
 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 1 of 36

Cloud Orchestration at the Level of Application

Project Acronym: COLA

Project Number: 731574

Programme: Information and Communication Technologies
Advanced Computing and Cloud Computing

Topic: ICT-06-2016 Cloud Computing

Call Identifier: H2020-ICT-2016-1

Funding Scheme: Innovation Action

Start date of project: 01/01/2017 Duration: 30 months

Deliverable:

D6.1 Prototype and documentation of the cloud

deployment orchestrator service

Due date of deliverable: 30/06/2017 Actual submission date: 30/06/2017

WPL: Peter Kacsuk

Dissemination Level: PU

Version: WIP

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 2 of 36

1. Table of Contents

1. Table of Contents ... 2

2. List of Figures and Tables .. 3

3. Status, Change History and Glossary .. 4

4. Introduction .. 6

5. The MiCADO generic architecture framework .. 8

6. Designing the MiCADO Orchestration Layer .. 10

7. Cloud orchestration .. 13

7.1 Investigated tools .. 13

7.2 Selected Service: Occopus ... 15

8. Container Orchestration ... 16

8.1 Investigated tools .. 16

8.2 Selected service: Swarm... 22

9. Occopus .. 25

9.1 Main characteristics .. 25

9.2 Latest developments ... 27

10. Implementations of MiCADO Orchestration Layer .. 30

10.1 MiCADO v0 ... 30

10.2 MiCADO v1 ... 31

10.3 MiCADO v2 ... 33

10.4 MiCADO v3 (under development) ... 34

11. Conclusions .. 35

12. References ... 36

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 3 of 36

2. List of Figures and Tables

Figures

Figure 1 MiCADO generic architecture framework .. 8
Figure 2 Architecture of the MiCADO Orchestration Layer .. 10
Figure 3 The Rancher architecture .. 16
Figure 4 The Kubernetes architecture ... 18
Figure 5 The Docker Swarm architecture .. 21
Figure 6 Occopus descriptors ... 26
Figure 7 Architecture of MiCADO v0/A .. 30
Figure 8 Architecture of MiCADO v1 ... 31
Figure 9 Architecture of MiCADO v2 ... 32
Figure 10 Architecture of MiCADO v3 ... 34

Tables

Table 1 Status Change History ... 4
Table 2 Deliverable Change History .. 5
Table 3 Glossary ... 5
Table 4 Comparison of Docker Clustering tools .. 22

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 4 of 36

3. Status, Change History and Glossary

Status: Name: Date: Signature:

Draft: Jozsef Kovacs 22/06/17 Jozsef Kovacs

Reviewed: Alex Worrad-Andrews 28/06/17 Alex Worrad-Andrews

Approved: Tamas Kiss 30/06/17 Tamas Kiss

Table 1 Status Change History

Version Date Pages Author(s) Modification

V0.1 13/06 ALL Jozsef Kovacs Empty Skeleton

V0.2 14/06 Section
5

Tamas Kiss,
Jozsef Kovacs

MiCADO generic architecture

V0.3 15/06 Section
7,9

Eniko Nagy,
Jozsef Kovacs

Cloud Orchestration and Occopus

V0.4 16/06 Section
8

Attila Farkas,
Jozsef Kovacs

Container Orchestration

V0.5 19/06 Section
6

Jozsef Kovacs MiCADO Orchestration Layer

V0.6 20/06 Section
10

Botond Rakoczi,
Jozsef Kovacs

MiCADO implementations

V0.7 21/06 Section
11

Jozsef Kovacs Conclusion

V0.8 22/06 Section
10,11

Jozsef Kovacs Small corrections

V0.9 23/06 Section
6, 7, 8,
10, 11

Tamas Kiss Small corrections

V1.0 28/06 Section
5, 6, 7,
8, 10

Gabor
Terstyanszky

Small corrections

V1.1 29/06 Section
8

Attila Farkas,
Jozsef Kovacs

Add more explanation for the selection

V1.2 29/06 Section
4

Jozsef Kovacs Introduction of WP6 deliverables

V1.3 29/06 Section
7

Jozsef Kovacs Adding Terraform description and
additional explanation for the selection

