
D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 1 of 43

Cloud Orchestration at the Level of Application

Project Acronym: COLA

Project Number: 731574

Programme: Information and Communication Technologies
Advanced Computing and Cloud Computing

Topic: ICT-06-2016 Cloud Computing

Call Identifier: H2020-ICT-2016-1

Funding Scheme: Innovation Action

Start date of project: 01/01/2017 Duration: 30 months

Deliverable:

D5.5 Second Set of Templates and Services of Use Cases

Due date of deliverable: 31/07/2019 Actual submission date: 30/09/2019

WPL: Gabriele Pierantoni

Dissemination Level: PU

Version: Final

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 2 of 43

1. Table of Contents

1. Table of Contents 2

2. List of Figures and Tables 3

3. Status, Change History and Glossary 4

4. Glossary 5

5. Introduction 6

6. Relationship with other Work Packages and Deliverables 7

7. The Evolution ADTs in COLA 8

7.1 Cloud Infrastructure 9

7.2 Application Infrastructure 11

7.3 Policies 12

7.4 Security Policies 13

8. Examples of Application Description Templates used for real applications in COLA 15

8.1 Use Case 1 – Social Media Data Analytics by Inycom & SARGA 16

8.2 Use Case 2 – Evacuation Simulation by Saker Solutions & Brunel University 17

8.3 Use Case 3 – Scalable Hosting, Testing and Automation of Applications by
Outlandish and The Audience Agency 19

8.4 Test and Demonstrator Applications 21

8.5 Proof of concept Feasibility Study Prototypes 22

9. Structure of the COLA Application Description Repository 24

10. Strengths and weaknesses of the adopted approach 25

10.1 Application Developers 25

10.2 Support for Security 26

10.3 Support for Policies Description 26

11. Improving ADTs through abstraction and inheritance (an example) 27

11.1 TOSCA Version, Imports, Repository & Input Definitions 28

11.2 Node Templates - Cloud Infrastructure Definitions 28

11.3 Node Templates - Application Definitions 30

11.4 Policies 32

12. Conclusions 33

13. Appendices 35

13.1 Appendix A: Inycom Use Case ADT 35

13.2 Appendix B: SAKER Use Case ADT 38

13.3 Appendix C: Outlandish Use Case ADT 39

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 3 of 43

2. List of Figures and Tables

Figures

Figure 1, Example of EC2 Virtual Machines, provisioned by different cloud orchestrators ... 11
Figure 2, Hierarchy of network security policies .. 14
Figure 3, New architecture diagram for the Inycom Use Case ... 16
Figure 4, New architecture diagram for the SAKER/Brunel Use Case 18
Figure 5, New container architecture for the Outlandish/Audience Agency Use Case 20

Tables

Table 1, Status Change History 4
Table 2, Deliverable Change History 4
Table 3, Glossary 5
Table 4, Modified policy descriptions for the Inycom Use Case 17
Table 5, Modified policy descriptions for the Saker/Brunel Use Case 19
Table 6, Modified policy descriptions for the Outlandish/Audience Agency Use Case 21
Table 7, List of MiCADO feasibility studies 23

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 4 of 43

3. Status, Change History and Glossary

Status: Name: Date: Signature:

Draft: Gabriele Pierantoni 01/08/19 Dr. Gabriele Pierantoni

Reviewed: Kovács Bálint 07/08/19 Kovács Bálint

Approved: Tamas Kiss 30/09/19 Tamas Kiss

Table 1, Status Change History

Version Date Pages Author Modification

V0.1 08/07/19 ALL G. Pierantoni Skeleton

V0.2 29/07/19 ALL G. Pierantoni, James
DesLauriers

Introduction and additional ADT details

V0.3 30/07/19 ALL G. Pierantoni, James
DesLauriers

Most sections completed

V0.4 1/08/19 ALL James DesLauriers Final additions before sending for review

V0.5 11/9/19 ALL G. Pierantoni Addressing first batch of Tamas’ feedback

V0.91 26/09/19 All G. Pierantoni Addressing second batch of Tamas’ feedback

V0.92 29/09/19 All G. Pierantoni Addressing second batch of Tamas’ feedback

Table 2, Deliverable Change History

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 5 of 43

4. Glossary

ADT Application Description Template

API Application Programming Interface

COLA Cloud Orchestration at the level of Application

CLI Command Line Interface

DoW Description of Work

GUI Graphical User Interface

IaaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

SOA Service Oriented Architecture

TOSCA Topology Orchestration Specification for Cloud Application

URI Uniform Resource Identifier

URL Uniform Resource Locator

Table 3, Glossary

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 6 of 43

5. Introduction

COLA Description of Action (DoA) specifies Deliverable D5.5 as follows: “This deliverable
will upload the upgraded first set of descriptions and templates. It will publish further
templates and the service description to be used in use-cases and will write a report
about these templates and services.”

This deliverable describes how the Application Description Templates (ADTs)
implementation for the three Use Cases proposed by the COLA Industrial and Academic
partners have evolved to cope with the requirements of the users. Furthermore, the
document offers a “semi-final” version of the ADTs (as they stood at the time of the
compilation of the Deliverable as some minor changes are still envisaged and designed to
improve flexibility and ease of use by the users). This deliverable explains the design
changes that have been adopted throughout the project and describes the generic structure
of the implementation of the Application Description Templates.

The deliverable also describes the structure of the GitHub repository1 that has been created
to contain the TOSCA code and provides the commented code of one of the ADTs to offer
both a clear view on its structure and the related implementation details.

This Deliverable is the fifth deliverable of Work Package 5 “Application Description
Templates” and is an open document which visibility is allowed to both internal and external
readers. The intended audience of this deliverable is application developers that are involved
in either developing new applications or porting existing ones to the COLA infrastructure.
Deliverable D5.5 is structured as follows:

 Section 5 – Introduction – Offers an introduction to the Deliverable introducing

general concepts and its relevance within the COLA project.

 Section 6 – Relationship with other packages and deliverables – Further details

the topics introduced in Section 5 by describing the mutual dependencies among

this Deliverable with the other most relevant Project Deliverables.

 Section 7 – The Application Description Template in COLA – Defines the generic

structure of the Application Description Templates and how it relates to the various

components of the MiCADO infrastructure.

 Section 8 – Examples of Application Description Templates used for real

applications in COLA – Describes the implementation of three Use Cases

described in D8.4:
o Use Case 1: Social media data Analytics for Public Sector Organisations

developed by Inycom and SARGA
o Use Case 2: Bursting onto the Cloud from SakerGrid – developed by

Brunel University and Saker Solutions,
o Use Case 3: Scalable hosting, testing and automation for Small to

Medium-sized Enterprises (SMEs) and public sector organisations,

developed by Outlandish and The Audience Agency,
o Section 8.4 – Test & Demonstrator Applications describes applications

that have been developed to test particular aspects of the system to support

the development of the three main use cases.

1 https://github.com/micado-scale/tosca/

https://github.com/micado-scale/tosca/

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 7 of 43

o Section 8.5 – Proof-of-concept Feasibility Study Prototypes describes the

ADT prototypes developed to describe the proof of concept prototypes

proposed by WP8 in D8.4. This section links to the location of prototype ADTs

in the GitHub repository and where relevant illustrates how certain prototypes

can be built using existing ADTs as a base.

 Section 9 – Describes the structure of the GitHub repository that contains the ADTs,

it further describes each of its directories and lists the declared types.

 Section 10 – Describes the strengths and weaknesses of the proposed approach.

 Section 11 – Describes the conceptual and practical improvements of the latest

version of the ADT structures.

 Section 12 – Concludes the Deliverable offering some remarks on the status of WP5

and future work.

 Sections 13 – Appendices containing full ADTs for the three primary use cases.

6. Relationship with other Work Packages and
Deliverables

As introduced in Section 5, the Application Description Templates (ADTs) are closely related
to various fundamental aspects of the COLA project:
Firstly, the ADTs describe the applications that are to be ported to the COLA infrastructure.
Because of this, ADTs are closely related to the COLA architecture (more specifically to the
MiCADO infrastructure which COLA is based upon) itself. Finally, the ADTs described in this
deliverable are the result of the joint process of the definition of an abstract approach to
describe the applications and the implementation choices of the MiCADO infrastructure.
As a result, this deliverable is closely related to Work Packages and Deliverables that
describe the concepts highlighted in the previous paragraph.

Deliverable 5.5 is published by Work Package 5 – Application Definition Templates. This
work package has previously published four Deliverables:

 D5.1 “Analysis of existing Application Description Approaches” offers a state-of-the-

art overview of the application description and execution. D5.1 details the reasons

behind the choice of adopting TOSCA as the language specification for COLA ADTs.

 D5.2 “Specification of the Application Description Concept” describes the COLA’s

proposed approach to the problem: a three-layered Application Description Template

based on the language specification which also defines policies at each of its layers.

 D5.3 “Integration of the Templates with the Selected Application Description

Approach” describes how the concept highlighted in D5.2 are applied to define the

three Use Cases defined in D8.1.

 D5.4 “First Set of Templates and Services of Use Cases” presents the first version of

the ADTs that has been developed for the three large scale demonstrators and also

implements and describes the repository where the ADT profiles are stored. At the

moment being this is a git-based repository and we use metadata embedded in the

code to do queries. It is currently under discussion if a different approach is needed

to be of greater help to the users.

The ADTs are interpreted by the MiCADO framework, hence the dependencies with Work

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 8 of 43

Package 6 – “MicroServices deployment and execution layer”, and its Deliverables: D6.1 –
“Prototype and Documentation of the Cloud Deployment Orchestrator Service” and D6.2 -
“Prototype and Documentation of the Monitoring Service”. From a more abstract
architectural point of view, we can see as WP5 and the ADT Submitter developed in WP6 as
both abstraction and interoperability layers that allow users to write Application Description
and Policies in a generic language that is then adapted to the various technologies
employed by WP6 and WP4.

