator

Table 3, Glossary

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 7 of 60

5. Introduction

COLA Description of Work (DoW) specifies Deliverable D5.4 “First set of templates and
services of Use Cases” as follows: “This deliverable will publish the first set of templates
and the description of the services to be used in the SME and public sector use-cases
and will write a report about these templates and services”

This deliverable describes the Application Description Templates (ADTs) implementation of
the three Use Cases proposed by the COLA Industrial and Academic partners plus one
additional Use Case, that of Data Avenue[1][2]. This deliverable explains the design changes
that have been adopted for this release and describes the generic structure of the
implementation of the Application Description Templates.

The deliverable also describes the structure of the github[3] repository that has been created
to contain the TOSCA code (https://github.com/COLAProject/COLARepo) and provides the
commented code of the ADTs to offer both a clear view on their structure and the related
implementation details.

This Deliverable is the fourth deliverable of Work Package 5 “Application Description
Templates” and is an open document which visibility is allowed to both internal and external
readers. The intended audience of this deliverable is application developers that are involved
in either developing new applications or porting existing ones to the COLA infrastructure.
Deliverable D5.4 is structured as follows:

1. Section 5 – Offers an introduction to the Deliverable introducing general concepts and
its relevance within the COLA project.

2. Section 6 - Further details the topics introduced in Section 5 by describing the mutual
dependencies among this Deliverable with the other most relevant Project
Deliverables.

3. Section 7 - Defines the generic structure of the Application Description Templates and
how it relates to the various components of the MiCADO infrastructure.

4. Section 8 - Describes the generic steps needed to create an Application Description
Template.

5. Section 9 – Describes the implementation of the four Use Cases:
a. Use Case 1: Scalable hosting, testing and automation for Small to

Medium-sized Enterprises (SMEs) and public sector organisations,
developed by Outlandish and The Audience Agency,

b. Use Case 2: Bursting onto the Cloud from SakerGrid – developed by Brunel
University and Saker Solutions,

c. Use Case 3: Social media data Analytics for Public Sector Organisations
– developed by Inycom and SARGA.

d. Use Case 4: Data Avenue, a file commander tool for data transfer,
enabling easy data moving between various storage services – developed
by CloudSME and SZTAKI

6. Section 10 – Describes the structure of the Github repository that contains the ADTs,
it further describes each of its directories and lists the declared types.

7. Section 11 – Describes the structure of the main component (the Topology Template)
of a meaningful ADT example, that of Use Case 3.

8. Section 12 – Concludes the Deliverable offering some remarks on the status of WP5
and future work.

9. Section 13 – Contains the References.
10. Sections 14 to 20 – Contain the listing of all the code that compose the ADTs.

https://github.com/COLAProject/COLARepo

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 8 of 60

6. Relationship with other Work Packages and
Deliverables

As introduced in Section 5, the Application Description Templates (ADTs) are closely
related to various fundamental aspects of the COLA project:
Firstly, the ADTs describe the applications that are to be ported to the COLA infrastructure;
because of this, ADTs are closely related to the COLA architecture (more specifically to the
MiCADO[4][5] infrastructure which COLA is based upon) itself. Finally, the ADTs described in
this Deliverable are the result of the joint process of the definition of an abstract approach to
describe the applications and the implementation choices of the MiCADO infrastructure.
As a result, this deliverable is closely related to Work Packages and Deliverables that
describes the concepts highlighted in the previous paragraph.

Deliverable 5.4 is published by Work Package 5 – Application Definition Templates. This
work package has previously published three Deliverables: D5.1 – “Analysis of existing
Application Description Approaches”, D5.2 – “Specification of the Application
Description Concept”, and D5.3 – “Integration of the Templates with the Selected
Application Description Approach”.

 D5.1 offers a state of the art overview of the application description and execution.

D5.1 details the reason behind the choice of adopting TOSCA[6][7] as the language

specifications for COLA ADTs.

 D5.2 describes the proposed COLA approach to the problem: a three-layered

Application Description Template based on the language specifications which also

defines policies at each of its layers.

 D5.3 describes how the concept highlighted in D5.2 are applied to define the three

Use Cases defined in D8.1.

The ADTs are interpreted by the MiCADO framework, hence the dependencies with Work
Package 6 – “MicroServices deployment and execution layer”, and its Deliverables: D6.1
– “Prototype and Documentation of the Cloud Deployment Orchestrator Service” and
D6.2 - “Prototype and Documentation of the Monitoring Service”).

The ADTs are also closely related to security issues and concerns, hence the dependencies
with Work Package 7 – “Security, privacy and trust at the level of cloud applications”,
particularly with, Deliverables D7.1 – “Security Requirements” and D7.2 – “Security
Architecture Specifications”.
Mutual dependencies among WP5, WP6 and WP7 are of a technical nature and it is important
that the information defined in the Application Description Templates can be understood, acted
upon and enforced by the MiCADO framework, particularly by the Cloud Orchestrator and the
Security Infrastructure.

Deliverable D5.4 is also closely linked to Work Package 8 – “SME and public sector use-
case pilots and demonstrators, particularly with Deliverable D8.1 – “Business and
Technical Requirements of COLA Use Cases”. WP5 interactions with WP8 ensures that
the Use Cases of Work Package 8 can be supported by the Application Descriptions
Templates.

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 9 of 60

7. The Application Description Templates in COLA

The COLA project uses TOSCA-based Application Description Templates to describe the
application architecture and the policies that govern their lifecycle. While previous deliverables
(D5.2 and D5.3) describe a generic structure for the description of applications and policies
that referred to the abstract COLA architecture and concepts, this Deliverable focuses on the
current MiCADO implementation. The Application Description Templates described in this
Deliverable reflect the MiCADO current and planned implementation for the foreseeable six
months and it will represent the design of the ADTs that will be parsed and used by the TOSCA
submitter component that will be implemented starting in January 2018.

As introduced in Deliverable D5.2 and D5.3, the COLA Application Description Templates
(ADTs) describe two main aspects of each application: its topology (e.g. the set of components
that compose it alongside the relationships) and its policies (the set of rules that govern the
lifecycle of its components). The ADTs represent an information conduit between the
Application Developers and various components of the MiCADO infrastructure as illustrated
in Figure 1.

Figure 1, Connections among the Application Description Template and related components of the COLA
architecture.

The TOSCA submitter parses the ADTs and dispatches the relevant information to the
different components of the MiCADO infrastructure. These connections can be detailed as:

 Policies are stored in the Policy Repository and used throughout the lifecycle of the

application to define the right action.

 Occopus[8] receives and processes the information that describes the selection and

execution of the virtual machines.

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 10 of 60

 Swarm[9] receives and processes the information that describes the selection and

execution of the Docker Images.

 The Security Infrastructure receives and processes the information that is specific to

security concerns.

The Application Description Templates reflect this architecture and have been modified from
those described in D5.2 and D5.3 to more closely adapt to the current and planned MiCADO
implementations. The main change between the current implementation of the ADTs and the
general architecture proposed in D5.2 are two fold and are described in Figure 2.

First: the current ADT have compressed the Application, Service and Resource Layer into a
Docker Image. The general approach proposed in the COLA Description of Work proposed
three layered ADTs that detailed the application, service and resource layer to foster re-
usability of the ADTs. Although this design principle had not been abandoned, the current
implementation of MiCADO requires that the Application Developers provide a Docker Image
(Uploaded to Docker Hub) that contains both the service and the specific application code and
data. This renders unnecessary to describe the different application and service components
(and their lifecycle steps) as they are deployed as one or more Docker Images, the entire ADT
has been simplified accordingly.

Second: the container layer has been separated into two sub-levels, one that indicates which
Docker Image has to be used (along the command line details to execute it) and one level that
details the virtual machine inside which the container has to be deployed.

Figure 2, Implementation of ADTs with respect of the three-layered design.

The mapping of the ADT to the type of resources of MiCADO is achieved by the two layers of
the ADT by specifying information at each of the levels as illustrated in Figure 43. The Docker
Image node specifies the Docker Name and the command line which will be used to define
select the image and how to run it. The Docker node does not need any mapping as it defines
a specific Docker Image.