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 5 of 36

V1.4 29/06 Section
6

Jozsef Kovacs Add discussion on requirements defined
by D8.1 for COLA use cases

Table 2 Deliverable Change History

API Application Programming Interface

MiCADO
Microservices-based Cloud Application-level Dynamic
Orchestrator

COLA Cloud Orchestration at the level of Application

REST Representational State Transfer (service interface)

CLI Command Line Interface

TOSCA
Topology Orchestration Specification for Cloud
Application

DNS Doman Name Service

NAT Network Address Translation

CA Certificate Authority

TLS Transport Layer Security

LDAP Lightweight Directory Access Protocol

PC Personal Computer

VM Virtual Machine

Table 3 Glossary

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 6 of 36

4. Introduction

DoW specifies D6.1 “Prototype and documentation of the cloud deployment orchestrator
service” deliverable as follows:

“This document will contain the technical and user documentation of the MiCADO
cloud deployment orchestrator service.”

This deliverable aims at describing the design and implementation of MiCADO focusing on
the orchestration of both cloud resources and container services. MiCADO is a compound
service providing automatic scaling and orchestration of user submitted microservices as
well as of cloud resources required for executing the services. The aim of MiCADO is to
implement this double orchestration in an intelligent way following policies specified by the
user together with the infrastructure description. This overall functionality is realized by the
MiCADO framework which will be introduced in the following chapters.

The core part of D6.1 is structured as follows:

 Chapter 5 – MiCADO generic architecture
This chapter summarises the layers of the entire system to be realized in the COLA
project to clearify the big picture and location of the MiCADO orchestration layer.

 Chapter 6 – Design plan of MiCADO Orchestration Layer
This chapter details the architecture of the MiCADO orchestration layer together with
an overview of its proposed internal operation and interactions among the
components.

 Chapter 7 – Cloud orchestration
This chapter focuses on the Cloud Orchestration component of the MiCADO
architecture. It introduces several Cloud Orchestrator tools and proposes one
candidate to be used for implementing the MiCADO orchestration layer.

 Chapter 8 – Container Orchestration
This chapter focuses on the Container Orchestration component of the MiCADO
architecture. It introduces several Container Orchestrator tools and proposes one
candidate to be used for implementing the MiCADO orchestration layer.

 Chapter 9 – Occopus
This chapter gives a short introduction of the Occopus cloud orchestrator tool.

 Chapter 10 – Implementation of MiCADO Orchestration Layer
This chapter introduces the MiCADO Orchestration Layer implementations released
until the deadline of this deliverable and also proposes the next step in the
implementation.

 Chapter 11 – Conclusion
This chapter concludes the overall deliverable, the results introduced and
implementations released.

The rest of the deliverable contains the obligatory parts, Table of Contents in Chapter 1, List
of Figures and Tables in Chapter 2, Status, Change History and Glossary in Chapter 3 and
References in Chapter 12.

In order to understand the synergy of the deliverables in WP6, here is a small explanation:

 D6.1 – Prototype and documentation of the cloud deployment orchestrator
service: this deliverable focuses on Cloud deployment and Orchestration

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 7 of 36

functionality of the MiCADO Orchestration layer. Deployment in this context means
deployment of the virtual machines in the cloud and deployment of the containers in
the docker cluster. This deliverable will focus on these two topics.

 D6.2 – Prototype and documentation of the monitoring service: this deliverable
will focus on the monitoring subsystem operating inside MiCADO to collect
information for scaling related decisions.

 D6.3 – Prototype and documentation of the scalability decision service: this
deliverable will focus on how the scalable decisions will be implemented, what kind of
policies are implemented.

 D6.4 – Prototype and documentation of the price/performance optimization
service: the deliverable will detail what kind of optimization calculations can be
executed to affect the scalable decisions and will detail the internal architecture for it.

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 8 of 36

5. The MiCADO generic architecture framework

The layers of MiCADO supporting the dynamic application level orchestration of cloud
applications are illustrated in Figure 1. This generic framework is based on the concept of
microservices, as defined for example by Balalaie [1]. Cloud computing is a natural platform
for microservices that provide decoupling of independent components from a monolithic
application. Cloud enables execution and resource allocation of these independent
components based on their specific needs. One microservice might require a lot of storage
while another could be CPU intensive. Cloud execution offers the possibility to optimize
resource allocation and thus resource cost dynamically. The alternative would be to allocate
a monolithic infrastructure, the size of which large enough to be sufficient for worst-case
requirements scenario. However, most of the time, the worst case scenario is not present
and allocated resources of the monolithic infrastructures are wasted.