The ADTs are also closely related to security issues and concerns, hence the dependencies
with Work Package 7 – “Security, privacy and trust at the level of cloud applications”,
particularly with, Deliverables D7.1 – “Security Requirements” and D7.2 – “Security
Architecture Specifications”. Mutual dependencies among WP5, WP6 and WP7 are of a
technical nature and it is important that the information defined in the Application Description
Templates can be understood, acted upon and enforced by the MiCADO framework,
particularly by the Cloud Orchestrator and the Security Infrastructure.

Deliverable D5.5 is also closely linked to Work Package 8 – “SME and public sector use-
case pilots and demonstrators”, particularly with:

 D8.1 – “Business and Technical Requirements of COLA Use Cases”;

 D8.2 – “Customisation and further development of software applications” that

provided further details on how to ameliorate the ADT that describes the application;

 D8.3 – “COLA near to operational level pilots and demonstrators”

 D8.4 - “Proof of Concept Feasibility Studies” described as “This deliverable will report

on the 20 proof-of concept feasibility studies. The report will describe users behind

these use cases and the way they could use MiCADO services, with illustrative

examples as appropriate. The report will also contain implementation and

commercialisation roadmap for these use-cases” that allowed WP5 to test and

demonstrate how the prototypical ADTs and their components can be re-used for a

variety of different applications.

WP5’s interactions with WP8 ensure that the Use Cases of Work Package 8 can be
supported by the Application Description Templates.

7. The Evolution ADTs in COLA

The user facing interface of MiCADO is an Application Description Template (ADT). The
structure of an ADT has evolved significantly throughout the duration of the project and such
changes are described in the various deliverables produced by WP5:

 D5.2 describes in various sections the abstract structure of an ADT.

 D5.3 (Section 7 - Application Descriptions within COLA and the three Use

Cases) describes how the design of the ADT meets the requirements of the three

use cases described in D8.1

 D5.3 (Section 8 - Use Case Overview) describes the main concepts (Application

Topologies and Policies) for each of the ADTs.

 D5.3 (Annexes) contains all the code described in Section 7 and Section 8 of that

document.

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 9 of 43

 D5.4 (Section 7 - The Application Description Templates in COLA) details the

first releases of the ADTs developed for each of the three Use Cases initially described in

D8.1.

In this current deliverable (D5.5), we have dedicated a specific section (Section 11) to
describe the theoretical and structural improvement we have introduced in the ADTs. We
describe how abstraction and inheritance can be used to improve an ADT.

At this point in the evolution of an ADT, it describes the application in full, including the cloud
infrastructure which supports it, the software containers which make up the application
proper, and the policies which regulate aspects of the application’s orchestration and
lifecycle such as scalability and security. The ADT is written to the TOSCA2 specification -
the Topology and Orchestration Specification for Cloud Applications - an OASIS Standard
for describing applications in the cloud. TOSCA aims to avoid vendor lock-in and ensure
simplified portability and management of applications and infrastructure across different
public, private and hybrid clouds. TOSCA Simple Profile in YAML expresses the original
XML-based TOSCA in the more readable data serialisation standard, YAML3 (YAML Ain’t
Markup Language). TOSCA works strongly with the concept of nodes. A node is any
component in the cloud topology of an application which includes virtual machines,
containers, volumes, software and networks. The ADT in MiCADO was originally designed
based on TOSCA Simple Profile in YAML v1.04, but also takes cues from the more recent
TOSCA Simple Profile in YAML v1.1 & v1.2.

TOSCA, and by extension, MiCADO ADTs, broadly divide templates into two general
sections - topology and policies. For an ADT, the cloud topology can be further categorised
into two sections: one covering the cloud infrastructure which supports the application, and
another for the application components themselves. The policies section can also be
subdivided into policies and security-specific policies. Each of these subsections describes
the desired state or orchestration output of a specific core component of the MiCADO
framework. The cloud infrastructure section describes the virtual machines to be provisioned
by the cloud orchestrator. The section on application components describes the container (or
containers, in a service-oriented architecture (SOA) or microservices architecture) of the
application to be managed by a container orchestrator. On the policy side, the policy
descriptions of scalability, alerting, monitoring and the like are enforced by a general policy
keeper component, while security policy descriptions are enforced by a security-specific
component. These sections of an ADT are described in further details below.

7.1 Cloud Infrastructure

The cloud infrastructure of an application in MiCADO refers primarily to the virtual machines
provisioned in the cloud. These virtual machines provide the compute resources for the
application itself. The preferred method for automating the provisioning of virtual machines is
through interfacing with the API of a cloud service provider (CSP) where parameters in the
API request define the desired virtual machine. In an ADT, these parameters have been
mapped to the properties of a TOSCA Compute node representing a virtual machine in
MiCADO. There is no well-established standard for describing virtual machines across

2
 https://www.oasis-open.org/committees/tosca/

3
 https://yaml.org/

4
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-

v1.0.html

https://www.oasis-open.org/committees/tosca/
https://yaml.org/
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 10 of 43

different CSPs and since MiCADO is a cloud-agnostic solution, these compute node
properties are specific to a given CSP. This means a different node for each supported
cloud, but abstraction and inheritance within TOSCA greatly facilitate this. A custom parent
type for MiCADO compute nodes is created for each CSP which defines those parameters
as TOSCA properties. This parent node type specifies defaults, constraints and
requirements for these properties and then enforces them when the ADT is submitted.

Though the format and syntax of parameters passed to cloud APIs may vary, MiCADO
compute nodes generally express the following properties which serve to describe the
desired virtual machine:

● Virtual Machine Image
● Instance Size (CPU & Memory)
● Port configuration
● Public key (for SSH access)

In fact, MiCADO does not interface directly with a cloud service provider’s API. A cloud
orchestration tool (sometimes infrastructure-as-code) is expected to provide communication
with a variety of cloud service providers. Because of the modular design of MiCADO, one
cloud orchestration tool can be swapped with another to support a new set of cloud
providers. Regardless of the tool, a cloud orchestrator generally requires its own parameters
to be passed in to configure or manage its operation. These parameters, however, are not
specific to the CSP or virtual machine, and so do not belong within the properties section of
our custom MiCADO compute node types. Previously, to express these cloud orchestrator
parameters, individual custom node types were created for each VM as orchestrated by
each cloud orchestrator. This led to a very repetitive structure of TOSCA types, where we
were not benefitting from the inheritance or abstraction offered by TOSCA. Take the
following as an example:

● tosca.nodes.MiCADO.Occopus.CloudSigma.Compute
● tosca.nodes.MiCADO.Terraform.CloudSigma.Compute
● tosca.nodes.MiCADO.Occopus.EC2.Compute
● tosca.nodes.MiCADO.Terraform.EC2.Compute

To counteract this repetitive structure, the TOSCA interface structure is used. The TOSCA
Standard Interface is used to set input parameters or environment variables for custom
scripts or code snippets which then manage lifecycle operations of the node. In the case of
cloud orchestration these operations might be create virtual machine or stop virtual machine.
Since MiCADO uses a cloud orchestrator which handles these operations natively, custom
scripts are not required. The ability to set specific parameters and pass them to the cloud
orchestrator, however, is very useful. MiCADO defines a custom TOSCA interface for each
supported cloud orchestration tool and passes parameters to the orchestrator though this
structure. Using the example above, we can re-use the same CloudSigma Compute type,
and simply change the orchestrator attached to it:

● tosca.nodes.MiCADO.CloudSigma.Compute
○ interfaces:

■ Occopus
tosca.nodes.MiCADO.CloudSigma.Compute

○ interfaces:
■ Terraform

At the time of writing, MiCADO (v0.7.3) implements Occopus as cloud orchestrator, which
supports the following clouds:

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 11 of 43

● CloudSigma
● Openstack Nova
● CloudBroker
● AWS EC2

For each supported cloud, a custom MiCADO compute node type has been created. Each of
these node types supports a custom created TOSCA interface which defines the available
parameters which can be passed to Occopus on submission of the ADT. Existing custom
compute node types can be modified and new custom compute nodes added, at any time
and can even be included inline in an ADT. If the cloud orchestrator is changed, a new
custom interface can be created and attached to the MiCADO compute nodes it supports.
The potential for supporting more CSPs is limited only by the cloud orchestration
component, and ADTs make it simple to support changes in this component. Figure 1 shows
the same EC2 instance orchestrated by two different cloud orchestrators.

Figure 1, Example of EC2 Virtual Machines, provisioned by different cloud orchestrators

7.2 Application Infrastructure

Applications in MiCADO are generally assumed to be in containers. While so-called “virtual
machine only” proof of concepts has been realised in MiCADO, many of the scaling and
scheduling orchestration benefits conferred by MiCADO are only available when applications
are in containers. Due to the popularity and widespread adoption of Docker as a container
runtime, there exists a mostly standard set of options which are used to describe, build and
run a container. Containers must be built before being used in MiCADO, though MiCADO
does support managing the options of a container at runtime. To do so, these options have
been mapped to the properties of a custom MiCADO node type which extends a non-
normative TOSCA node type for Docker containers. Many properties are supported, but
some of the most common are:

● Container image
● Container name
● Container command
● Container arguments

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 12 of 43

● Port configuration
● Resource limitations
● Environment variables
● Labels

As with cloud orchestration, another layer sits between MiCADO and Docker. MiCADO does
not interact directly with Docker, but rather uses an orchestrator to schedule and manage the
desired containers on top of the cloud infrastructure that is also described in the ADT. At the
time of writing (MiCADO v0.7.3), Kubernetes provides the container orchestration
capabilities of MiCADO. Again, because of the modularity of MiCADO, the container
orchestrator can be replaced if the need arises. In fact, an earlier implementation of MiCADO
saw Docker Swarm as the container orchestrator, and the move to Kubernetes was made
simpler by taking an approach similar to what was described under the cloud infrastructure
section. Custom TOSCA interfaces were created for each supported container orchestrator -
one for Swarm, and one for Kubernetes. Just as in cloud orchestration, these custom
interfaces were used to describe specific parameters of the orchestrator. These were
orchestration-related parameters which did not fit with the general options that we had
expressed as properties of the custom node type we created for Docker containers. When it
came time to replace Swarm with Kubernetes, our existing ADTs did not require any
changes to the containers described using our custom node type. The only change required
was replacing the Swarm interfaces attached to these nodes with Kubernetes interfaces.