On the other hand, the Virtual Machine Nodes do not specify any specific instance of the
Image to be used but rather give information on its characteristic and let Occopus find the
optimal Virtual Image to match-make its request. The Application Developer can use a generic

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 11 of 60

Virtual Machine Node Image to let Occopus decide which Cloud Provider to use or she/he can
select a sub type of the Virtual Machine Node to directly instruct Occopus on which provider
she/he wants to use.

Figure 3, Mapping of Docker and Virtual Machine Images with ADTs

All applications that are ported into COLA for execution in MiCADO, are defined as an ADT
which contains a Topology Templates and various custom defined types. In turn, each
Topology template contains Inputs, Policies, Nodes and Relationships.

The Application Developer decides in how many Docker Images she/he wants to decompose
his application and the relative Topology Template contains two nodes for each Docker Image
as illustrated in Figure 4. The top node describes the Docker Images while the bottom node
describes the Virtual Machine in which the Docker Image will be instantiated.

Figure 4, Mapping of Application Description Templates into Docker Images and Worker Nodes

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 12 of 60

Each ADT follows the same structure which is described in Figure 5. Each ADT consists of
one Topology Template that comprehends the following components:

 Input section groups together fields that Application Developers are likely to override

their default value.

 Policies section defines the policies that are applied within the Application. Each policy

can be applied to one or more nodes.

 Docker Images section define a set of nodes that specify the Docker Images that

contain the applications. Application Developers will upload the Docker Image to

Docker Hub prior to defining the ADT and will specify the name of the Docker Image

and the details of its command line in the Docker Image Type.

 Worker Nodes section defines the characteristics of the Virtual Machines that will host

the Docker Images defined in the section above. As MiCADO is a multi-cloud platform

that supports various Cloud Providers, Worker Nodes are defined with either a generic

node type leaving to Occopus to select the Cloud Provider that is most appropriate or

directly defined using a sub-type that specifies the Cloud Provider that has to be used.

 Output section groups together fields whose values will be set by the TOSCA

submitter and returned to the Application Developer

Figure 5, Structure of the Implementation of the Application Description Templates

For the implementation of these Use Cases only, a subset of the policies that were originally
defined in Deliverable D5.3 have been used. Other policies have been modified to adapt to
the evolving design of the infrastructure while some others have been changed to more closely
reflect the TOSCA design guidelines.

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 13 of 60

8. Proposed steps to define the Application Description
Templates in COLA

The creation of the ADTs can be summarized with the following steps which can be followed
by Application Developers.

Analysis of the architecture of the application. The application is divided into its main
components. The goal of this step is to determine which components will be internal (e.g.
deployed in MiCADO) and which components will be external (e.g. not deployed in MiCADO).
The ADT will only describe the internal components.

Definition of the Docker structure of the application. The application is divided into
sections each of which represents a Docker Image and a Virtual Machine where the image
will be deployed. The definition of the “vertical slices” that compose the ADT should reflect not
only the architectural structure of the application but also the different policies that need to be
applied. As an example, an application that contains components that requires scalability
should separate them from components that do not require scalability to optimize the
execution of the application.

 All Docker Images are of the same type. The user specifies the name of the Docker

Image that is uploaded into Docker Hub and the command line that will execute it.

 Select the Type of Virtual Machine to reflect the choice of Cloud Provider. Generic

Type to leave the mapping to Occopus, or specific types to directly choose a particular

Cloud Provider.

Selection of policies and their association to the relative nodes in the Application Topology.

Selection of input values that users are likely to be overridden by user and list them in the
Input section, specify the default value for each of the inputs.

Selection of output values that will be returned by the TOSCA submitter.

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 14 of 60

9. Examples of Application Description Templates in
COLA

9.1 Introduction

The implementations described in this Deliverable represent the ADTs of the three main Use
Cases described in D8.1. These Use Cases cover a significant range of the MiCADO
functionalities and their ADTs constitute a reasonable base for further extension to implement
the other scenarios that will be covered during the project.

The three use cases covered in D8.1 did not require the definition of “horizontal” relationships
between the nodes that describe the Docker Images (Use Case 1 contains two Docker Images
but their relationship is implicit through the definition of a cron-job and not explicit). As this is
an important feature that will be key to describe complex topologies, we have added the ADT
for a further Use Case: Data Avenue in which we describe a Template Topology of six nodes
with horizontal “ConnectsTo” and vertical “HostedOn” relationships.

9.2 Use Case 1 - Scalable hosting, testing and automation for SMEs and
public sector organisations

Use Case 1 - Scalable hosting, testing and automation for SMEs and public sector
organisations (in this case specifically for The Audience Agency’s Audience Finder
application) is an application that performs data-mining analysis regarding the audience of
different sources, such as Theatres, Museums, etc. This use case describes a three-tier
application with a Web Interface, a Controller Module and a Database backend. In order to
meet the computational requirements of the queries a Caching Service has been implemented
to pre-calculate a set of queries to shorten the computational times. The Caching Service is
executed at regular intervals (it is implemented as a Cron Job12 in Linux).

The components fall into two separate categories as described in Figure 6: Internal
Components that will be deployed in MiCADO (depicted in red colour) and External
Components that will not be deployed in MiCADO (depicted in blue colour).

1 http://man7.org/linux/man-pages/man8/cron.8.html
2 https://linux.die.net/man/1/crontab

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 15 of 60

Figure 6, Components and Policies of Use Case 1

Figure 7, Implementation of Use Case 1

Figure 7 describes the architecture of the implementation of Use Case 1. The application is
divided into two Docker images and Virtual Machine nodes that are connected with a
HostedOn type relationship. The Docker Image nodes are called AFA and CachingService
both of type tosca.nodes.MiCADO.Container.Application.Docker. The Virtual Machine nodes
are of type tosca.nodes.MiCADO.Occopus.CloudSigma.Compute and define a specific Cloud
Provider (CloudSigma) for the Virtual Machine execution.

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 16 of 60

The policies that apply to the implementation of the nodes are recapitulated in the Table 4
below.

 Policy Notes

P1.1 Consumption Based Scalability It has been modified to Consumption Based
Scalability as at the moment the MiCADO
infrastructure does not support monitoring of
web connections. Consumption Based
Scalability defines a threshold above which a
new instance will be deployed and a threshold
below which the instance will be un-deployed.

P1.2 Deadline Based Scalability It defines the deployment of a new instance
under condition that the expected completion
time of pre-computed datasets to be calculated
is greater that the given threshold.

P1.3 Connection Deployment Policy Defines the set of inbound connections. This
policy has been modified to take into account
that only inbound connections are to be
specified to the security infrastructure.

P1.4 Execution Policy It defines that the component has to be
executed at fixed times.

P1.5 Resource Deployment Policy Defines the requirements of the Virtual
Machine in terms of CPU, Memory Size and
Disk size. It is directly defined as Capabilities of
the Virtual Machine.

Table 4, Policies applied to the implementation of Use Case 1

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 17 of 60

9.3 Use Case 2 - Bursting onto the Cloud from SakerGrid

Use Case 2 deals with a simulation platform that has been developed by Saker Solutions and
Brunel University to reduce the amount of time required executing simulation experimentation.
The solution is to extend to the Cloud the Distributed Computing Environment which is now
based on a desktop grid (SakerGrid) to achieve a near linear improvement in response
performance. The application follows a standard job-submission system architecture and
consists of several components only one of which has to be ported into the MiCADO
infrastructure. The implemented Use Case only covers the REPAST open source simulation
while the Evacuation Simulation implementation is currently being finalized.

Figure 8, Components and Policies of Use Case 2

The components fall into two separate categories as described in Figure 8: Internal (depicted
in black colour) and External (depicted in blue colour). External Components are further
divided into External and Infrastructure Components (depicted in green colour) which
represent elements of the simulation platform that are not described in the ADT. The
components that will be ported into the MiCADO framework is the Application, which is
supported by several Infrastructure-Level components: Frontend, Queue, Feeder, Worker,
Application and db.

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 18 of 60

Figure 9, Implementation of Use Case 2

Figure 9 describes the architecture of the implementation of Use Case 2. The application
consists in one Docker image and one Virtual machine node that are connected with a
HostedOn type relationship. The Application Docker Image node is of type
tosca.nodes.MiCADO.Container.Application.Docker, the Virtual Machine node is of type
tosca.nodes.MiCADO.Occopus.CloudSigma.Compute and defines a specific Cloud Provider
(CloudSigma) for the Virtual Machine execution. The policies that apply to the implementation
of the nodes are recapitulated in Table 5 below.