Figure 1 MiCADO generic architecture framework

The layers of the MiCADO generic architecture (from top to bottom), based on the above
described microservices-based concept are as follows:

1. Application layer. Application layer contains actual application code and data

described by application definition (layer 2) to function in such a way that a desired

functionality is reached. For example, this layer could populate database with initial

data, and configure HTTP server with look and feel and application logic.

2. Application definition layer. This layer allows definition of the functional

architecture of applications using application templates. At this level software

components and their requirements (both infrastructure and security specifications)

as well as their interconnectivity are defined using application descriptions uploaded

to a public repository. As the infrastructure is agnostic to the actual application using

Cloud interface

Coordination interface

Microservices discovery and execution layer

Microservices coordination logic layer

Cloud access API (direct cloud APIs or CloudBroker API)

Worker node 1
Contai

ner
Contai

ner
Contai

ner

Worker node 2
Contai

ner
Contai

ner
Contai

ner

Worker node N
Contai

ner
Contai

ner
Contai

ner

Infrastructure and security requirement
definition 1

Infrastructure and security requirement
definition 2

App1 App2 App4
Application
layer

Application
definition layer

Orchestration
layer

Cloud interface
layer

Cloud instance
layer

Se
cu

ri
ty

, p
ri

va
cy

an

d
 t

ru
st

 s
er

vi
ce

s

App3

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 9 of 36

it, the application template can be shared with any application that requires such an

environment.

3. Orchestration layer. This layer is divided into four horizontal and one vertical sub-

layers. The horizontal sub-layers are:

a. Coordination interface API. This sub-layer provides access to orchestration
control and decouples the orchestration layer from the application definition layer.
This set of APIs enables application developers to utilize the dynamic
orchestration capabilities of the underlying layer and supports the convenient
development of dynamically and automatically scalable cloud-based applications
by embedding these API calls into application code.

b. Microservices discovery and execution. This sub-layer manages the execution
of microservices and keeps track of services running. Execution management
combines both start-up and shut down of microservices. Service management
gathers information about currently running services, such as service name, IP
address and port where the service is reachable and optional service tags to help
in service coordination.

c. Microservices coordination logic. With large infrastructures and to reap the
benefits from cloud-based execution, it becomes necessary to understand how
the current execution environment is performing. Information needs to be
gathered and processed. If bottlenecks are detected or the currently running
infrastructure appears underutilized, it may be necessary to either launch or shut
down cloud instances, and possibly move microservices from one physical
worker node to another.

d. Cloud interface API is to abstract cloud access from layers above. Cloud access
APIs can be complex interfaces, as they typically cater for a large number of
services provided by the cloud provider. On the other hand, the microservices
execution and coordination logic layers (see 3b and 3c) only need to shut down
and start instances. Abstracting this to a cloud interface API simplifies
implementation of aforementioned layers, and if new Cloud access APIs are
implemented, only this layer needs to change.

e. Security, privacy and trust services: The orchestration layer also includes a
vertical sub-layer that deals with security, privacy and trust related services for
advanced security policy management. These services span multiple levels of the
orchestration layer, as it is illustrated on Figure 1. The main aim is to shield
application developers from detailed security management. To achieve this, the
security, privacy and trust services of the orchestration layer take the general
security policies defined at the Application definition layer, as well as security
credentials for the application domain. These inputs will then be used by the
special purpose security policy enforcement services to enforce the security
policies at orchestration level.

4. Cloud interface layer. This layer provides means to launch and shut down cloud
instances. There can be one or more cloud interfaces to support multiple clouds.
Besides directly accessing cloud APIs, generic cloud access services, such as the
CloudBroker platform [2] can also be used at this layer to support accessing multiple,
heterogeneous and distributed clouds via a uniform access layer.

5. Cloud instance layer. This layer contains cloud instances and provided by IaaS
cloud providers. These instances can run various containers that execute actual
microservices. This layer typically represents state-of-the-art of cloud technology, as
provided by various public or private cloud providers.