Other application components such as networks, volumes and configurations should be
defined alongside application containers and their interoperability should be defined with a
TOSCA relationship. The most common additional component which needs defining in an
ADT is the volume. These can be defined using the type
tosca.nodes.MiCADO.Container.Volume. Since the container orchestrator is responsible for
orchestrating volumes as well as containers, additional orchestrator specific parameters can
again be passed for managing lifecycle stages of volumes. These volumes can then be
attached to containers using the TOSCA relationship tosca.relationships.AttachesTo.
Networks (Docker networks) were previously supported in ADTs in a past implementation of
MiCADO, and support for defining configuration files (Kubernetes ConfigMaps) in the ADT is
currently being investigated and will be present in a future release.

7.3 Policies

Policies (excluding security) in MiCADO have so far generally centred on scalability.
Deployment policies such as the location policy and connection policy are expressed directly
as properties on the relevant virtual machine. Execution policies are expressed directly as
the runtime properties of the relevant container. Currently work is ongoing to create new
policies which can generate alerts based on certain metrics. Other work is investigating the
possibility of specifying in an ADT which metrics should be collected from worker nodes -
these would be written as policies too.

Policies in MiCADO are enforced by the PolicyKeeper component, which takes a number of
parameters to generate different scaling rules. PolicyKeeper first accepts user-defined
constants, such as deadlines, minimum or maximum instances, and upper and lower
thresholds. These constants will be used in the scaling logic to make decisions. Next,
PolicyKeeper accepts a customisable set of Prometheus queries which get resolved on each
PolicyKeeper evaluation. These queries are stored as variables and compared against
constants in the scaling logic to make scaling decisions. PolicyKeeper also accepts a custom

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 13 of 43

set of AlertManager alerts, generated through Prometheus queries. These alerts are stored
as variables and can trigger different events in the scaling logic. Lastly, PolicyKeeper
accepts the custom scaling logic itself, as a Python script.

A very simple performance policy which scales containers based on a queried latency metric
might be defined as:

policies:

 type: tosca.policies.MiCADO.scaling

 properties:

 constants:

 HIGH_LATENCY: 70

 queries:

 LATENCY: avg(latency{container=”my-wp”})

 logic: |

 if LATENCY > HIGH_LATENCY:

 container_count = container_count + 1

An equally simple consumption policy scaling virtual machines based on a CPU alert can be
defined as:

policies:

 type: tosca.policies.MiCADO.scaling

 properties:

 constants:

 HIGH_CPU: 85

 alerts:

 - alert: CPU_OVERLOAD

 expression: avg(node_cpu) > HIGH_CPU

 for: 90s

 logic: |

 if CPU_OVERLOAD:

 node_count = node_count + 1

7.4 Security Policies

Security policies facilitate the firewall configuration for a specific application with a set of
predefined security policies that correspond to application-level filtering rules. The policy
objects are organized in a hierarchical manner and attributes are added to the specific types
through inheritance, where each object type will automatically carry forward the attributes of
any of their ancestors. The object that exposes the ports also has a “security” parameter that
accepts an object derived from the AbstractNetworkSecurityPolicy type. This fits well with
the overall design approach of the Application Description Templates whereby Policies can
be arranged in a hierarchy akin to that of classes in an Object-Oriented language.

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 14 of 43

Figure 2, Hierarchy of network security policies

Each Policy in the hierarchy of network security policies (see Figure 2) is further described
with two sets of parameters: generic parameters that describe the metadata of the policy and
parameters that are specific. These specific sets of parameters are listed in deliverable 7.4
in detail. Based on such information, corresponding security policies are defined in the ADT
to fulfil the requirement of describing both open ports and its relevant network policies. Here
follows a basic description of the available network security policies in MiCADO ADTs.

AbstractNetworkSecurityPolicy

● Name: tosca.policies.MiCADO.Security.Network
● Type: Abstract container of all security policies
● Description: Requires to set specific configuration for firewalls in worker nodes

Derived from: tosca.policies.Root

PassthroughPolicy

● Name: tosca.policies.MiCADO.Security.Network.Passthrough
● Type: Policy that specifies no filtering
● Description: Policy that specifies that no additional filtering should be done and no

application-level firewall should be applied on the traffic
Derived from: tosca.policies.MiCADO.Security.Network

L7Proxy

● Name: tosca.policies.MiCADO.Security.Network.L7Proxy
● Type: Policy that specifies application level relaying and TLS control
● Description: Policy that specifies no additional protocol enforcement, but states that

and application-level firewall should be applied to the traffic and also can provide TLS
● Target: Worker nodes

Derived from: tosca.policies.MiCADO.Security.Network

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 15 of 43

SmtpProxy

● Name: tosca.nodes.MiCADO.SecurityPolicy.Network.SmtpProxy
● Type: Policy that specifies that the SMTP protocol should be enforced
● Description: Policy that specifies SMTP protocol enforcement, specifies that an

application-level firewall should be applied to the traffic and also can provide TLS
control

● Target: Worker node
Derived from: tosca.nodes.MiCADO.SecurityPolicy.L7Proxy

HttpProxy

● Name: tosca.nodes.MiCADO.SecurityPolicy.Network.HttpProxy
● Type: Policy that specifies application level relaying and TLS control
● Description: Policy that specifies HTTP protocol enforcement and states that and

application-level firewall should be applied on the traffic and also can provide TLS
control

● Target: Worker node
Derived from: tosca.nodes.MiCADO.SecurityPolicy.L7Proxy

HttpURIFilterProxy

● Name: tosca.nodes.MiCADO.SecurityPolicy.Network.HttpURIFilterProxy
● Type: Policy that specifies that the HTTP protocol should be enforced and provides

URL filtering
● Description: Policy that specifies HTTP protocol enforcement with regex-based URL

filtering capabilities, specifies that an application-level firewall should be applied to
the traffic and also can provide TLS control

● Target: Worker node
Derived from: tosca.nodes.MiCADO.SecurityPolicy.HttpProxy

HttpWebdavProxy

● Name: tosca.nodes.MiCADO.SecurityPolicy.Network.HttpWebdavProxy
● Type: Policy that specifies that the HTTP protocol should be enforced and allows

request methods required for WebDAV
● Description: Policy that specifies HTTP protocol enforcement with extended set of

request methods, but states that and application-level firewall should be applied to
the traffic and also can provide TLS control

Derived from: tosca.nodes.MiCADO.SecurityPolicy.HttpProxy

8. Examples of Application Description Templates used
for real applications in COLA

This section of the deliverable describes the ADTs that have been developed for the three
near operational pilots, the over 20 proof of concept feasibility studies, and further
applications that were used mainly for testing and demonstration purposes. As many of
these templates have been introduced and described in detail in D5.4, here we only highlight
the evolution of theseb ADTs and the differences when compared to the earlier versions.

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 16 of 43

8.1 Use Case 1 – Social Media Data Analytics by Inycom & SARGA

This use case deals with social media data analytics for public sector organisations. Since
the publication of D5.4, a second container has been added to the application architecture.
This second container is responsible for classifying data in the SOLr database to improve its
display on the website. This new classifier container has no scaling requirements - only a
single instance is necessary. Figure 3 shows the new architecture of the application, with the
original Magician container remaining unchanged on the left side of the figure, and the newly
added classifier container represented on the right side of the figure.

Figure 3, New architecture diagram for the Inycom Use Case

The logical separation of scalable components from non-scaling components is ensured with
the TOSCA relationship HostedOn. The Classifier container is restricted to running on a
specific Virtual Machine, and no scaling policy is attached to either of these components.
The Magician container is restricted to running on another Virtual Machine, and matching
scaling policies are attached to both of these components. During the initial phases of
deploying the application to MiCADO, consumption-based scaling policies for both CPU load
and Memory utilisation were tested. Policies based on CPU load better matched the actual
scaling requirements of the application. As such, the current version of the ADT for this use
case scales both the Magician container and the Virtual Machine hosting it using CPU load
as a metric.

The policy description remains largely unchanged since D5.4, though the implementation of
some policies has changed. Table 4 below shows how each policy is implemented in the
ADT (added in bold). The full ADT of this use-case can be found in the COLA Github ADT
repository5 and also in Appendix A.

5
 https://github.com/micado-scale/tosca/blob/D5.5/ADT/inycom.yaml

https://github.com/micado-scale/tosca/blob/D5.5/ADT/inycom.yaml

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 17 of 43

 Policy Notes

P1.1 Consumption
Based Scalability

Consumption Based Scalability defines a threshold above
which a new instance will be deployed and a threshold below
which the instance will be un-deployed. These are defined in
the policies section of the ADT and target the Magician
container and the virtual machine hosting Magician.

P1.2 Resource
Deployment Policy

Defines the requirements of the Virtual Machine in terms of
CPU, Memory Size and Disk size. It is directly defined as
properties of the Virtual Machine and stored as metadata
in the capabilities of the Virtual Machine.

P1.3 Connection
Deployment Policy

Defines the set of inbound connections. This policy has been
modified to take into account that only inbound connections
are to be specified to the security infrastructure. It is directly
defined in the properties section at the Virtual Machine
level, and in the properties section at the Container level.

P1.4 Location
Deployment Policy

It dictates that the container must be physically located in the
European Union. This is specified in the interface section
of the Virtual Machine.

Table 4, Modified policy descriptions for the Inycom Use Case

8.2 Use Case 2 – Evacuation Simulation by Saker Solutions & Brunel
University

This second use case deals with extending a desktop grid to the cloud to improve simulation
experiment execution times. The components which make up the application have not been
changed, though the deployment strategy for this use case has changed significantly. The
application was found to be incompatible with containerisation in its current state and so the
application was simply built into a virtual machine image. This use case is now the primary
proof-of-concept for so-called VM-only deployments in MiCADO and serves as an example
for other VM-only deployments. The updated application architecture is depicted in Figure 4.