 Policy Notes

P2.1 Cost Constrained Deadline Based
Scalability

Whereby the user specifies an overall deadline
and an estimate of the duration of each job and
MiCADO will deploy new instances of the
Workers to meet the deadline. Scalability is
constrained by a maximum budged and a cut-
off threshold.

P2.2 Connection Deployment Policy Defines the set of inbound connections. This
policy has been modified to take into account
that only inbound connections are to be
specified to the security infrastructure.

P2.3 Resource Deployment Policy Defines the requirements of the Virtual
Machine in terms of CPU, Memory Size and
Disk size. It is directly defined as Capabilities of
the Virtual Machine.

Table 5, Policies applied to the implementation of Use Case 2

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 19 of 60

9.4 Use Case 3 - Social media data analytics for public sector
organisations

Use Case 3 deals with a modified version of the Eccobuzz[10] platform with enriched
functionalities called Magician[11]. Eccobuzz allows its users to monitor internet resources for
specified information and it provides structured results by the means of reports that are
received automatically by email. Use Case 3 focuses on the deployment of the Motor Engine
of Eccobuzz and its Configuration Database (based on MongoDB[12]). The deployment in
MiCADO aims at achieving greater scalability. The components fall into two separate
categories as described in Figure 10: Internal Components that will be deployed in MiCADO
(depicted in red colour) and External Components that will not be deployed in MiCADO
(depicted in blue colour).

Figure 10, Components and Policies of Use Case 3

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 20 of 60

Figure 11, Implementation of Use Case 3

Figure 11 describes the architecture of the implementation of Use Case 3. The application
consists of one Docker image and one Virtual Machine nodes that are connected with a
HostedOn type relationship. The InyComm Docker Image node is named inycom and it is of
type tosca.nodes.MiCADO.Container.Application.Docker, the Virtual Machine node is of type
tosca.nodes.MiCADO.Occopus.CloudSigma.Compute and defines a specific Cloud Provider
(CloudSigma) for the Virtual Machine execution. The policies that apply to the implementation
of the nodes are recapitulated in Table 6 below.

 Policy Notes

P3.1 Consumption Based Scalability Consumption Based Scalability defines a
threshold above which a new instance will be
deployed and a threshold below which the
instance will be un-deployed.

P3.2 Resource Deployment Policy Defines the requirements of the Virtual
Machine in terms of CPU, Memory Size and
Disk size. It is directly defined as Capabilities of
the Virtual Machine.

P3.3 Connection Deployment Policy Defines the set of inbound connections. This
policy has been modified to take into account
that only inbound connections are to be
specified to the security infrastructure.

P3.4 Location Deployment Policy It dictates that the container must be physically
located in the European Union.

Table 6, Policies applied to the implementation of Use Case 3

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 21 of 60

9.5 Use Case 4 – Data Avenue

Use Case 4 – Data Avenue covers the definition of a Topology Template for the deployment
of an instance of the Data Avenue service into the MiCADO infrastructure. DataAvenue [2] is
a multi-platform file transfer and file staging facility developed by SZTAKI within the SCI-BUS
and CloudSME projects, its porting into MiCADO is one of the official Use Cases of Cola. The
deployment in MiCADO aims at achieving greater scalability of its main component: a web
application deployed in a Tomcat container. Figure 12 describes the three internal components
of the DataAvenue application: the Proxy, the DataAvenue Web Application and the
DataAvenue database.

Figure 12, Components and Policies of Use Case 4

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 22 of 60

Figure 13, Implementation of Use Case 4

Figure 13 describes the architecture of the implementation of Use Case 4. The application
consists in three Docker images connected through a HostedOn relationship to three Virtual
Machine nodes. The policies that apply to the implementation of the nodes are recapitulated
in the table below.

 Policy Notes

P4.1 Consumption Based Scalability Consumption Based Scalability defines a
threshold above which a new instance will be
deployed and a threshold below which the
instance will be un-deployed.

Table 7, Policies applied to the implementation of Use Case 4

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 23 of 60

10. Structure of the COLA Application Description
Repository

The ADTs are stored in a github repository available at: https://github.com/COLAProject. To
help with re-usability of the code, we have structured the code in three main areas described
in the screenshot of Figure 14. The status of the code has been saved for the submission of
this Deliverable with a Release (0.1) called Release for Deliverable D5.4. The full code of this
Release is listed in Appendices A to L.

Figure 14, Structure of the COLA repository in github

The directory nodes contain one file (custom_types.yaml) where the all the custom node
types are declared alongside related custom types (capabilities). Table 8 recapitulates all the
custom node types declared in file custom_types.yaml.

node_types Derived From Description

tosca.node.MiCADO.Compute Tosca.nodes.Compute (Normative

TOSCA type)

Abstraction for the

different types of virtual

machines

tosca.node.MiCADO.Occopus.

CloudSigma.Compute

tosca.nodes.MiCADO.Compute Describes the

VirtualMachine provided

by the CloudSigma Cloud

Provider

tosca.node.MiCADO.Occopus.

EC2.Compute

tosca.nodes.MiCADO.Compute Describes the

VirtualMachine provided

by the EC2 Cloud Provider

tosca.node.MiCADO.Occopus.

CloudBroker.Compute

tosca.nodes.MiCADO.Compute Describes the

VirtualMachine provided

by the CloudBroker Cloud

Provider

tosca.node.MiCADO.Occopus.

Nova.Compute

tosca.nodes.MiCADO.Compute Describes the

VirtualMachine provided

by the Nova Cloud

Provider

Table 8, Custom Defined Node Types

https://github.com/COLAProject

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 24 of 60

Table 9 recapitulates all the custom capabilities types declared in file custom_types.yaml.

capability_types Derived From Description

tosca.capabilities.MiCADO.

Container.Docker

tosca.capabilities.Container.Docker

(Non Normative TOSCA type but

specified in TOSCA)

Defines the generic

capabilities of an host

tosca.capabilities.MiCADO.

Occopus.EC2.Cloud:

tosca.capabilities.Container Defines the specific

capabilities of the EC2

Cloud

tosca.capabilities.MiCADO.

Occopus.CloudSigma.Cloud:

tosca.capabilities.Container Defines the specific

capabilities of the

CloudSigma Cloud

tosca.capabilities.MiCADO.

Occopus.Nova.Cloud:

tosca.capabilities.Container Defines the specific

capabilities of the Nova

Cloud

tosca.capabilities.MiCADO.

Occopus.CloudBroker.Cloud

:

tosca.capabilities.Container Defines the specific

capabilities of the

CloudBroker Cloud

Table 9, Custom Defined Capabilities Types

Table 10 recapitulates all the custom capabilities types declared in file custom_types.yaml.

data_types Derived From Description

tosca.datatypes.MiCADO.

Occopus.Cloud

tosca.datatypes.Root

(Normative TOSCA type)

Defines the generic

datatype for the Occopus

Cloud Node Type

Table 10, Custom Defined Data Types

The directory policies contains several sub-directories that contain the policy types hierarchy,
the policies are recapitulated in Table 11.

Policies_types Derived From

tosca.policies.Execution Tosca.policies.root Generic execution policy. Added

to the main TOSCA policies

types.

tosca.policies.Execution.Schedu

le

tosca.policies.Execution Executes the application

following a cron job like syntax

tosca.policies.Placement.Requir

ement.Connection:

tosca.policies.Placement Defines the inbound connection

that must be allowed

tosca.policies.Placement.Requir

ement.Location:

tosca.policies.Placement Defines the geographical location

of the Virtual Machines

tosca.policies.Scaling.Performan

ce.Consumption:

tosca.policies.Scaling Scales up or down based on CPU

Consumption

tosca.policies.Scaling.Performan

ce.Completion:

tosca.policies.Scaling Scales up or down depending on

the expected completion time of

the jobs

tosca.policies.Scaling.Performan

ce.Completion.Job:

tosca.policies.Scaling.Perfo

rmance.Completion

Scales up or down depending on

the expected job completion time

within a defined cut-off budget.