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 10 of 36

6. Designing the MiCADO Orchestration Layer

In this chapter we are giving an overview of the MiCADO Orchestration Layer outlining its
architecture and basic functionalities. It is important to mention that at this level of
abstraction each component is named after its functionality since in this chapter we
introduce the overall high-level design where no concrete tool is assigned for implementing a
particular functionality to make this layer independent from technologies. The design below
has taken the deliverable D8.1 entitled “Business and technical requirements of COLA use
cases” as an input which specifies the requirements of the use cases.

The MiCADO Orchestration Layer is responsible for deploying, executing, scaling and
managing microservices or network of microservices and for maintaining the allocation of
resources required for the microservices. The overall architecture of the MiCADO
Orchestration Layer (MiCADO for short in the rest of this section) can be seen in Figure 2.

MiCADO basically forms a cluster which is able to dynamically allocate and attach, or detach
and release cloud resources for optimizing the resource usage during executing the
submitted microservices. MiCADO consists of two main logical components: Master node
and Worker node. Master node is the head of the cluster performing the collection of
information on microservices, the calculation of optimized resource usage, the decision
making and the realization of decisions related to handling resources and to scheduling
microservices. Worker nodes are volatile components representing execution environments
for the microservices, i.e. they are executing the microservices. Worker nodes are
continuously allocated/released based on the dynamically changing requirements of the
running microservices. Once a new worker node is allocated and attached to the cluster, the
master node utilizes its resources by allocating microservices on it.

Figure 2 Architecture of the MiCADO Orchestration Layer

MiCADO Master Node (box with dashed line on the left in Figure 2) contains the following
key components:

 MiCADO Submitter is the primary service endpoint for creating an infrastructure to
run an application and managing this infrastructure and the application itself.

Node/container
monitor

Node/container
monitor

MICADO
WORKER
NODE

Info on
nodes/containers

Container create/destroy/scale
up/down, node evacuation, etc.

Container
Orchestrator

Worker node create/destroy/scale up hor/verCloud
Orchestrator

Monitoring
System

MiCADO
Submitter

Policy Keeper

Register
policies

Scale/update
worker
nodes

Scale/update containers

description on
infrastructure
and policies

Create
Worker
nodes

MICADO
MASTER
NODE

container

container

container

Optimiser

Advice
Parameters

MICADO
WORKER
NODE

Container
Executor

Create
container
infra

Container
Executor

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 11 of 36

Submitted infrastructures are received by this component. The incoming description
(e.g. TOSCA format) are interpreted and related parts are forwarded to the other key
components.

 Cloud orchestrator is responsible for communication with the Cloud API for
allocating and releaseing resources, for building up/shutting down new MiCADO
worker nodes when necessary.

 Container orchestrator is responsible for allocating new microservices (realized by
containers) on the worker nodes, to keep track of their execution and to destroy them
if necessary. This component must also realize the scale up and down functionality
on container services upon request.

 Monitoring system is responsible for collecting the information on load of the
resources and on resource usage of the container services, and to provide this
information for the other components on the MiCADO master node. Alternatively, it
may provide alerting functionality in relation to the measured attributes to detect
values that requires reaction.

 Policy keeper is the key component that implements policies and makes decisions
related to allocating/releasing cloud resources and scheduling container services
among worker nodes. Moreover, this component makes sure that the cloud and
container orchestrators are instructed in a synchronized way during the operation of
the entire system.

 Optimizer is a background (micro) service performing long-running calculations on
demand for finding optimized setup of both resources and container infrastructure.
An optimization calculation can be initiated with the required parameters on
resources and containers and the result is forwarded to the Policy Keeper component
for consideration and execution.

MiCADO Worker Nodes (boxes with dashed line on the right in Figure 2) contain the
following components:

 Node/container monitor component is responsible for measuring the load of the
resources and the resource usage of the container services. The measured attributes
are then provided to the Monitoring system running on the Master Node.

 Container executor is responsible for starting, executing and destroying containers
upon requests from the Container Orchestrator on the Master node.

 Container components are realizing the user services defined in the (container)
infrastructure description submitted through the MiCADO submitter on the Master
node.

The basic operation of the architecture above can be summarized in the following way. A
new application and infrastructure description is submitted through the MiCADO submitter.
Based on this description the initial number of MiCADO worker nodes are created by the
Cloud Orchestrator. Once the MiCADO worker nodes are up and running, the Container
infrastructure is submitted to the Container orchestrator component which realizes the
container services on the worker nodes. Once the initial deployment has been done policies
related to the application are registered in the Policy Keeper component. The Monitoring
system starts collecting the information on the nodes and containers and the Policy Keeper
starts updating the deployment (including both the worker nodes and containers) when
necessary. The Optimizer performs calculation in the background and provides advice for
the Policy Keeper time to time.