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 18 of 43

Figure 4, New architecture diagram for the SAKER/Brunel Use Case

While the main scalability policy for this use case still strives to reduce cost, no explicit
maximum budget or monetary cut-off threshold are specified. The policy aims to reduce
costs by using the least number of virtual machine compute nodes to complete the given
jobs by a specified deadline. Hard cut-offs are specified for the maximum number of
compute nodes to use for an experiment. Otherwise, the policy descriptions for this use case
have not changed, but their implementation differs slightly. The updated Table 5 shows
these changes in bold. The full ADT of this use-case can be found in the COLA Github ADT
repository6 and also in Appendix B.

6
 https://github.com/micado-scale/tosca/blob/D5.5/ADT/saker.yaml

https://github.com/micado-scale/tosca/blob/D5.5/ADT/saker.yaml

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 19 of 43

 Policy Notes

P2.1 Cost
Constrained
Deadline Based
Scalability

Whereby the user specifies an overall deadline and an
estimate of the duration of each job and MiCADO will deploy
new instances of the Workers to meet the deadline.
Scalability is constrained by setting the maximum
number of Workers possible for a session, and through
the logic of the auto-scaler. This policy is set in the
policies section of the ADT.

P2.2 Connection
Deployment
Policy

Defines the set of inbound connections. This policy has been
modified to take into account that only inbound connections
are to be specified to the security infrastructure. It is directly
defined as properties of the virtual machine.

P2.3 Resource
Deployment
Policy

Defines the requirements of the Virtual Machine in terms of
CPU, Memory Size and Disk size. It is directly defined as
properties of the Virtual Machine and stored as metadata
in the capabilities of the Virtual Machine.

Table 5, Modified policy descriptions for the Saker/Brunel Use Case

8.3 Use Case 3 – Scalable Hosting, Testing and Automation of Applications by
Outlandish and The Audience Agency

This use case involves scalable hosting, testing and automation of applications and
application development stages for SMEs and the public sector. The primary application
being tested in this use case is The Audience Agency’s Audience Finder - a data-mining
application for analysis of audiences of theatres, museums, and other types of entertainment
and venues. The architecture of the application has changed slightly, and now features the
web server and PHP implementation in separate containers, communicating with an
instance of Memcached for caching needs. Communication with the external components is
unchanged. The separation of these two components into their respective containers is
visualised in Figure 5.

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 20 of 43

Figure 5, New container architecture for the Outlandish/Audience Agency Use Case

Within the policy description, the consumption-based scalability policy has been split, since
MiCADO now supports monitoring of web connections. The original CPU consumption-
based policy remains, and the deadline-based scalability policy has been replaced with a
performance based scalability policy. This performance-based policy scales based on
metrics pulled directly from the web server such as number of accepted requests, and the
latency of certain connections. The logic expressed by the execution policy is encapsulated
into the application logic. Otherwise, policies have remained unchanged, though their
implementation in the ADT may have changed. Table 6 below shows the changes to the use
case policy descriptions in bold. The full ADT of this use-case can be found in the COLA
Github ADT repository7 and also in Appendix C.

 Policy Notes

P3.1 Consumption
Based Scalability

Consumption Based Scalability defines a threshold
above which a new instance will be deployed and a
threshold below which the instance will be un-
deployed. This policy scales based on CPU and is
set in the policies section of the ADT.

P3.2 Performance
Based Scalability

It describes the deployment of a new instance on
the condition that the number of served web
requests, or the measured latency is greater than
the given threshold.

7
 https://github.com/micado-scale/tosca/blob/D5.5/ADT/outlandish.yaml

https://github.com/micado-scale/tosca/blob/D5.5/ADT/outlandish.yaml

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 21 of 43

P3.3 Connection
Deployment Policy

Defines the set of inbound connections. This policy has
been modified to take into account that only inbound
connections are to be specified to the security
infrastructure. It is directly defined as properties of
the virtual machine.

P3.4 Resource
Deployment Policy

Defines the requirements of the Virtual Machine in
terms of CPU, Memory Size and Disk size. It is
directly defined as properties of the Virtual
Machine and stored as metadata in the capabilities
of the Virtual Machine.

Table 6, Modified policy descriptions for the Outlandish/Audience Agency Use Case

8.4 Test and Demonstrator Applications

During the development of MiCADO, a series of test applications were necessary to perform
end to end testing of MiCADO releases. Early test applications were small and very basic,
only testing one or two features of MiCADO. More recently, test applications are fuller
distributed applications in a SOA or microservices architecture, which test many aspects of
MiCADO and the ADT. The ADTs for these test applications are included with each new
MiCADO release, and tutorials are available to help users get started with running them.
Short descriptions of these applications follow below, and their benefits are further discussed
in the next section. The development of these ADTs was also driven by the need to develop
reusable components that might be used in the future in the implementation of the 8.4
prototypes.

stressng

The tool stressng was the first test application for which a MiCADO ADT was composed. It is
an enhanced release of stress - a standard linux binary for generating deliberate load of
certain hardware resources, namely CPU and memory. The architecture for this application
is a single container (stressng) running on a single, scalable virtual machine. A basic
consumption scalability policy is attached to both container and VM and given some simple
CPU thresholds on which to scale. After the application is deployed to MiCADO, operators
can perform a runtime update of the ADT to change the amount of load the stressng
container generates. When the container generates CPU over the set high threshold,
MiCADO will scale containers and virtual machines to the set maximum. If the CPU load is
adjusted back downwards below the low threshold, MiCADO will scale the infrastructure
back down to the minimum. This is a good example of a basic single container application
running in MiCADO and can be used to verify that MiCADO has been configured correctly.
The full ADT for this test application can be found in the COLA GitHub repository8.

NGINX

NGINX is a popular and widely used web server. The architecture is very similar to stressng
with a single container on a single scalable virtual machine. The added value is that certain

8
 https://github.com/micado-scale/tosca/blob/D5.5/ADT/tests-demos/stressng.yaml

https://github.com/micado-scale/tosca/blob/D5.5/ADT/tests-demos/stressng.yaml

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 22 of 43

metrics can be exported using a Prometheus exporter, and can then be used in MiCADO to
define scaling rules. MiCADO pulls the number of accepted connections from the NGINX
exporter and makes scaling decisions based on the average rate of accepted connections
over a set time. Using an HTTP load testing tool such as wrk, it is possible to generate a
large number of requests and force MiCADO to respond by scaling the infrastructure up.
When the load test completes and the rate of connections falls, MiCADO scales the
infrastructure back down. The NGINX example is a good example of allowing ingress into a
container, and for testing external Prometheus exporters and metrics in MiCADO. The full
ADT for this demonstrator application can be found in the COLA GitHub repository9.

WordPress

WordPress is a popular content hosting platform for blogs and websites. The architecture is
significantly more complex than the previous two testing applications. This application
features three different containers hosted on two different virtual machines. One virtual
machine hosts the backend components - an NFS server for shared storage and a database
server for storing and organising data. A second virtual machine hosts the WordPress
frontend running on an Apache web server. Again, a load testing tool such as wrk can be
used to generate network traffic. MiCADO will scale the frontend container and frontend
virtual machine up and down in response to alerts generated based on the network traffic
measured across the infrastructure. This sample application is ideal for testing volumes,
containers on specific hosts, connections between containers. The complete ADT for the
WordPress demonstrator can be found in the COLA GitHub repository10.

cQueue / jQueuer

The final two test applications for MiCADO are both open source asynchronous task queues
for deadline-based scenarios. The architecture for these applications is similar to
WordPress, where one virtual machine plays host to the queue master application, which is
made up of containers running the database, message broker, queue managers, queue
frontend and custom Prometheus exporters. A second scalable virtual machine hosts the
queue worker containers, which collect jobs from the queue master and execute them in
containers. The scaling logic for these applications pull metrics such as length of queue,
completed jobs, and average execution time from the queue master exporters. Using these
metrics, MiCADO calculates the minimum required amount of virtual machines and queue
worker containers to complete a given number of jobs by a supplied deadline. Both of these
ADTs can be found in the COLA GitHub repository – one for cQueue11, and one for
jQueuer12.

8.5 Proof of concept Feasibility Study Prototypes

A large number of further applications have been investigated by the project, as described in
D8.4, for future deployment with MiCADO, and resources are already in place in order to
facilitate authoring ADTs to describe these applications. The existing use cases form a good
base of varied applications - the consumption-based scalability of the Inycom use case; the
virtual machine-only deployments of the Saker use case; the performance based scalability

9
 https://github.com/micado-scale/tosca/blob/D5.5/ADT/tests-demos/nginx.yaml

10
 https://github.com/micado-scale/tosca/blob/D5.5/ADT/tests-demos/wordpress.yaml

11
 https://github.com/micado-scale/tosca/blob/D5.5/ADT/tests-demos/cqueue.yaml

12
 https://github.com/micado-scale/tosca/blob/D5.5/ADT/tests-demos/jqueuer.yaml

https://github.com/micado-scale/tosca/blob/D5.5/ADT/tests-demos/nginx.yaml
https://github.com/micado-scale/tosca/blob/D5.5/ADT/tests-demos/wordpress.yaml
https://github.com/micado-scale/tosca/blob/D5.5/ADT/tests-demos/cqueue.yaml
https://github.com/micado-scale/tosca/blob/D5.5/ADT/tests-demos/jqueuer.yaml

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 23 of 43

and multiple containers in the Outlandish use case. The test applications for MiCADO also
provide a range of different architectures and scalability policies which can be reused when
authoring new ADTs - web server deployments can be based on the NGINX or WordPress
examples; queue and job-based experimentation can be based on the cQueue or jQueuer
examples.