Table 11, Custom Defined Policy Types

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 25 of 60

Each policy is defined in different files under the policy directory as listed in

Policies_types file

tosca.policies.Execution /policies/execution/tosca_policy_execution

tosca.policies.Execution.Schedule policies/execution/tosca_policy_execution_schedule

tosca.policies.Placement.Requirement.

Connection:

policies/placement/reuirement/connection/tosca_policy_d

eployment_placement_requirement_connection.yaml

tosca.policies.Placement.Requirement.

Location:

policies/placement/requirement/location/tosca_policy_Pla

cement_Requirement_location.yaml

tosca.policies.Scaling.Performance.Co

nsumption:

policies/scalability/consumption/tosca_policy_scalability

_comsumption.yaml

tosca.policies.Scaling.Performance.Co

mpletion:

policies/scalability/performance/completion/tosca_policy

_scalability_performance_completion.yaml

tosca.policies.Scaling.Performance.Co

mpletion.Job:

policies/scalability/performance/completion/tosca_policy

_scalability_performance_completion_job.yaml
Table 12, Files in which the custom policies are declared

The last directory, templates, contains the Topology Templates of all the Use Cases. Table
13 recapitulates where the Topology Templates are saved. The directory contains an extra
file (blank_topology.yaml) that can be used as a starting point by Application Developers to
follow the steps

Topology Template Use Case File

Outlandish Use Case 1 outlandish.yaml

Repast Use Case 2 repast.yaml

Inycom Use Case 3 inycom.yaml

Data Avenue Extra Use Case dataavenue.yaml

Empty Topology NA blank_topology.yaml

Table 13, Files in which the topologies templates are defined

https://github.com/COLAProject/COLARepo/tree/master/policies
https://github.com/COLAProject/COLARepo/tree/master/policies/placement
https://github.com/COLAProject/COLARepo/tree/master/policies/placement/requirement
https://github.com/COLAProject/COLARepo/tree/master/policies/placement/requirement/location
https://github.com/COLAProject/COLARepo/tree/master/policies
https://github.com/COLAProject/COLARepo/tree/master/policies/scalability
https://github.com/COLAProject/COLARepo/tree/master/policies/scalability/consumption
https://github.com/COLAProject/COLARepo/tree/master/policies
https://github.com/COLAProject/COLARepo/tree/master/policies/scalability
https://github.com/COLAProject/COLARepo/tree/master/policies/scalability/performance
https://github.com/COLAProject/COLARepo/tree/master/policies/scalability/performance/completion
https://github.com/COLAProject/COLARepo/tree/master/policies
https://github.com/COLAProject/COLARepo/tree/master/policies/scalability
https://github.com/COLAProject/COLARepo/tree/master/policies/scalability/performance
https://github.com/COLAProject/COLARepo/tree/master/policies/scalability/performance/completion

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 26 of 60

11. Structure of the Topology Template

Each Topology Template follows a common structure which we illustrate in this section using
the example of Use Case 3 – Inycom.

11.1 Declaration of the TOSCA Version

Each Topology Template starts with the declaration of the TOSCA Version.

declaration of the tosca version

tosca_definitions_version: tosca_simple_yaml_1_0

11.2 Import Section

The import section defines which TOSCA files are needed for the Topology Template.

imports:

 - ../nodes/custom_types.yaml

 - ../policies/execution/tosca_policy_execution_schedule.yaml

- ../policies/placement/requirement/connection/tosca_policy_deployment_placement_requirement_co

nnection.yaml

- ../policies/scalability/performance/completion/tosca_policy_scalability_performance_completion.ya

ml

 - ../policies/scalability/consumption/tosca_policy_scalability_comsumption.yaml

11.3 Location of the Docker Images

This sections defines the URL of the main repository of the Docker Images. User can add
private repositories after the main hub.

repositories:

 docker_hub: https://hub.docker.com/

11.4 Start of the main topology section

This line marks the start of the main section of the topology.

topology_template:

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 27 of 60

11.5 Input Section

The input section starts here and declares all the values that may be set in the topology template. They

are grouped together to make it easier to edit the file. The input section defines the values through the

default field. The full capability of the input section may be used in a future GUI to let different user

profiles override the default values.

 ## The input section starts here. This is where all the values

 ## that may be set in the topology template are grouped together.

 inputs:

 docker_image:

 type: string

 description: Docker image to run

 required: yes

 default: "magician"

 port_exposed:

 type: integer

 description: port_exposed

 required: yes

 default: 8080

 host_cpu:

 type: integer

 description: cpu of the host

 required: yes

 default: 2

 host_version:

 type: version

 description: version of host

 required: yes

 default: 16.0

 url_list:

 type: list

 description: list of url

 default: ["http://url_for_solr", "http://url_for_tomecat", "http://url_for_webpage"]

 entry_schema:

 type: string

 host_mem:

 type: scalar-unit.size

 description: host mem capacity

 required: yes

 default: 4 GB

 host_disk:

 type: scalar-unit.size

 description: host disk capacity

 required: yes

 default: 50 GB

 libdrive_id:

 type: string

 description: id of the instance image to launch

 required: yes

 default: "some id"

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 28 of 60

 max_cpu_consumption:

 type: float

 description: max cpu consumption

 required: yes

 default: 0.8

 min_cpu_consumption:

 type: float

 description: min cpu consumption

 required: yes

 default: 0.2

 scale_up_max_time:

 type: scalar-unit.time

 description: max time of scale scale up

 required: yes

 default: 5 m

 scale_down_max_time:

 type: scalar-unit.time

 description: max time of scale scale down

 required: yes

 default: 5 m

 location:

 type: string

 description: location to launch the instance

 required: yes

 default: Europe

11.6 Node Template Section

The node template section declares all the nodes and relationships that compose the topology.

The is the node template section. Where the node that compose

 ## the topology and their relationships are specified

 node_templates:

 ## This specifies the Docker Image node type and its parameters

 Inycom:

 type: tosca.nodes.MiCADO.Container.Application.Docker

 properties:

 privileged: true

 exposed_port: { get_input: port_exposed }

 ## This is the artefact of the Docker Image node type which represents

 ## the Docker Image in either the common or personal docker hub (specified repository)

 artifacts:

 image:

 type: tosca.artifacts.Deployment.Image.Container.Docker

 file: { get_input: docker_image }

 repository: docker_hub

 ## This specifies the requirements to select the Virtual Machine on which the

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 29 of 60

 ## Docker Image will be executed.

 requirements:

 - host:

 node: VM

 relationship: tosca.relationships.HostedOn

 ## This specifies the Virtual Machine Image node type and its parameters

 VM:

 type: tosca.nodes.MiCADO.Occopus.CloudSigma.Compute

 ## This specifies the properties of the Virtual Machine Image node type

 properties:

 cloud:

 interface_cloud: cloudsigma

 endpoint_cloud: https://zrh.cloudsigma.com/api/2.0

 ## This specifies the capabilities of the Virtual Machine Image node type which

 ## are matched against the requirements of the Docker Image type

 capabilities:

 host:

 properties:

 num_cpus: { get_input: host_cpu }

 disk_size: { get_input: host_disk }

 mem_size: { get_input: host_mem }

 libdrive_id: { get_input: libdrive_id }

11.7 Output Section

The output section declares the value that will be returned by the TOSCA submitter upon successful

deployment of the topology.

This specifies the output that are defined by the attribute of the Output

 outputs:

 ip_address:

 value: { get_attribute: [Inycom, ip_address]}

 port:

 value: { get_attribute: [Inycom, port]}

11.8 Policies Section

The policies section declares the policies that are applied to the different nodes of this topology

template.