In this architecture the Cloud Orchestrator and Container Orchestrator components together

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 12 of 36

with the Submitter realize the initial deployment of the resources and containers. In case
there are any policies defined in relation to controlling the resource consumption of the
container infrastructure, the Policy Keeper, Optimizer and Monitoring system components
together start realizing the controlling loop. Once the initial deployment has been done, any
update can only be confirmed by the Policy Keeper component.

This architecture is built by loosely coupled functionalities like resource allocation/release,
container allocation/deallocation, initial deployment, monitoring and decisions on scalability.
For example, the controlling components (Policy Keeper, Optimizer, Monitoring) can be
detached from the architecture and it is still operational for realizing the initial deployment of
the submitted infrastructure.

One of the most important aim of this architecture is to provide a modular and pluggable
framework where different functionalities can be delivered by different components on-
demand, and where these components can be easily substituted. The resulting solution is
planned to be technology neutral that will not be depending on one particular component
implementation.

There are five categories of requirements defined in D8.1 by the COLA use cases: system
requirements, data requirements, performance requirements, security requirements. other
requirements.

 System requirements relates to the underlying operating system which is Ubuntu in

most of the use cases except for Saker use case, where windows is the base

operating system. There are alternatives in executing windows applications in

MiCADO which are being investigated. Current promising alternative is using

windows emulator software on linux, however native windows solution is also a

possibility with or without containers.

 Data requirements for the use cases are low however using external database is a

good alternative for data intensive applications if needed.

 Performance requirements is planned to be fulfilled by applying the policies and

utilizing the auto-scaling mechanism. Container applications will be automatically

scaled-up together with worker nodes to deliver additional computing resources.

 Security requirements will be mainly addressed by WP7, however MiCADO is

planned to be able to setup VPN, encrypted channels and to apply firewall settings.

Private and public clouds will be supported.

 Other requirements in D8.1 mentions data protection, robustness, quality of service,

etc. These does not strongly related to the MiCADO architecture, but will be

addressed later during the project together with WP7.

In order to implement the architecture on Figure 2, tools realizing the different components
must be investigated carefully and must be integrated together, keeping in mind the option to
replace them with an alternate solution if necessary.

In chapter 7, cloud orchestrator tools are investigated and a candidate for the current
implementation is selected. The same happens in chapter 8 for the container orchestration
functionality. Finally, Chapter 10 summarizes the current status of the MiCADO
developments.

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 13 of 36

7. Cloud orchestration

In the MiCADO framework, the cloud orchestration functionality is required for allocating
virtual machines in order to join additional resources to MiCADO. This functionality is
implemented by a cloud deployment orchestrator tool. In this section, we list the investigated
cloud orchestration tools, select a candidate and provide justification for our selection.

7.1 Investigated tools

In this section we give a short overview of relevant cloud orchestrator tools. We have
investigated several academic prototypes (Occopus, Live Cloud, Roboconf, GRyCAP) and
commercial products (Cloudify, Heat, CloudFormation) in this field. We shortly describe each
of them to clarify their advantages and/or disadvantages.

Occopus [3] is a powerful, easy-to-use, configurable, hybrid, multi-cloud orchestration tool
developed by MTA SZTAKI. It is an open source software providing features for configuring
and orchestrating distributed virtual infrastructures both on single and multi-cloud
environments. Occopus has been designed to be cloud-agnostic and is developed in a way
to handle dynamically replaceable plugins to realize the cloud-dependent interactions
through the various cloud interfaces. Such plugins are designed not only for handling
different cloud interfaces simultaneously (multi-cloud), but also for interacting with various
configuration management tools at the same time (multi-config), for utilizing different
contextualization methods and for implementing various service health-check facilities. As a
result, Occopus can be utilized in a broad range of environments by applying any
combination of its plugins. Moreover, such plugins can be added by the user without
recompilation. Building and maintaining an infrastructure can be performed through different
interfaces. Occopus has CLI and REST API. Both, provides the main functionalities, like
building, maintaining, scaling or destroying. Moreover, the CLI and the REST interfaces can
be used in an alternate way, which means after building an infrastructure by the CLI one
may continue the maintenance of the infrastructure with the help of the REST API. During
maintenance the opposite direction is also a supported use case. There is a third interface
namely the library API that enables developers to integrate the functionalities of Occopus as
a library and use it by invoking the API methods. It is able to handle CloudBroker virtual
machines and easily deployable.