Index Feasibility Study Area Draft
ADT

1 Evacuation Service High Performance Modelling &
Simulation

2 High Performance Simulation Analytics

3 MAGOS

4 JaamSim Portal

5 Repast Portal

6 PALMS

7 FLEE

8 D-SIMLAB

9 CAROL Artificial Intelligence

10 Feature Branch Web Applications

11 School Cuts

12 Shared Hosting

13 Social Monitor Social Media

14 Competitors Alerts Web Monitoring and Alerts

15 Attendance Analysis Service Data Analytics

16 New sectors

17 New territories

18 MainRail Internet of Things / Smart Cities

19 DataAvenue Remote Storage

20 MiCADOscale on cloudSME cloudbroker platform Autoscale as a Service

21 WordPress HKN Cloud Hosting

22 MiCADOscale HKN

23 Integrated Testing Solution Software Testing

24 Application Status

Table 7, List of MiCADO feasibility studies

Table 7 shows the list of proof-of-concept feasibility studies for MiCADO, defined in D8.4.
Where indicated in the table, a draft ADT for the given prototype exists in the MiCADO
GitHub repository13. Those studies for which a draft ADT does not already exist can be
crafted from existing ADTs as suggested below.

The central requirement of many studies in the areas “High Performance Modelling &
Simulation” and “Software Testing”, as well as case 13 and 18 are deadline-based and job-
queue scaling, for which ADT authors can refer to the ADT topology and policy descriptions

13

 https://github.com/micado-scale/tosca/tree/D5.5/ADT/prototypes

https://github.com/micado-scale/tosca/tree/D5.5/ADT/prototypes

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 24 of 43

in either the jQueuer14 or cQueue15 test applications or in the SAKER use case (Appendix
B).

The area of “Data Analytics” as well as case 19 are consumption driven applications which
will require load-based scaling similar to that seen in the stressng16 demonstrator included
with MiCADO, or the Inycom use case (Appendix A). Study 9 looks to benefit from both
consumption and deadline policies, so will use both types of ADT mentioned above as a
reference point.

Feasibility studies in the area “Web Applications” as well as case 21 are WordPress based
applications which can closely follow the WordPress demonstrator ADT17 included with
MiCADO or the Outlandish use case (Appendix C). Studies 2 and 18 require Windows as a
base OS, and so can re-use the VM-only descriptions found in the Saker ADT (Appendix B).

The studies 20 and 22 plan to interface with MiCADO and will not require any one specific
Application Description Template, but rather a wide range to support the applications their
users intend to run. In preparing for this, Outlandish has already authored an ADT which
matches the architecture of basic web applications. It currently supports the deployment of
WordPress with different architecture and scalability requirements than those used in the
test applications of MiCADO itself. This ADT has the potential to support the other similar
prototypes built on similar infrastructure with similar scaling requirements.

Creating “cut & paste” ADT templates has been another focus of this work package. So far a
small number of these are stored in the ADT repository on GitHub18, which is further
described in the next section. The idea of these templates is to provide future ADT authors
with a selection of TOSCA descriptions for containers, virtual machines and policies which
can be reused in a variety of potential applications. These sample descriptions will feature
the properties of containers or virtual machines which should run or behave in a certain way.
Descriptions of policies will include examples of consumption based, performance based,
and deadline-based policies, each using different alerts, queries and exporters. Future ADT
authors will be able to mix and match, taking one container, matching it with some virtual
machine, and applying some policy to them.

9. Structure of the COLA Application Description
Repository

One of the deliverables of WP5 was to provide a repository where to store the ADTs. Such
repository has been developed and made available to the consortium with Deliverable D5.4.
In particular in D5.4 – Section 10, the structure of the repository is explained in detail.

This first repository was previously hosted in GitHub at
https://github.com/COLAProject/COLARepo. When the development of MiCADO and its
components moved to its own organisation in GitHub, so too moved the ADT repository. The
most recent publicly shareable ADT resources can all be found at https://github.com/micado-

14

 https://github.com/micado-scale/tosca/blob/D5.5/ADT/tests-demos/jqueuer.yaml
15

 https://github.com/micado-scale/tosca/blob/D5.5/ADT/tests-demos/cqueue.yaml
16

https://github.com/micado-scale/tosca/blob/D5.5/ADT/tests-demos/stressng.yaml
17

https://github.com/micado-scale/tosca/blob/D5.5/ADT/tests-demos/wordpress.yaml
18

 https://github.com/micado-scale/tosca/tree/D5.5/node_example

https://github.com/COLAProject/COLARepo
https://github.com/micado-scale/tosca
https://github.com/micado-scale/tosca/blob/D5.5/ADT/tests-demos/jqueuer.yaml
https://github.com/micado-scale/tosca/blob/D5.5/ADT/tests-demos/cqueue.yaml
https://github.com/micado-scale/tosca/blob/D5.5/ADT/tests-demos/stressng.yaml
https://github.com/micado-scale/tosca/blob/D5.5/ADT/tests-demos/wordpress.yaml
https://github.com/micado-scale/tosca/tree/D5.5/node_example

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 25 of 43

scale/tosca. GitHub tags are used to create a version history of ADT resources at specific
releases. The most important resource available in this repository is the micado_types.yaml
file, where all the rich parent TOSCA types are defined for later use in specific ADTs. Also,
within this repository are the base ADTs of each use case, as well as any previously
investigated policy descriptions.

Newly included in this repository are helpful “cut & paste” template sections which hope to
help ADT authors build new templates from existing pieces. Different samples of virtual
machine types, container types and policy types are available in individual files, which can
then be re-used to create a complete template with varying components. This section is still
a work-in-progress, but by the project end aims to be a complete resource for simplifying
ADT creation for future authors and operators.

Also, under current investigation is the idea of moving this collection of ADT resources away
from GitHub and into a more customisable repository which would support filtering and
searches based on more detailed metadata and metatypes. There are a number of open-
source options currently being evaluated, but GitHub itself is also being investigated as a
potential candidate if this enhanced metadata functionality could be implemented on top of
the existing repository. If another repository is found to be a more suitable option than
GitHub, ADT resources will be moved across before the end of the project.

10. Strengths and weaknesses of the adopted
approach

10.1 Application Developers

The ADT’s approach in MiCADO is easy to understand for a developer already familiar with
Kubernetes and its syntax, although the configuration of MiCADO is more complex than the
Kubernetes or Docker compose ones. The good news is that for unskilled developers there
are already several sample templates of MiCADO demo applications (cqueue, stressng,
WordPress…) that can be used as a starting point to modify them based on our application
requirements.

Inycom has mostly used stressng to define the ADT of for the Magician application. In this
aspect, it is useful to link MiCADO documentation to the ADTs and use code samples, as it
is easier for newbies to understand everything. A new project depends on friendly tutorials to
become used. On the other hand, as MiCADO is already under development and there are
quite a few changes when a new version is released, Inycom has had to redefine several
times their ADTs and it hasn’t been straight forward for developers. In this sense, stability as
the end of the project approaches is very helpful.

Another particularly interesting opportunity is the possibility for skilled developers of
programming dynamic scaling policies using Prometheus formulas and Python coding. Using
these dynamic scaling policies to create valid ADTs is complex, but results in a variably
scalable application.

The philosophy developed in COLA, can be replicated by other projects. As an example
Outlandish has created a general ADT for basic web applications similar in architecture to
Audience Agency’s use case application. They are currently hosting this ADT in a GitHub

https://github.com/micado-scale/tosca

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 26 of 43

repository under their organisation19.

10.2 Support for Security

Developers can define security policies in Application Description Template (ADT). More
specifically, they can configure:

 firewall to open defined ports for applications

o with the property “ports” of type

“tosca.nodes.MiCADO.Container.Application.Docker”20

 firewall settings defined at Cloud Providers level

o with the “firewall_policy” in the Virtual Machine Image node type description

(e.g “tosca.nodes.MiCADO.CloudSigma.Compute”)21

 network security policies

o through “tosca.policies.MiCADO.Security.Network.L7Proxy” or other similar types

in “policy_types”22

 application sensitive information to be stored as well as configure access to it

o through “tosca.policies.Security.MiCADO.Secret.KubernetesSecretDistribution”

Specific documentation for applying network security policies and application sensitive
information policies in an ADT can be found in the main documentation of MiCADO23.

The capabilities to define security policies through ADT is convenient and centralized, which
facilitates the maintenance of security features. Any updates to the security configuration
can be managed simply by editing ADT file. Furthermore, the ADT description for security
features can be reused with customization for other applications or deployment easily.
Finally, in addition to the current supported security policies, ADT can be extended to further
support others demanded security policies by defining further TOSCA types.

On the other hand, the current lack of specific examples for security policies definition in
ADT can lead to difficulties for the very first time when developers try to compose security
policies in ADT. In addition to that, without a detailed manual, the separation in defining
security features (i.e. network security policies and application sensitive information are
defined in “policy_types” while open ports are defined in “node_templates”) can also cause
some difficulties to manage such policies.

10.3 Support for Policies Description

Support for flexible and expressive policies has been one of the design focus of the ADT
developed in COLA. In order to achieve an extensible and flexible description of policies, we
use TOSCA types arranged in hierarchies to define the various structural entities of the ADT
to allow extension of elements to match with a modification in one of the elements of the
ADT. As a result, application developers can define a new sub-type in the hierarchy whilst

19

 https://github.com/outlandishideas/bedrock-micado/
20

https://github.com/micado-
scale/tosca/blob/D5.5/node_example/applications/application_example_c.yaml
21

 https://github.com/micado-scale/tosca/blob/D5.5/node_example/Occopus/cloudsigma.yaml
22

 https://github.com/micado-scale/tosca/blob/D5.5/micado_types.yaml
23

 https://micado-scale.readthedocs.io/en/latest/application_description.html

https://github.com/outlandishideas/bedrock-micado/
https://github.com/micado-scale/tosca/blob/D5.5/node_example/applications/application_example_c.yaml
https://github.com/micado-scale/tosca/blob/D5.5/node_example/applications/application_example_c.yaml
https://github.com/micado-scale/tosca/blob/D5.5/node_example/Occopus/cloudsigma.yaml
https://github.com/micado-scale/tosca/blob/D5.5/micado_types.yaml
https://micado-scale.readthedocs.io/en/latest/application_description.html

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 27 of 43

the topology and overall structure of the ADT remains unchanged. This approach is
particularly relevant for the definition of the extended policy hierarchy which we have
designed considering TOSCA recommendations. First, the extended policy hierarchy follows
the Declarative Model, e.g. it describes the parameters that govern the policy, but it does not
specify how to implement the policy. Such Declarative Model supports developing various
different application level orchestrators that act upon the defined policies i. e. the policy
definition does not define or restrict the implementation of the orchestrator. Second, we
support the aggregation of policies in two different ways. First, policies can target one, more
or all nodes, i.e. it is possible to define one policy for the entire application and a second one
for a subset of nodes or for a single node. Second, policies cover distinct aspects of QoS, for
example scalability, security, etc. and can be composed for each node. Such composition
could lead to conflicts among the policies. As an example, a budget-constraining policy
applied to the entire application may be in conflict with a deadline policy applied with either
to the entire application or one of its components that requires the usage of expensive
resources. Another example could be that of a privacy constraint that requires the placement
of a database in a certain geographical area with a policy that fixes an incompatible budget
limit.