This specifies the policies that are applied to the different nodes of this topology template
 policies:
 - scalability:

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 30 of 60

 type: tosca.policies.Scaling.Performance.Consumption
 targets: [Inycom]
 properties:
 stage: Execution
 priority: 100
 trigger_1_ID: estimate_completion_time
 trigger_1_Namespace: prometheus
 max_cpu_consumption: { get_input: max_cpu_consumption }
 scale_up_max_time: { get_input: scale_up_max_time }
 min_cpu_consumption: { get_input: min_cpu_consumption }
 scale_down_max_time: { get_input: scale_down_max_time }

 - deployment_connection:
 type: tosca.policies.Placement.Requirement.Connection
 targets: [Inycom]
 properties:
 stage: Deployment
 properties: 100
 url: { get_input: url_list }

 - deployment_location:
 type: tosca.policies.Placement.Requirement.Location
 targets: [VM]
 properties:
 stage: Deployment
 priority: 100
 trigger_1_Namespace: prometheus
 accepted_domaine: { get_input: location }

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 31 of 60

12. Conclusions

This deliverable details the implementation of the ADTs for four Use Cases that have been
selected as the first applications to be deployed in the MiCADO infrastructure. The
development of the code has highlighted some needed changes in the abstract design that
was first proposed at the start of the project.

The ADT structure has been adapted to contain two nodes: one that specifies the Docker
Image that contains the application and another that specifies the criteria with which the Virtual
Machine will be selected.

To help Application Developers in the process of entering the values of already created
templates, an input section contains all the values that are more likely to be over-ridden. The
policies originally designed have also been adapted; one (the Resource-Based Placement
Policy) has been implemented directly into the node type. Other policies (such as the
Performance-Based Scalability Policy) have been substituted as they are not currently
supported by the MiCADO infrastructure.
The hierarchy of the policy types that have been used for the implementation of these use
cases is a sub-set of the policies that were part of the original design. In one case (the
definition of the hardware characteristics of the resource), the Capabilities/Requirements
structure of TOSCA proved to be more apt that the definition of a specific policy. We envisage
that further implementations of these Use Cases and the introduction of the new scenarios
introduced in D8.1 will require the introduction of some of the policies initially envisaged in
D5.2 and D5.3.

Finally, to help in creating ADTs for new applications, the code has been structured in sub-
components (nodes, policies and templates) which are stored in separate sections of a github
repository. A volunteer-based effort to create a Graphical User Interface inspired by
Winery[13] will start in January. Should this interface be completed, it will allow user to override
the default values of the input sections without having to directly edit the code. Such interface,
will also offer a Drag&Drop workbench for a User-Friendly creation of Template Topologies
and the association to their relative policies.

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 32 of 60

13. References

[1] “DataAvenue Project.” [Online]. Available: https://data-avenue.eu/.
[2] A. Hajnal, Z. Farkas, and P. Kacsuk, “Data Avenue: Remote Storage Resource

Management in WS-PGRADE/gUSE,” in 2014 6th International Workshop on Science
Gateways, 2014, pp. 1–5.

[3] “Git Hub Repository Web Page.” .
[4] H. Visti, T. Kiss, G. Terstyanszky, G. Gesmier, and S. Winter, “MiCADO – Towards a

microservice-based cloud application-level dynamic orchestrator,” Jan. 2016.
[5] “MiCADO Developer Tutorials Online – Cloud Orchestration at the Level of Application.”

[Online]. Available: http://project-cola.eu/micado-tutorials-online/. [Accessed: 28-Oct-
2017].

[6] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “TOSCA: Portable Automated
Deployment and Management of Cloud Applications.”

[7] “Topology and Orchestration Specification for Cloud Applications Version 1.0.” [Online].
Available: http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html.
[Accessed: 30-Mar-2017].

[8] “Welcome - Occopus.” [Online]. Available: http://occopus.lpds.sztaki.hu/en_GB/.
[Accessed: 29-Mar-2017].

[9] “Docker Swarm overview - Docker Documentation.” [Online]. Available:
https://docs.docker.com/swarm/overview/. [Accessed: 30-Mar-2017].

[10] “EccoBuzz | Manage your buzz around.” [Online]. Available: http://www.eccobuzz.com/.
[Accessed: 02-Nov-2017].

[11] “Soluciones Magician - Business Analytics | INYCOM.” [Online]. Available:
http://www.inycom.es/soluciones-y-servicios-informatica/business-
analytics/soluciones-magician. [Accessed: 02-Nov-2017].

[12] “MongoDB for GIANT Ideas | MongoDB.” [Online]. Available:
https://www.mongodb.com/. [Accessed: 30-Apr-2017].

[13] O. Kopp, T. Binz, U. Breitenbücher, F. Leymann, and U. Breitenb, “Winery – A Modeling
Tool for TOSCA-based Cloud Applications.”

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 33 of 60

14. Appendix A – Outlandish Topology Template

tosca_definitions_version: tosca_simple_yaml_1_0

imports:
 - ../nodes/custom_types.yaml
 - ../policies/execution/tosca_policy_execution_schedule.yaml
 -
../policies/placement/requirement/connection/tosca_policy_deployment_placement_requirem
ent_connection.yaml
 -
../policies/scalability/performance/completion/tosca_policy_scalability_performance_completi
on.yaml
 - ../policies/scalability/consumption/tosca_policy_scalability_comsumption.yaml

repositories:
 docker_hub: https://hub.docker.com/

topology_template:
 inputs:
 docker_image_afa:
 type: string
 description: Docker image to run
 required: yes
 default: "image_to_use"

 docker_image_cache_service:
 type: string
 description: Docker image to run
 required: yes
 default: "image_to_use"

 ENVIR_A:
 type: string
 description: ENVIR_A string
 default: "some environment_variables"

 ENVIR_B:
 type: string
 description: ENVIR_B string
 default: "some environment_variables"

 ENVIR_C:
 type: string
 description: ENVIR_C string
 default: "some environment_variables"

 url_list_caching:
 type: list
 description: list of url
 default: ["http://external_db:port/", " http://wordpress_db:port/",

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 34 of 60

"http://box_office_db:port/"]
 entry_schema:
 type: string
 url_list_afa:
 type: list
 description: list of url for afa component to connect to
 default: ["http://wordpress_db:port/","http://box_office_db:port/", "http://proxy_url:port/"]
 entry_schema:
 type: string

 port_exposed:
 type: integer
 description: port_exposed
 required: yes
 default: 8080
 host_mem:
 type: scalar-unit.size
 description: host mem capacity
 required: yes
 default: 4 GB
 host_disk:
 type: scalar-unit.size
 description: host disk capacity
 required: yes
 default: 50 GB
 libdrive_id:
 type: string
 description: id of the instance image to launch
 required: yes
 default: "some id"
 host_cpu:
 type: integer
 description: cpu of the host
 required: yes
 default: 2
 max_completion_time:
 type: integer
 description: estmated max completion time
 required: yes
 default: 10
 cmd_cron:
 type: string
 description: command to run the cron job
 required: yes
 default: "some command"

 max_cpu_consumption:
 type: float
 description: max cpu consumption
 required: yes
 default: 0.8

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 35 of 60

 min_cpu_consumption:
 type: float
 description: min cpu consumption
 required: yes
 default: 0.2

 scale_up_max_time:
 type: scalar-unit.time
 description: max time to scale up
 required: yes
 default: 5 m

 scale_down_max_time:
 type: scalar-unit.time
 description: max time scale down
 required: yes
 default: 5 m

 node_templates:
 AFA:
 type: tosca.nodes.MiCADO.Container.Application.Docker
 properties:
 exposed_port: { get_input: port_exposed }
 env:
 ENVIR_A : { get_input: input_a }
 ENVIR_B : { get_input: input_b }
 ENVIR_N : { get_input: input_n }

 artifacts:
 image:
 type: tosca.artifacts.Deployment.Image.Container.Docker
 file: { get_input: docker_image_afa }
 repository: docker_hub
 requirements:
 - host:
 node: VM
 relationship: tosca.relationships.HostedOn

 Caching_service:
 type: tosca.nodes.MiCADO.Container.Application.Docker
 properties:
 exposed_port: { get_input: port_exposed }
 env:
 ENVIR_A : { get_input: input_a }
 ENVIR_B : { get_input: input_b }
 ENVIR_N : { get_input: input_n }

 artifacts:

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 36 of 60

 image:
 type: tosca.artifacts.Deployment.Image.Container.Docker
 file: { get_input: docker_image_cache_service }
 repository: docker_hub
 requirements:
 - host:
 node: VM
 relationship: tosca.relationships.HostedOn