The Roboconf [4] cloud orchestrator written in JAVA aimed at supporting service
deployment, maintenance and migration among various types of clouds including multi-cloud
systems. In order to achieve this goal they have developed a hierarchical language to allow
fine-grained administration of cloud services. The main drawback of Roboconf that it is not
able to utilize external configuration manager tools and currently does not support
CloudBroker either.

LiveCloud [5] is a management framework for resources in cloud data centers that integrates
low level network oriented resources into data center orchestration and service provision. It
also includes resource allocation algorithms but in a static way. LiveCloud is not able to
support distributed systems like multi-cloud including CloudBroker.

GRyCAP [6] realized a good concept. Their descriptors are based on RADL (Resource
Application Description Language) for defining the infrastructure and the nodes. They put

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 14 of 36

significant effort into combining and integrating their cloud orchestrator tool with a repository
of (1) virtual machine images, (2) RADL descriptors and (3) application recipes. GRyCAP is
a good candidate, however CloudBroker support is not implemented yet.

Openstack’s Heat [7] is template-based, provides auto-scaling features through integration
with Telemetry, and has Chef/Puppet integration. Heat can be used with a CLI, API, or the
Horizon Dashboard. Heat has its own template format, HOT (Heat Orchestration Template),
but can process CloudFormation templates. Heat is open source, however, it only supports
OpenStack clouds.

CloudFormation [8] is one of the most mature and heavyweight contenders between
orchestrators developed by Amazon. Infrastructures are defined as JSON templates which
can be submitted through CLI, API or the AWS management console to the AWS EC2
Cloud. Unfortunately, it does not support any other cloud providers or backends. The vendor
lock-in makes it hard to use for academic purposes and it is not an open source software.

Marpaung et al. [9] discuss Altocumulus, AppScale, Cloudify and mOSAIC. Altocumulus
focuses on deploying web applications to a variety of public clouds, which limits its usability
in private or hybrid clouds. It does not provide monitoring or dynamic changes to services.
AppScale is an open-source product that supports execution of Google Application Engine
applications and therefore restricted to this particular technology. mOSAIC provides a set of
APIs to application developers to tackle cloud deployment issues. The limitation of mOSAIC
is the implementation of these APIs as the application developer needs to integrate these to
application components.

Cloudify [10] is one of the latest orchestrators, with its first release being in 2014. It is an
open source cloud orchestration framework, allowing the user to model applications and
services and automate their entire life cycle, including deployment on any cloud or data
center environment, monitoring all aspects of the deployed application, detecting issues and
failure, manually or automatically remediating them and handle ongoing maintenance tasks.
However, some advanced features including the Web UI are only available in the
commercial (premium) edition. It has a TOSCA editor with deployment and orchestrator. It
provides access to multiple clouds and a complete framework to describe microservices and
execute them either in Docker containers or on cloud metal. Cloudify also provides dynamic
service upscaling and downscaling based on microservice dependent parameters, for
example number of transactions, number of threads, etc. Cloudify does not provide a
container portability framework, nor do its metrics span dockerised microservices and the
cloud metal executing them. CloudBroker support is also missing.

OpenTosca [11] provides an open source ecosystem for the OASIS Topology and
Orchestration Specification for Cloud Applications developed by Stuttgart University.
OpenTosca is divided into three parts: a TOSCA runtime environment (OpenTosca
container), a graphical modelling TOSCA tool (Winery) and a self-service portal for the
application available in the container (Vinothek). Although OpenTosca is a generic
framework, it does not support run-time orchestration.

Terraform [12] is developed by HashiCorp for building and changing infrastructures.
Terraform can manage existing and popular service providers as well as custom in-house
solutions. Terraform is integrated with HashiCorp’s other tools, however, on its own it lacks
advanced features, and is only capable of deployment of an infrastructure without lifecycle-

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 15 of 36

management, scaling, error-handling. It can integrate with Chef to provide configuration
management and is open-source. Terraform has a large developer community behind and it
provides similar functionality to CloudFormation, but without the vendor lock-in.