We do not address the conflicts of policies, but we added a priority field to the policy
template which expresses conflict resolution criteria that can be used by the relevant
element of the ADT. Further technical details of the structure of Policies are described in
D5.4

In conclusion, the development of the ADT has proven to be rather successful with a good
balance between strengths and weaknesses. The strongest aspect of the ADT has been in
its flexibility and expressiveness capable of describing applications defined by complex
topologies and sophisticated policies, it has proven capable to be highly adaptable to
different technologies. As an example, substituting allowing to substitute the Container
technology with only minor changes of the code. On the user side, ADT have achieved both
successes and weaknesses.

On the positive side, ADT are highly modular, and they support two kind of developers:
Advanced Developers can develop ADTs buy using the elements present in the repository
and can at the same time, select a set of values that are accessible through the input
section.
Less knowledgeable developers can submit the applications developed just be setting the
set of values flagged as input at the point before.

Nevertheless, the learning curve necessary to develop an ADT is still quite steep and work is
still brought on in WP5 and WP4 to ameliorate this aspect. In WP5 we are creating a
metadata section that will be used to queries in the GitHub repository while WP4 is working
on a GUI interface to the ADT repository.

11. Improving ADTs through abstraction and
inheritance (an example)

The most notable general improvement to ADTs since D5.4 is a reduction in the overall
complexity of node template descriptions by benefitting from concepts of abstraction and
inheritance in TOSCA. Our collection of node type definitions has been extended to support
a wider range of common settings for both cloud infrastructure and application container

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 28 of 43

descriptions. Similarly, policy descriptions have been simplified by making better use of
policy type definitions. These type definitions can be stored in separate TOSCA files in
GitHub and can be imported into an ADT as needed. Abstraction provides a means for
removing some complexity from the final ADT, resulting in better readability and shorter
length. These ADTs are supported from MiCADO v0.8.0.

As an example, here follows a break-down of the ADT for the WordPress application
demonstrator currently included in the MiCADO test suite and described in Section 8.5 of
this document. The new v0.8.0 ADT and the relevant type definitions are included, as well as
the matching v0.7.x ADT, for comparison. As the WordPress demonstrator has quite a large
topology, this example only includes the description of three frontend descriptions: the
application container for the WordPress frontend, the compute node hosting that container,
and the policy which enforces the scaling of that compute node.

11.1 TOSCA Version, Imports, Repository & Input Definitions

tosca_definitions_version: tosca_simple_yaml_1_0

imports:

 - https://raw.githubusercontent.com/micado-scale/tosca/v0.8.0/micado_types.yaml

repositories:

 docker_hub: https://hub.docker.com/

The version, imports, repository & input section remains unchanged from the previous
description found in D5.4. Furthermore, it will not vary greatly across different application
descriptions but for two possible adjustments: updating the import URL to pull the extended
node and policy type definitions (micado_types.yaml) file, and modifying the repository URL
in case container images are hosted outside of DockerHub.

11.2 Node Templates - Cloud Infrastructure Definitions

topology template:

 node templates:

 scaling-worker:

 type: tosca.nodes.MiCADO.CloudSigma.Compute

 properties:

 num_cpus: 2000

 mem_size: 2147483648

 vnc_password: xx

 libdrive_id: xx-xx-xx

 public_key_id: xx-xx-xx

 context:

 append: yes

 cloud_config: |

 runcmd:

 - apt-get install -y nfs-kernel-server nfs-common

 nics:

 - firewall_policy: xx-xx-xx

 ip_v4_conf:

 conf: dhcp

 interfaces:

 Occopus:

 create:

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 29 of 43

 inputs:

 interface_cloud: cloudsigma

 endpoint_cloud: https://xx-xx-xx.com/api/v1

 capabilities:

 host:

 properties:

 num_cpus: 2

 mem_size: 2 GB

TOSCA Snippet 1. Cloud infrastructure description in the WordPress ADT, MiCADO v0.7.x

topology template:

 node templates:

 scaling-worker:

 type: tosca.nodes.MiCADO.CloudSigma.Occo.small.NFS

 properties:

 endpoint: https://xx-xx-xx.com/api/v1

 vnc_password: xx

 libdrive_id: xx-xx-xx

 public_key_id: xx-xx-xx

 nics:

 - firewall_policy: xx-xx-xx

 ip_v4_conf:

 conf: dhcp

TOSCA Snippet 2. Cloud infrastructure description in the WordPress ADT, MiCADO v0.8.0

 tosca.nodes.MiCADO.CloudSigma.Occo.small.NFS:

 description: CloudSigma VM (2GHz/2GB) with NFS dependencies, by Occopus

 derived_from: tosca.nodes.MiCADO.CloudSigma.Compute.Occo.small

 properties:
 num_cpus:

 type: integer

 default: 4000

 required: true

 mem_size:

 type: integer

 default: 4294967296

 required: true

 context:

 type: map

 default:

 append: yes

 cloud_config: |

 runcmd:

 - apt-get install -y nfs-kernel-server nfs-common

 required: true

 interfaces:

 Occopus:

 type: tosca.interfaces.MiCADO.Occopus

 create:

 inputs:

 interface_cloud: cloudsigma

 endpoint_cloud: { get_property: [SELF, endpoint] }

TOSCA Snippet 3. Cloud infrastructure type definition in micado_types.yaml, MiCADO v0.8.0

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 30 of 43

This is the definition of a CloudSigma compute node, which will be interpreted by Occopus to
provision virtual machines in the Cloud. This node will host the containers which will be
defined in the next section. Snippet 1 represents the state of this section of the ADT before
richer type definitions were implemented. Snippet 2 achieves the same configuration of a
cloud instance, but reads with much more clarity.

Snippet 3 defines defaults for the size of the instance, pre-defines contextualisation through
cloud-init, and shifts the complexity of the user-provided endpoint from the interfaces section
to the properties section. This results in a much cleaner description, where the complexity
has been abstracted out of the ADT, now saved in a separate type definitions file –
micado_types.yaml.

11.3 Node Templates - Application Definitions

 wordpress:

 type: tosca.nodes.MiCADO.Container.Application.Docker

 properties:

 name: wordpress

 env:

 - name: WORDPRESS_DB_HOST

 value: wordpress-mysql

 - name: WORDPRESS_DB_PASSWORD

 value: admin

 resources:

 requests:

 cpu: "900m"

 ports:

 - target: 80

 nodePort: 30010

 type: NodePort

 - containerPort: 80

 name: wordpress

 artifacts:

 image:

 type: tosca.artifacts.Deployment.Image.Container.Docker

 file: wordpress:5.0.3-apache

 repository: docker_hub

 requirements:

 - volume:

 node: nfs-volume

 relationship:

 type: tosca.relationships.AttachesTo

 properties:

 location: /var/www/html

 - host: scaling-worker

 interfaces:

 Kubernetes:

 create:

 inputs:

 strategy:

 type: Recreate

TOSCA Snippet 4. Application container description in the WordPress ADT, MiCADO v0.7.x

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 31 of 43

 wordpress:

 type: tosca.nodes.MiCADO.Container.Application.Docker.Deployment

 properties:

 image: wordpress:5.0.3-apache

 env:

 - name: WORDPRESS_DB_HOST

 value: wordpress-mysql

 - name: WORDPRESS_DB_PASSWORD

 value: admin

 resources:

 requests:

 cpu: "900m"

 ports:

 - port: 80

 nodePort: 30010

 - containerPort: 80

 labels:

 tier: frontend

 requirements:

 - host: scaling-worker

 - volume:

 node: nfs-volume

 relationship:

 type: tosca.relationships.AttachesTo

 properties:

 location: /var/www/html

TOSCA Snippet 5. Application container description in the WordPress ADT, MiCADO v0.8.0

 tosca.nodes.MiCADO.Container.Application.Docker.Deployment:

 description: Abstraction of Docker container node. A Kubernetes Deployment

 derived_from: tosca.nodes.MiCADO.Container.Application.Docker

 artifacts:

 image:

 type: tosca.artifacts.Deployment.Image.Container.Docker

 file: { get_property: [SELF, image] }

 repository: docker_hub

 interfaces:

 Kubernetes:

 type: tosca.interfaces.MiCADO.Kubernetes

 create:

 inputs:

 kind: Deployment

 spec:

 strategy:

 type: Recreate

TOSCA Snippet 6. Application container definition in micado_types.yaml, MiCADO v0.8.0

The above snippet shows the definition of an application container for the WordPress
Apache server that makes up the WordPress frontend. This description is interpreted by
Kubernetes to orchestrate this container across the virtual machine nodes which have been
described in the above section. Snippet 4 shows the description from previous MiCADO
versions, and Snippet 5 shows the new description which achieves the same orchestration
configuration, only with less complexity. The type definition which enables this is seen in
Snippet 6, where the complexity of pointing to a Docker image in the artifacts section has
been shifted to the properties section, and a default interface with Kubernetes settings has
been pre-defined.