 VM:
 type: tosca.nodes.MiCADO.Occopus.CloudSigma.Compute

 properties:
 cloud:
 interface_cloud: cloudsigma
 endpoint_cloud: https://zrh.cloudsigma.com/api/2.0

 capabilities:
 host:
 properties:
 num_cpus: { get_input: host_cpu }
 disk_size: { get_input: host_disk }
 mem_size: { get_input: host_mem }
 libdrive_id: { get_input: libdrive_id }

 outputs:
 ip_address:
 value: { get_attribute: [AFA, ip_address]}
 port:
 value: { get_attribute: [AFA, port]}

 policies:
 - consumption:
 type: tosca.policies.Scaling.Performance.Consumption
 targets: [AFA]
 properties:
 stage: started
 priority: 100
 trigger_1_ID: estimate_completion_time
 trigger_1_Namespace: prometheus
 max_cpu_consumption: { get_input: max_cpu_consumption }
 scale_up_max_time: { get_input: scale_up_max_time }
 min_cpu_consumption: { get_input: min_cpu_consumption }
 scale_down_max_time: { get_input: scale_down_max_time }

 - execution:
 type: tosca.policies.Execution.Schedule
 targets: [Caching_service]
 properties:
 stage: started

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 37 of 60

 priority: 100
 cron_cmd: { get_input: cmd_cron }

 - scalability:
 type: tosca.policies.Scaling.Performance.Completion
 targets: [Caching_service]
 properties:
 stage: started
 priority: 100
 trigger_1_ID: estimate_completion_time
 trigger_1_Namespace: cache_server
 max_estimation_time: { get_input: max_completion_time }

 - deployment_connection_AFA:
 type: tosca.policies.Placement.Requirement.Connection
 targets: [Caching_service]
 properties:
 stage: created
 properties: 100
 url: { get_input: url_list_afa }

 - deployment_connection_Caching:
 type: tosca.policies.Placement.Requirement.Connection
 targets: [Caching_service]
 properties:
 stage: created
 properties: 100
 url: { get_input: url_list_caching }

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 38 of 60

15. Appendix B – Repast Topology Template

tosca_definitions_version: tosca_simple_yaml_1_0

imports:

 - ./nodes/custom_types.yaml

- ./policies/placement/requirement/connection/tosca_policy_deployment_placement_requirement_con

nection.yaml

- ./policies/scalability/performance/completion/tosca_policy_scalability_performance_completion_job

.yaml

- ./policies/scalability/performance/completion/tosca_policy_scalability_performance_completion.ya

ml

repositories:

 docker_hub: https://hub.docker.com/

topology_template:

 inputs:

 ## Input for Container

 docker_image:

 type: string

 description: Docker image to run

 required: yes

 default: "image_to_use"

 url_simultation_db:

 type: string

 description: list of url for afa component to connect to

 default: "http://url_simulation_db:port/"

 ## Input to define the VM

 host_mem:

 type: scalar-unit.size

 description: host mem capacity

 required: yes

 default: 4 GB

 host_disk:

 type: scalar-unit.size

 description: host disk capacity

 required: yes

 default: 50 GB

 libdrive_id:

 type: string

 description: id of the instance image to launch

 required: yes

 default: "some id"

 host_cpu:

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 39 of 60

 type: integer

 description: cpu of the host

 required: yes

 default: 2

 ## Input for policies

 estimated_completion_time_one_job:

 type: scalar-unit.time

 description: time for one job to be executed

 required: true

 default: 1 h

 max_estimation_time:

 type: scalar-unit.time

 description: time execution experiment

 required: true

 default: 1 d 2 h

 total_budget:

 type: float

 description: total budget for the experiment

 required: true

 default: 50.0

 cut_off:

 type: float

 description: allowance to go behind total budget

 required: true

 default: 100.0

 node_templates:

 Repast:

 type: tosca.nodes.MiCADO.Container.Application.Docker

 properties:

 cmd: "URL_MODEL [BATCH_PARAMS]"

 artifacts:

 image:

 type: tosca.artifacts.Deployment.Image.Container.Docker

 file: { get_input: docker_image }

 repository: docker_hub

 requirements:

 - host:

 node: VM

 relationship: tosca.relationships.HostedOn

 VM:

 type: tosca.nodes.MiCADO.Occopus.CloudSigma.Compute

 properties:

 cloud:

 interface_cloud: cloudsigma

 endpoint_cloud: https://zrh.cloudsigma.com/api/2.0

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 40 of 60

 capabilities:

 host:

 properties:

 num_cpus: { get_input: host_cpu }

 disk_size: { get_input: host_disk }

 mem_size: { get_input: host_mem }

 libdrive_id: { get_input: libdrive_id }

 policies:

 - scalability:

 type: tosca.policies.Scaling.Performance.Completion.Job

 targets: [Repast]

 properties:

 stage: started

 priority: 100

 trigger_1_ID: estimate_completion_time

 trigger_1_Namespace: prometheus

 max_estimation_time: { get_input: max_estimation_time }

 estimated_completion_time_one_job: { get_input: estimated_completion_time_one_job }

 total_budget: { get_input: total_budget }

 cut_off_percentage: { get_input: cut_off }

 params:

 url: { get_input: url_simulation_db }

 - connect:

 type: tosca.policies.Placement.Requirement.Connection

 targets: [Repast]

 properties:

 stage: created

 properties: 100

 url: { get_input: url_simultation_db }

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 41 of 60

16. Appendix C – Inycom Topology Template

declaration of the tosca version

tosca_definitions_version: tosca_simple_yaml_1_0

imports section defines the tosca files that are needed to parsed

imports:

 - ../nodes/custom_types.yaml

 - ../policies/scalability/consumption/tosca_policy_scalability_comsumption.yaml

- ../policies/placement/requirement/connection/tosca_policy_deployment_placement_requirement_co

nnection.yaml

 - ../policies/placement/requirement/location/tosca_policy_Placement_Requirement_Location.yaml

Url of the main repository fir the location of the docker Images. The user can specify her/his own

repository by adding another line with a name and url eg: my_repo: http://my_repo/

repositories:

 docker_hub: https://hub.docker.com/

the topology template start here

topology_template:

 ## The input section starts here. This is where all the values

 ## that may be set in the topology template are grouped together.

 inputs:

 docker_image:

 type: string

 description: Docker image to run

 required: yes

 default: "magician"

 port_exposed:

 type: integer

 description: port_exposed

 required: yes

 default: 8080

 host_cpu:

 type: integer

 description: cpu of the host

 required: yes

 default: 2

 host_version:

 type: version

 description: version of host

 required: yes

 default: 16.0

 url_list:

 type: list

 description: list of url

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 42 of 60

 default: ["http://url_for_solr", "http://url_for_tomecat", "http://url_for_webpage"]

 entry_schema:

 type: string

 host_mem:

 type: scalar-unit.size

 description: host mem capacity

 required: yes

 default: 4 GB

 host_disk:

 type: scalar-unit.size

 description: host disk capacity

 required: yes

 default: 50 GB

 libdrive_id:

 type: string

 description: id of the instance image to launch

 required: yes

 default: "some id"

 max_cpu_consumption:

 type: float

 description: max cpu consumption

 required: yes

 default: 0.8

 min_cpu_consumption:

 type: float

 description: min cpu consumption

 required: yes

 default: 0.2

 scale_up_max_time:

 type: scalar-unit.time

 description: max time of scale scale up

 required: yes

 default: 5 m

 scale_down_max_time:

 type: scalar-unit.time

 description: max time of scale scale down

 required: yes

 default: 5 m

 location:

 type: string

 description: location to launch the instance

 required: yes

 default: Europe

 ## The is the node template section. Where the node that compose

 ## the topology and their relationships are specified

 node_templates:

 ## This specifies the Docker Image node type and its parameters

 Inycom:

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 43 of 60

 type: tosca.nodes.MiCADO.Container.Application.Docker

 properties:

 privileged: true

 exposed_port: { get_input: port_exposed }

 ## This is the artefact of the Docker Image node type which represents

 ## the Docker Image in either the common or personal docker hub (specified repository)

 artifacts:

 image:

 type: tosca.artifacts.Deployment.Image.Container.Docker

 file: { get_input: docker_image }

 repository: docker_hub

 ## This specifies the requirements to select the Virtual Machine on which the

 ## Docker Image will be executed.

 requirements:

 - host:

 node: VM

 relationship: tosca.relationships.HostedOn

 ## This specifies the Virtual Machine Image node type and its parameters

 VM:

 type: tosca.nodes.MiCADO.Occopus.CloudSigma.Compute

 ## This specifies the properties of the Virtual Machine Image node type

 properties:

 cloud:

 interface_cloud: cloudsigma

 endpoint_cloud: https://zrh.cloudsigma.com/api/2.0

 ## This specifies the capabilities of the Virtual Machine Image node type which

 ## are matched against the requirements of the Docker Image type

 capabilities:

 host:

 properties:

 num_cpus: { get_input: host_cpu }

 disk_size: { get_input: host_disk }

 mem_size: { get_input: host_mem }

 libdrive_id: { get_input: libdrive_id }

 ## This specifies the output that are defined by the attribute of the Output

 outputs:

 ip_address:

 value: { get_attribute: [Inycom, ip_address]}

 port:

 value: { get_attribute: [Inycom, port]}

 ## This specifies the policies that are applied to the different nodes of this topology template

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 44 of 60

 policies:

 - scalability:

 type: tosca.policies.Scaling.Performance.Consumption

 targets: [Inycom]

 properties:

 stage: Execution

 priority: 100

 trigger_1_ID: estimate_completion_time

 trigger_1_Namespace: prometheus

 max_cpu_consumption: { get_input: max_cpu_consumption }

 scale_up_max_time: { get_input: scale_up_max_time }

 min_cpu_consumption: { get_input: min_cpu_consumption }

 scale_down_max_time: { get_input: scale_down_max_time }

 - deployment_connection:

 type: tosca.policies.Placement.Requirement.Connection

 targets: [Inycom]

 properties:

 stage: Deployment

 properties: 100

 url: { get_input: url_list }

 - deployment_location:

 type: tosca.policies.Placement.Requirement.Location

 targets: [VM]

 properties:

 stage: Deployment

 priority: 100

 trigger_1_Namespace: prometheus

 accepted_domaine: { get_input: location }

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 45 of 60

17. Appendix D – DataAvenue Topology Template

tosca_definitions_version: tosca_simple_yaml_1_0

imports:
 - ../nodes/custom_types.yaml
 - ../policies/scalability/consumption/tosca_policy_scalability_comsumption.yaml

repositories:
 docker_hub: https://hub.docker.com/

topology_template:
 inputs:

 host_mem:
 type: scalar-unit.size
 description: host mem capacity
 required: yes
 default: 4 GB
 host_disk:
 type: scalar-unit.size
 description: host disk capacity
 required: yes
 default: 50 GB
 libdrive_id:
 type: string
 description: id of the instance image to launch
 required: yes
 default: "some id"
 host_cpu:
 type: integer
 description: cpu of the host
 required: yes
 default: 2

 max_cpu_consumption:
 type: float
 description: max cpu consumption
 required: yes
 default: 0.8

 min_cpu_consumption:
 type: float
 description: min cpu consumption
 required: yes
 default: 0.2

 scale_up_max_time:
 type: scalar-unit.time

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 46 of 60

 description: max time to scale up
 required: yes
 default: 5 m

 scale_down_max_time:
 type: scalar-unit.time
 description: max time scale down
 required: yes
 default: 5 m

 node_templates:
 proxy:
 type: tosca.nodes.MiCADO.Container.Application.Docker
 properties:

 artifacts:
 image:
 type: tosca.artifacts.Deployment.Image.Container.Docker
 file: { get_input: docker_image }
 repository: docker_hub
 requirements:
 - service:
 node: data_avenue
 relationship: tosca.relationships.ConnectsTo
 - host:
 node: VM
 relationship: tosca.relationships.HostedOn

 data_avenue:
 type: tosca.nodes.MiCADO.Container.Application.Docker
 properties:
 artifacts:
 image:
 type: tosca.artifacts.Deployment.Image.Container.Docker
 file: { get_input: docker_image }
 repository: docker_hub
 requirements:
 - service:
 node: mongo
 relationship: tosca.relationship.ConnectsTo
 - host:
 node: VM
 relationship: tosca.relationships.HostedOn

 mongo:
 type: tosca.nodes.MiCADO.Container.Application.Docker
 properties:

 artifacts:
 image:
 type: tosca.artifacts.Deployment.Image.Container.Docker

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 47 of 60

 file: { get_input: docker_image }
 repository: docker_hub
 requirements:
 - host:
 node: VM
 relationship: tosca.relationships.HostedOn

 VM:
 type: tosca.nodes.MiCADO.Occopus.CloudSigma.Compute
 properties:
 cloud:
 interface_cloud: cloudsigma
 endpoint_cloud: https://zrh.cloudsigma.com/api/2.0

 capabilities:
 host:
 properties:
 num_cpus: { get_input: host_cpu }
 disk_size: { get_input: host_disk }
 mem_size: { get_input: host_mem }
 libdrive_id: { get_input: libdrive_id }

 outputs:
 ip_address:
 value: { get_attribute: [data_avenue, ip_address]}
 port:
 value: { get_attribute: [data_avenue, port]}

 policies:
 - consumption:
 type: tosca.policies.Scaling.Performance.Consumption
 targets: [data_avenue]
 properties:
 priority: 100
 trigger_1_ID: estimate_completion_time
 trigger_1_Namespace: prometheus
 max_cpu_consumption: { get_input: max_cpu_consumption }
 scale_up_max_time: { get_input: scale_up_max_time }
 min_cpu_consumption: { get_input: min_cpu_consumption }
 scale_down_max_time: { get_input: scale_down_max_time }

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 48 of 60

18. Appendix E– Custom Types

tosca_definitions_version: tosca_simple_yaml_1_0

capability_types:

 tosca.capabilities.MiCADO.Container.Docker:

 derived_from: tosca.capabilities.Container.Docker

 properties:

 num_cpus:

 type: float

 required: false

 constraints:

 - greater_or_equal: 0.0

 tosca.capabilities.MiCADO.Occopus.EC2.Cloud:

 derived_from: tosca.capabilities.Container

 properties:

 region_name:

 type: string

 required: true

 image_id:

 type: string

 required: true

 instance_type:

 type: string

 required: true

 key_name:

 type: string

 required: false

 security_groups_ids:

 type: string

 required: false

 subnet_id:

 type: string

 required: false

 tosca.capabilities.MiCADO.Occopus.CloudSigma.Cloud:

 derived_from: tosca.capabilities.Container

 properties:

 libdrive_id:

 type: string

 required: true

 vnc_password:

 type: string

 required: false

 host_name:

 type: string

 required: false

 public_key_id:

 type: string

 required: false

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 49 of 60

 firewall_policy:

 type: string

 required: false

 description:

 type: string

 required: false

 description: overrides the capability type

 tosca.capabilities.MiCADO.Occopus.Nova.Cloud:

 derived_from: tosca.capabilities.Container

 properties:

 image_id:

 type: string

 required: true

 flavour_name:

 type: string

 required: true

 tenant_name:

 type: string

 required: false

 project_id:

 type: string

 required: false

 user_domain_name:

 type: string

 required: false

 network_id:

 type: string

 required: false

 server_name:

 type: string

 required: false

 key_name:

 type: string

 required: false

 security_groups:

 type: string

 required: false

 floating_ip:

 type: string

 required: false

 floating_ip_pool:

 type: string

 required: false

 tosca.capabilities.MiCADO.Occopus.CloudBroker.Cloud:

 derived_from: tosca.capabilities.Container

 properties:

 deployment_id:

 type: string

 required: true

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 50 of 60

 instance_type_id:

 type: string

 required: true

 key_pair_id:

 type: string

 required: false

 opened_port:

 type: string

 required: false

data_types:

 tosca.datatypes.MiCADO.Occopus.Cloud:

 derived_from: tosca.datatypes.Root

 properties:

 interface_cloud:

 type: string

 required: yes

 constraints:

 - valid_values: ['ec2', 'nova', 'cloudsigma', 'cloudbroker']

 endpoint_cloud:

 type: string

 required: yes

 credentials:

 type: tosca.datatypes.credentials

 required: false

node_types:

 tosca.nodes.MiCADO.Compute:

 derived_from: tosca.nodes.Compute

 properties:

 cloud:

 type: tosca.datatypes.MiCADO.Occopus.Cloud

 capabilities:

 host:

 type: tosca.capabilities.MiCADO.Occopus.Cloud

 tosca.nodes.MiCADO.Occopus.CloudSigma.Compute:

 derived_from: tosca.nodes.MiCADO.Compute

 properties:

 cloud:

 type: tosca.datatypes.MiCADO.Occopus.Cloud

 capabilities:

 host:

 type: tosca.capabilities.MiCADO.Occopus.CloudSigma.Cloud

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 51 of 60

 tosca.nodes.MiCADO.Occopus.EC2.Compute:

 derived_from: tosca.nodes.MiCADO.Compute

 properties:

 cloud:

 type: tosca.datatypes.MiCADO.Occopus.Cloud

 capabilities:

 host:

 type: tosca.capabilities.MiCADO.Occopus.EC2.Cloud

 tosca.nodes.MiCADO.Occopus.CloudBroker.Compute:

 derived_from: tosca.nodes.MiCADO.Compute

 properties:

 cloud:

 type: tosca.datatypes.MiCADO.Occopus.Cloud

 capabilities:

 host:

 type: tosca.capabilities.MiCADO.Occopus.CloudBroker.Cloud

 tosca.nodes.MiCADO.Occopus.Nova.Compute:

 derived_from: tosca.nodes.MiCADO.Compute

 properties:

 cloud:

 type: tosca.datatypes.MiCADO.Occopus.Cloud

 capabilities:

 host:

 type: tosca.capabilities.MiCADO.Occopus.Nova.Cloud

 ## Node Type to describe the container node (it will contains the command

 ## line to pass to the docker)

 tosca.nodes.MiCADO.Container.Application.Docker:

 derived_from: tosca.nodes.Container.Application.Docker

 description: description of main container

 properties:

 cmd:

 type: string

 description: command line to be executed by the container.

 required: false

 exposed_port:

 type: integer

 description: port exposed inside container

 range: [32768, 61000]

 required: false

 env:

 type: map

 description: map of all the environment variable required.

 required: false

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 52 of 60

 entry_schema:

 type: string

 constraints:

 required: false

 type: list

 entry_schema:

 type: list

 entry_schema:

 type: string

 labels:

 required: false

 type: map

 entry_schema:

 type: string

 privileged:

 type: boolean

 required: false

 default: false

 force_pull_image:

 type: boolean

 required: false

 default: false

 other_options:

 type: map

 required: false

 entry_schema:

 type: string

 attributes:

 ip_address:

 type: string

 port:

 type: integer

 capabilities:

 service:

 type: tosca.capabilities.Endpoint

 requirements:

 - service:

 capability: tosca.capabilities.Endpoint

 node: tosca.nodes.MiCADO.Compute

 relationship: tosca.relationships.ConnectsTo

 - host:

 capability: tosca.capability.Container

 node: tosca.nodes.MiCADO.Compute

 relationship: tosca.relationships.HostedOn

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 53 of 60

19. Appendix F – TOSCA Policy Execution

tosca_definitions_version: tosca_simple_yaml_1_0

policy_types:
 tosca.policies.Execution:
 derived_from: tosca.policies.Root

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 54 of 60

20. Appendix G – TOSCA Policy Execution Schedule

tosca_definitions_version: tosca_simple_yaml_1_0

imports:
 - ./tosca_policy_execution.yaml
policy_types:
 tosca.policies.Execution.Schedule:
 derived_from: tosca.policies.Execution
 description: executes the application following a cron job like syntax
 properties:
 stage:
 type: string
 description: the stage that will be affected by the policy
 default: started
 priority:
 type: integer
 description: the priority with which the policy will be executed
 default: 100
 cron_cmd:
 type: string
 description: a cron-job like cmd line

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 55 of 60

21. Appendix H – TOSCA Deployment Connection

tosca_definitions_version: tosca_simple_yaml_1_0

policy_types:
 tosca.policies.Placement.Requirement.Connection:
 derived_from: tosca.policies.Placement
 description: defines the connection requirements for the container
 properties:
 stage:
 type: string
 description: the stage that will be affected by the policy
 default: created
 priority:
 type: integer
 description: the priority with which the policy will be executed
 default: 100
 url:
 type: list
 description: address or list of addresses that needs to be reachable by the container
 entry_schema:
 type: string

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 56 of 60

22. Appendix I – TOSCA Deployment Location

tosca_definitions_version: tosca_simple_yaml_1_0

policy_types:
 tosca.policies.Placement.Requirement.Location:
 derived_from: tosca.policies.Placement
 description: defines the geographical location where the container can be deployed
 properties:
 stage:
 type: string
 description: the stage that will be affected by the policy
 default: Created
 priority:
 type: integer
 description: the priority with which the policy will be executed
 default: 100
 Trigger_1_Namespace:
 type: string
 description: the service that will return the geographical location of the service
 accepted_domaine:
 type: list
 description: list of the acceptable geographical locations
 schema_entry:
 type: string

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 57 of 60

23. Appendix J – TOSCA Scalability Consumption

tosca_definitions_version: tosca_simple_yaml_1_0

policy_types:
 tosca.policies.Scaling.Performance.Consumption:
 derived_from: tosca.policies.Scaling
 description: spins one instance when CPU Consumption is above the threshold
 properties:
 stage:
 type: string
 description: the stage that will be affected by the policy
 default: started
 priority:
 type: integer
 description: the priority with which the policy will be exectued
 default: 100
 trigger_1_ID:
 type: string
 description: defines the trigger (thesholdt that will spin up/down the instances)
 default: estimate_completion_time
 trigger_1_Namespace:
 type: string
 description: defines the namespace of the service that is monitoring th number of queries
that must be executed
 max_cpu_consumption:
 type: integer
 description: defines the maximum time when the max cpu threshold must be exceeded
for the new instance to be deployed
 scale_up_max_time:
 type: scalar-unit.time
 description: defines the maximum time when the max cpu threshold must be exceeded
for the new instance to be deployed
 min_cpu_consumption:
 type: integer
 description: defines the minimum cpu consumption below which the new instance will be
deployed
 scale_down_max_time:
 type: scalar-unit.time
 description: defines the maximum time whe nthe min cpu threshold must be exceeded
for the instance to be undeployed.

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 58 of 60

24. Appendix K – TOSCA Scalability Performance
Completion

tosca_definitions_version: tosca_simple_yaml_1_0

policy_types:

 tosca.policies.Scaling.Performance.Completion:

 derived_from: tosca.policies.Scaling

 description: scale up or down depending on the expected completion time

 properties:

 stage:

 type: string

 description: the stage that will be affected by the policy

 default: started

 required: false

 priority:

 type: integer

 description: the priority with which the policy will be exectued

 default: 100

 required: false

 trigger_1_ID:

 type: string

 description: defines the trigger (theshold that will spin up/down the instances)

 default: estimate_completion_time

 required: false

 trigger_1_Namespace:

 type: string

 description: defines the namespace of the service that is monitoring the connections

 required: false

 max_estimation_time:

 type: scalar-unit.time

 required: false

 description: defines the latest time of completion above which the new instance will be deployed

 min_estimation_time:

 type: scalar-unit.time

 required: false

 description: defines the earliest time of completion under which the new instance will be

undeployed

D5.4 First Set of Templates and Services of Use Cases

Work Package WP5 Page 59 of 60

25. Appendix L – TOSCA Scalability Performance
Completion Job

tosca_definitions_version: tosca_simple_yaml_1_0

imports:

- ./policies/scalability/performance/completion/tosca_policy_scalability_performance_completion.ya

ml

policy_types:

 tosca.policies.Scaling.Performance.Completion.Job:

 derived_from: tosca.policies.Scaling.Performance.Completion

 description: scales up and down the instances of the jobs to meet the defined deadline within a cost

maximum defines as budget times cut-off percentage

 properties:

 estimated_completion_time_one_job:

 type: scalar-unit.time

 description: the estimated time for one job

 required: false

 total_budget:

 type: float

 description: the total_budget for the experiment

 required: false

 cut_off_percentage:

 type: float

 description: the percentage allowance to go over the total_budget

 required: false

 params:

 type: list

 description: list of params for feeder

 required: false

 entry_schema:

 type: string