7.2 Selected Service: Occopus

In the current stage of the project, the candidate for performing cloud orchestration in
MiCADO is the Occopus tool developed by MTA SZTAKI. We must emphasize again that
the cloud orchestration in the MiCADO system is designed to be an interchangeable
component. Our main argument for Occopus are as follows:

 it is a mature orchestrator tool for virtual machine allocation/release

 it is cloud-independent

 it supports CloudSigma and CloudBroker

 it is easily updatable (modifications, new features, etc.) according to the requirements

of the COLA project

 it is well-documented

 it supports easy-to-create descriptors

 it is easily deployable as a container

 it supports scaling

 it has command-line and REST API interface

The weakest point of Occopus is that it currently does not support TOSCA descriptor format.
This disadvantage will be addressed by introducing the MiCADO submitter component
(Figure 2) which will interpret TOSCA description and pass the necessary information to the
services running on the MiCADO server node. During this step, the submitter can extract the
necessary parameters for Occopus. Descriptors for Occopus can be generated based on the
combination of templates and attributes coming from the TOSCA description. Moreover, later
it is still an alternative to introduce TOSCA descriptor support in Occopus.

It is important to note that based on the proposed implementation design of MiCADO the
orchestrator tool is planned to be completely hidden from the users of MiCADO. The tool will
only be interfaced by the components running on the MiCADO server (e.g. policy keeper).
The only interface of MiCADO is the submitter through which TOSCA descriptors will be
processed. This way MiCADO users should not even recognise if the cloud orchestrator tool
is replaced by another. Therefore the selection of the Orchestrator tool do not need to be
affected by the popularity of the tool, only by the available functionalities.

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 16 of 36

8. Container Orchestration

In the MICADO framework the applications and services are executed as containers. In this
chapter the three most popular and mature Docker Clustering tools will be investigated and
finally a candidate will be selected to be integrated into the MiCADO framework.

8.1 Investigated tools

Rancher

Rancher is an open source software developed by Rancher Labs. Rancher provides entire
software stack that is needed to manage containers in production. The Rancher platform
consists of four major components: infrastructure orchestration, container orchestration and
scheduling, application catalog and enterprise-grade control. The entire software stack is
running in one Docker container. Rancher provides a web and a command line interface to
manage the Rancher server.

Rancher takes virtual machines from cloud provider, data center or PCs to create an
infrastructure for the container cluster. Rancher has an own container orchestrator and
scheduler framework called Cattle, but it also supports other popular frameworks like Docker
Swarm, Kubernetes and Mesos.

Rancher has a built-in, public application catalog to deploy applications. In this catalog users
can create their own private catalog to manage their private applications. This catalog works
as an application repository for the created infrastructure.

Rancher supports enterprise grade user management with integrated LDAP and Active
Directory authentication. The Rancher architecture and the provided tools are showed in
Figure 3.

Figure 3 The Rancher architecture

Rancher creates environment to separate different clusters from each other. Every host,
container and Rancher resources are created and belong to an environment.

The Rancher server will manage every resource and cluster inside the environment.
Rancher takes Linux hosts to build a cluster in an environment. There are some

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 17 of 36

prerequisites against the hosts. They have to support Docker 1.10.3 or higher version, they
should have minimum 1GB ram, ability to connect the Rancher server and ability to be
routed to any other host in the same environment on the Rancher network. After a node is
added to the Rancher environment, a rancher agent container is launched on the node. After
that, the node can be used to create a cluster inside the environment.

Rancher provides a container-to-container overlay network, using IPsec tunneling. On this
network the containers will be assigned to the Docker bridge network and the Rancher
managed network. Containers on different nodes can communicate with each other on the
Rancher managed network. Rancher implements a distributed DNS service by using its own
DNS server. Each healthy container is added to the DNS service and reachable with their
service name.

In Rancher the default environment and cluster management platform is Cattle. Cattle uses
the Rancher Compose tools which is the multi-host version of the Docker Compose. Docker
Compose is used for service definition meanwhile Rancher Compose will deploy and
schedule the defined service inside the environment.