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 32 of 43

This demonstrator requires the attachment of volumes to containers, as seen in the
requirements section in the container description above. These volume descriptions have
also been simplified using the same methods of abstraction, as seen below.

 nfs-volume:

 type: tosca.nodes.MiCADO.Container.Volume

 properties:

 name: nfs-volume

 interfaces:

 Kubernetes:

 create:

 inputs:

 nfs:

 server: 10.96.0.240

 path: /

TOSCA Snippet 7. Volume description in the WordPress ADT, MiCADO v0.7.x

 nfs-volume:

 type: tosca.nodes.MiCADO.Container.Volume.NFS

 properties:

 server: 10.96.0.240

 path: /

TOSCA Snippet 8. Volume description in the WordPress ADT, MiCADO v0.8.0

 tosca.nodes.MiCADO.Container.Volume.NFS:

 description: An abstraction of the volume node for Kubernetes NFS volumes

 derived_from: tosca.nodes.MiCADO.Container.Volume

 properties:

 path:

 type: string

 description: path on host

 required: true

 server:

 type: string

 description: NFS server IP

 required: true

 interfaces:

 Kubernetes:

 type: tosca.interfaces.MiCADO.Kubernetes

 create:

 inputs:

 spec:

 nfs:

 path: { get_property: [SELF, path] }

 server: { get_property: [SELF, server] }

TOSCA Snippet 9. Volume type definition in micado_types.yaml, MiCADO v0.8.0

Snippet 7 shows the description of a volume, also to be orchestrated by Kubernetes, as it
was in MiCADO v0.7.x. The simpler, updated description for v0.8.0 can be seen in Snippet
8. The type definition which helps to realise this simplification is in Snippet 9, where the
complexity of the interfaces section is moved to the properties section.

11.4 Policies

Policies have benefitted from abstraction since before MiCADO v0.8.0, but their

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 33 of 43

implementation has changed since D5.4, so they are mentioned briefly here below.

 policies:

 - scalability:

 type: tosca.policies.Scaling.MiCADO.VirtualMachine.Net.wordpress

 targets: [scaling-worker]

 properties:

 constants:

 NODE_NAME: 'scaling-worker'

 min_instances: 1

 max_instances: 3

TOSCA Snippet 10. Policy description in MiCADO

 tosca.policies.Scaling.MiCADO.VirtualMachine.Net.wordpress:

 derived_from: tosca.policies.Scaling.MiCADO

 description: base WordPress policy defining alerts and rules

 properties:

 alerts:

 type: list

 description: pre-define alerts for WordPress virtual machines

 default:

 - alert: node_overloaded

 expr: 'avg(rate(container_network_receive_bytes_total)) > 60’

 for: 1m

 - alert: node_underloaded

 expr: 'avg(rate(container_network_receive_bytes_total)) < 30’

 for: 1m

 required: true

 scaling_rule:

 type: string

 description: pre-define scaling rule for WordPress VMs

 default: |

 if len(m_nodes) <= m_node_count:

 if node_overloaded:

 m_node_count+=1

 elif node_underloaded:

 m_node_count-=1

 else:

 print('Transient phase, skipping update of nodes...')

 required: true

TOSCA Snippet 11. Policy type definition in MiCADO

Snippet 10 shows the abstracted description of the policy which will enforce scaling of the
compute nodes which are hosting the WordPress frontend. This policy can be applied with
its defaults (seen in the type definition in Snippet 11) and certain parameters important to the
operator, such as minimum and maximum instances can easily be modified. The type
definition describes the alerts to be generated using Prometheus queries as well as the
scaling logic to apply using Python script. These are set as the defaults which will be applied
whenever this policy type is reused.

12. Conclusions

After almost three years a few conclusions could be drawn on the strengths and weaknesses
of the design and implementations of the ADTs.

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 34 of 43

1) The overall approach proved to be efficient. The decision to use TOSCA (A wide spread

standard as a “lingua franca” as an abstraction layer that separates and connects the

description of the applications to the underlying cloud technologies has proven so

successful that switching from one technology - Docker - to another technology -

Kubernetes only required a few days of work.

2) The decision to adopt a two-layer topology (Virtual Machines and Containers) allowed to

simplify the ADT structure whilst covering a significant number of use cases.

3) The overall design of the policies proved to be quite effective and the possibility to

extend policies with specific python code made them particularly flexible. On the other

end, many of the policies that were first envisaged ended up not being used (e.g.

Authentication and Authorization) as those functionalities have been implemented within

the code of the application and not in their deployment and execution description.

4) Unfortunately, the TOSCA language proved to be rather difficult to learn and the effort

we have spent so far to ease the learning curve (Tutorials, structures repositories with

examples, etc.) have not achieved the success we hoped for. Efforts will continue in this

direction until the very end of the project.

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 35 of 43

13. Appendices

13.1 Appendix A: Inycom Use Case ADT

tosca_definitions_version: tosca_simple_yaml_1_0

imports:

 - https://raw.githubusercontent.com/micado-scale/tosca/v0.7.3/micado_types.yaml

repositories:

 docker_hub: https://hub.docker.com/

topology_template:

 node_templates:

 magician:

 type: tosca.nodes.MiCADO.Container.Application.Docker

 properties:

 resources:

 requests:

 cpu: "800m"

 ports:

 - target: 8080

 published: 8081

 nodePort: 30808

 type: NodePort

 requirements:

 - host:

 node: worker-node

 artifacts:

 image:

 type: tosca.artifacts.Deployment.Image.Container.Docker

 file: magician

 repository: docker_hub

 interfaces:

 Kubernetes:

 create:

 implementation: image

 inputs:

 strategy:

 type: Recreate

 magicianclassifier:

 type: tosca.nodes.MiCADO.Container.Application.Docker

 requirements:

 - host:

 node: classifier-server

 artifacts:

 image:

 type: tosca.artifacts.Deployment.Image.Container.Docker

 file: magician-classifier

 repository: docker_hub

 interfaces:

 Kubernetes:

 create:

 implementation: image

 inputs:

 strategy:

 type: Recreate

 classifier-server:

 type: tosca.nodes.MiCADO.CloudSigma.Compute

 properties:

 num_cpus: 2000

 mem_size: 2147483648

 vnc_password: xx

 libdrive_id: xx

 public_key_id: xx

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 36 of 43

 nics:

 - firewall_policy: xx

 ip_v4_conf:

 conf: dhcp

 interfaces:

 Occopus:

 create:

 inputs:

 interface_cloud: cloudsigma

 endpoint_cloud: https://zrh.cloudsigma.com/api/2.0

 capabilities:

 host:

 properties:

 num_cpus: 2

 mem_size: 2 GB

 worker-node:

 type: tosca.nodes.MiCADO.CloudSigma.Compute

 properties:

 num_cpus: 2600

 mem_size: 4294967296

 vnc_password: xx

 libdrive_id: xx

 public_key_id: xx

 nics:

 - firewall_policy: xx

 ip_v4_conf:

 conf: dhcp

 interfaces:

 Occopus:

 create:

 inputs:

 interface_cloud: cloudsigma

 endpoint_cloud: https://xx/api/

 capabilities:

 host:

 properties:

 num_cpus: 2

 mem_size: 4 GB

 policies:

 - scalability:

 type: tosca.policies.Scaling.MiCADO.VirtualMachine.CPU.magician

 targets: [worker-node]

 properties:

 constants:

 NODE_NAME: 'worker-node'

 NODE_TH_MAX: '70'

 NODE_TH_MIN: '50'

 min_instances: 1

 max_instances: 4

 - scalability:

 type: tosca.policies.Scaling.MiCADO.Container.CPU.magician

 targets: [magician]

 properties:

 constants:

 SERVICE_NAME: 'magician'

 SERVICE_FULL_NAME: 'magician'

 SERVICE_TH_MAX: '70'

 SERVICE_TH_MIN: '50'

 min_instances: 1

 max_instances: 4

policy_types:

 tosca.policies.Scaling.MiCADO.Container.CPU.magician:

 derived_from: tosca.policies.Scaling.MiCADO

 description: base MiCADO policy defining data sources, constants, queries, alerts,

limits and rules

 properties:

 alerts:

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 37 of 43

 type: list

 description: pre-define alerts for container CPU

 default:

 - alert: service_overloaded

 expr:

'avg(rate(container_cpu_usage_seconds_total{container_label_io_kubernetes_container_name="{

{SERVICE_FULL_NAME}}"}[60s]))*100 > {{SERVICE_TH_MAX}}'

 for: 30s

 - alert: service_underloaded

 expr:

'avg(rate(container_cpu_usage_seconds_total{container_label_io_kubernetes_container_name="{

{SERVICE_FULL_NAME}}"}[60s]))*100 < {{SERVICE_TH_MIN}}'

 for: 2m

 required: true

 scaling_rule:

 type: string

 description: pre-define scaling rule for container CPU

 default: |

 if len(m_nodes) == m_node_count:

 if service_overloaded and m_node_count > m_container_count:

 m_container_count+=1

 if service_underloaded:

 m_container_count-=1

 else:

 print('Transient phase, skipping update of containers...')

 required: true

 tosca.policies.Scaling.MiCADO.VirtualMachine.CPU.magician:

 derived_from: tosca.policies.Scaling.MiCADO

 description: base MiCADO policy defining data sources, constants, queries, alerts,

limits and rules

 properties:

 alerts:

 type: list

 description: pre-define alerts for VM CPU

 default:

 - alert: service_working

 expr:

'avg(rate(container_cpu_usage_seconds_total{container_label_io_kubernetes_container_name="{

{SERVICE_FULL_NAME}}"}[60s]))*100 > {{SERVICE_TH_MAX}}'

 for: 30s

 - alert: node_overloaded

 expr: '(100-(avg(rate(node_cpu{node="{{ NODE_NAME }}", mode="idle"}[60s]))*100))

> {{NODE_TH_MAX}}'

 for: 1m

 - alert: node_underloaded

 expr: '(100-(avg(rate(node_cpu{node="{{ NODE_NAME }}", mode="idle"}[60s]))*100))

< {{NODE_TH_MIN}}'

 for: 2m

 required: true

 scaling_rule:

 type: string

 description: pre-define scaling rule for VM CPU

 default: |

 if len(m_nodes) <= m_node_count:

 if node_overloaded and service_working:

 m_node_count+=1

 if node_underloaded:

 m_node_count-=1

 else:

 print('Transient phase, skipping update of nodes...')

 required: true

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 38 of 43

13.2 Appendix B: SAKER Use Case ADT

tosca_definitions_version: tosca_simple_yaml_1_0

imports:

 - https://raw.githubusercontent.com/micado-scale/tosca/v0.7.3/micado_types.yaml

repositories:

 docker_hub: https://hub.docker.com/

topology_template:

 node_templates:

 worker-node:

 type: tosca.nodes.MiCADO.CloudSigma.Compute

 properties:

 num_cpus: 2000

 mem_size: 4294967296

 vnc_password: xx

 libdrive_id: xx

 public_key_id: xx

 hv_relaxed: true

 hv_tsc: true

 nics:

 - vlan: xx

 context:

 append: no

 cloud_config: |

 write_files:

 - path: 'C:\xx\yy\zz.yaml'

 permissions: '0644'

 content: |

 ManagerHostName: xx.xx.xx.xx

 ManagerPort: yyyy

 WorkerPort: zzzz

 WorkingDirectory: C:\xx\yy\

 PriorityThreshold: 0

 MaximumNumberOfCores: 1

 UseBlobStore: True

 StorageHost: 'http://xx.xx.xx.xx'

 Tags: cloud

 interfaces:

 Occopus:

 create:

 inputs:

 interface_cloud: cloudsigma

 endpoint_cloud: https://xx/api/

 capabilities:

 host:

 properties:

 num_cpus: 2

 mem_size: 4 GB

 policies:

 - scalability:

 type: tosca.policies.Scaling.MiCADO

 targets: [worker-node]

 properties:

 sources:

 - 'x.x.x.x:xxxx'

 constants:

 MINNODES: 1

 MAXNODES: 100

 queries:

 REMAININGTIME: 'closest_deadline-time()'

 ERD: 'longest_ERD*60'

 ITEMS_W: 'waiting_replications'

 ITEMS_R: 'running_replications'

 min_instances: 1

 max_instances: '{{MAXNODES}}'

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 39 of 43

 scaling_rule: |

 print "ITEMS_W:",ITEMS_W

 print "ITEMS_R:",ITEMS_R

 if ITEMS_W>0 and REMAININGTIME>0:

 reqnodes = ceil(ERD/(REMAININGTIME/ITEMS_W))

 print "REQNODES (1): ",reqnodes

 reqnodes = min([reqnodes, ITEMS_W+ITEMS_R])

 print "REQNODES (2): ",reqnodes

 if reqnodes >= m_node_count:

 m_node_count = reqnodes

 print "NEW number of requested nodes:",m_node_count

 elif ITEMS_R==0:

 m_node_count = MINNODES

 print "NEW number of requested nodes:",m_node_count

13.3 Appendix C: Outlandish Use Case ADT
(This is a general ADT prepared by Outlandish, on which Audience Agency is based)

tosca_definitions_version: tosca_simple_yaml_1_0

imports:

 - https://raw.githubusercontent.com/micado-scale/tosca/v0.x.2/micado_types.yaml

repositories:

 docker_hub: https://hub.docker.com/

topology_template:

 node_templates:

 nginxapp:

 type: tosca.nodes.MiCADO.Container.Application.Docker

 properties:

 resources:

 requests:

 cpu: "200m"

 env:

 - name: NGINX_HOST

 value: "xx"

 - name: NGINX_PORT

 value: "8080"

 - name: FPM_HOST

 value: "xx"

 - name: FPM_PORT

 value: "9000"

 ports:

 - target: 8080

 type: NodePort

 nodePort: 32349

 - target: 9432

 artifacts:

 image:

 type: tosca.artifacts.Deployment.Image.Container.Docker

 file: outlandish/bedrock-web

 repository: docker_hub

 interfaces:

 Kubernetes:

 create:

 implementation: image

 wordpress:

 type: tosca.nodes.MiCADO.Container.Application.Docker

 properties:

 resources:

 requests:

 cpu: "200m"

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 40 of 43

 env:

 - name: DB_HOST

 value: "db"

 - name: DB_NAME

 value: "xx"

 - name: DB_USER

 value: "xx"

 - name: DB_PASSWORD

 value: "xx"

 - name: WP_HOME

 value: "xx"

 ports:

 - target: 9000

 artifacts:

 image:

 type: tosca.artifacts.Deployment.Image.Container.Docker

 file: outlandish/bedrock

 repository: docker_hub

 interfaces:

 Kubernetes:

 create:

 implementation: image

 db:

 type: tosca.nodes.MiCADO.Container.Application.Docker

 properties:

 resources:

 requests:

 cpu: "200m"

 env:

 - name: MYSQL_ROOT_PASSWORD

 value: "xx"

 - name: MYSQL_USER

 value: "xx"

 - name: MYSQL_PASSWORD

 value: "xx"

 - name: MYSQL_DATABASE

 value: "xx"

 ports:

 - target: 3306

 artifacts:

 image:

 type: tosca.artifacts.Deployment.Image.Container.Docker

 file: mysql:5.7

 repository: docker_hub

 interfaces:

 Kubernetes:

 create:

 implementation: image

 worker_node:

 type: tosca.nodes.MiCADO.EC2.Compute

 properties:

 region_name: eu-west-2

 image_id: xx

 instance_type: t2.medium

 security_group_ids:

 - "xx"

 interfaces:

 Occopus:

 create:

 inputs:

 interface_cloud: ec2

 endpoint_cloud: https://ec2.eu-west-2.amazonaws.com

 capabilities:

 host:

 properties:

 num_cpus: 2

 mem_size: 2 GB

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 41 of 43

 outputs:

 ports:

 value: { get_attribute: [nginxapp, port]}

 policies:

 - scalability:

 type: tosca.policies.Scaling.MiCADO.VirtualMachine.CPU.node

 targets: [worker_node]

 properties:

 constants:

 NODE_TH_MAX: '66'

 NODE_TH_MIN: '33'

 min_instances: 1

 max_instances: 10

 - scalability:

 type: tosca.policies.Scaling.MiCADO.Container.connections.nginx

 targets: [nginxapp]

 properties:

 min_instances: 1

 max_instances: 10

 - scalability:

 type: tosca.policies.Scaling.MiCADO.Container.CPU.wordpress

 targets: [wordpress]

 properties:

 constants:

 SERVICE_NAME: 'wordpress'

 SERVICE_FULL_NAME: 'wordpress'

 SERVICE_TH_MAX: '60'

 SERVICE_TH_MIN: '25'

 min_instances: 1

 max_instances: 10

policy_types:

 tosca.policies.Scaling.MiCADO.Container.CPU.wordpress:

 derived_from: tosca.policies.Scaling.MiCADO

 description: base MiCADO policy defining data sources, constants, queries, alerts,

limits and rules

 properties:

 alerts:

 type: list

 description: pre-define alerts for container CPU

 default:

 - alert: wordpress_overloaded

 expr:

'avg(rate(container_cpu_usage_seconds_total{container_label_io_kubernetes_container_name="{

{SERVICE_FULL_NAME}}"}[30s]))*100 > {{SERVICE_TH_MAX}}'

 for: 30s

 - alert: wordpress_underloaded

 expr:

'avg(rate(container_cpu_usage_seconds_total{container_label_io_kubernetes_container_name="{

{SERVICE_FULL_NAME}}"}[30s]))*100 < {{SERVICE_TH_MIN}}'

 for: 30s

 required: true

 scaling_rule:

 type: string

 description: pre-define scaling rule for container CPU for WordPress/PHP service

 default: |

 if len(m_nodes) == m_node_count:

 if wordpress_overloaded and m_node_count > m_container_count:

 m_container_count+=1

 if wordpress_underloaded:

 m_container_count-=1

 else:

 print('Transient phase, skipping update of containers...')

 required: true

 tosca.policies.Scaling.MiCADO.Container.connections.nginx:

D5.5 Second Set of Templates and Services of Use Cases

Work Package WP5 Page 42 of 43

 derived_from: tosca.policies.Scaling.MiCADO

 description: base MiCADO policy defining data sources, constants, queries, alerts,

limits and rules

 properties:

 alerts:

 type: list

 description: pre-define alerts for container writing vs waiting connections

 default:

 - alert: nginx_overloaded

 expr: '(avg(rate(nginx_vts_main_connections{status=~"writing"}[2m])) -

avg(rate(nginx_vts_main_connections{status=~"waiting"}[2m]))) < 0'

 for: 30s

 - alert: nginx_underloaded

 expr: '(avg(rate(nginx_vts_main_connections{status=~"writing"}[2m])) -

avg(rate(nginx_vts_main_connections{status=~"waiting"}[2m]))) > 0'

 for: 2m

 required: true

 scaling_rule:

 type: string

 description: pre-define scaling rule for connections to NGINX

 default: |

 if len(m_nodes) == m_node_count:

 if nginx_overloaded and m_node_count > m_container_count:

 m_container_count+=1

 if nginx_underloaded:

 m_container_count-=1

 else:

 print('Transient phase, skipping update of containers...')

 required: true

 tosca.policies.Scaling.MiCADO.VirtualMachine.CPU.node:

 derived_from: tosca.policies.Scaling.MiCADO

 description: base MiCADO policy defining data sources, constants, queries, alerts,

limits and rules

 properties:

 alerts:

 type: list

 description: pre-define alerts for VM CPU

 default:

 - alert: node_overloaded

 expr: '(100-(avg(rate(node_cpu{group="worker_cluster",mode="idle"}[60s]))*100))

> {{NODE_TH_MAX}}'

 for: 1m

 - alert: node_underloaded

 expr: '(100-(avg(rate(node_cpu{group="worker_cluster",mode="idle"}[60s]))*100))

< {{NODE_TH_MIN}}'

 for: 1m

 required: true

 scaling_rule:

 type: string

 description: pre-define scaling rule for VM CPU

 default: |

 if len(m_nodes) <= m_node_count and m_time_since_node_count_changed > 60:

 if node_overloaded:

 m_node_count+=1

 if node_underloaded:

 m_node_count-=1

 else:

 print('Transient phase, skipping update of nodes...')

 required: true