Rancher uses HAProxy as the default load balancer. Every environment has their own load
balancer. The load balancer uses the Round Robin algorithm from the HAProxy to select the
target node. Rancher load balancer also supports Layer 4 and Layer 7 load balancing. With
Layer 4 load balancing Rancher can link services and direct traffic to a defined port. The
Layer 7 load balancing uses 1 defined port and uses HTTP headers to separate the services
from each other and directs the traffic to the services.

Rancher in the Cattle environment uses distributed health monitoring system by running
network agents on the hosts for health checking the containers. The network agent uses
HAProxy to internally validate the health status of the running services in the environment.
Users can define health check policy with Rancher Compose files.

The user can create scheduling policies inside a Cattle environment. Users can set labels on
the hosts and on the containers, with these labels users can define scheduling rules. With
these rules users can define which container to be launched on a host with a specific host
label or name.

Kubernetes

“Kubernetes is an open-source platform for automating deployment, scaling, and operations
of application containers across clusters of hosts, providing container-centric infrastructure.”
[13]

Kubernetes can schedule and run application containers on clusters of physical or virtual
machines which located in a public or private cloud or in a datacenter. However, Kubernetes
also allows developers to move from a host-centric infrastructure to a container-centric
infrastructure. Kubernetes provides the infrastructure to build a truly container-centric
environment. [13]

Kubernetes defines a new component, the pod. The pod is a group of one or more Docker
containers, the shared storage for those containers, and options about how to run the
containers. Pods are always co-scheduled, run in a shared context and one pod is assigned
to one node. A pod models an application-specific logical group, it contains one or more

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 18 of 36

application container which is relatively tightly connected.

“Containers within a pod share an IP address and port space, and can find each other on
localhost address. Applications within a pod also have access to shared volumes, which are
defined as part of a pod and are made available to be mounted into each application’s
filesystem.”

Pods will not survive scheduling failures or node failures. Due to the fact, that pods represent
running processes on nodes in the cluster, it is important to allow those processes to
gracefully terminate when they are no longer needed. Each container in a pod has its own
image. Kubernetes only supports Docker images. Kubernetes supports public registry like
Docker Hub, and also supports private registry, like Docker Registry, to pull the defined
images.

Figure 4 The Kubernetes architecture

The pods are mortal, therefore Kubernetes uses Kubernetes Services for long term services.
A Kubernetes Service is an abstraction which defines a logical set of pods and a policy by
which to access them.

A Kubernetes cluster can contain many components and they can run many services on
each node. Kubernetes node has to run necessary services to run application containers

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 19 of 36

and be managed from the master system.

The master components are those who provide the cluster’s control plane. The master
components are responsible for making global decisions about the cluster, like scheduling
and detecting or responding to cluster events, like starting a pod. Master components can be
run on any node in the cluster. The kubelet is the primary node agent which runs the pod’s
containers via Docker, mounts the pod’s required volumes, or periodically executes any
requested container liveness probes. The front-end tool of the Kubernetes cluster is the
kube-apiserver which expose the Kubernetes API. “The kube-controller-manager is a binary
that runs controllers, which are the background threads that handle routine tasks in the
cluster. Logically, each controller is a separate process, but to reduce the number of moving
pieces in the system, they are all compiled into a single binary and run in a single process.

The kube-scheduler watches newly created pods that haven’t got a node assigned, and
selects a node for them to run on it. The scheduler is pluggable, and the Kubernetes will
support multiple cluster schedulers and even user-provided schedulers in the future.”

The etcd is used as Kubernetes’ backing store and all the cluster data about the cluster is
stored here. Each node runs Docker, which takes care of the details of downloading images
and running containers. The architecture of the Kubernetes platform is shown in Figure 4.

The main tool to manage Kubernetes cluster is the kubectl. The kubectl is a command line
interface to run commands against the cluster. The kubectl will communicate with the Docker
client on every node through the native Docker CLI. Many Docker command has a kubectl
equivalents like docker run or docker ps.

Kubernetes also provides a web user interface called Dashboard. Dashboard is enabled
since version 1.2 of Kubernetes by default. With the Dashboard the user can inspect and
manage the Kubernetes resources and also able to deploy containerized applications.
Kubernetes supports many network implementations which satisfy the Kubernetes
fundamental requirements. Kubernetes imposes that all containers can communicate with
each other and with all nodes without NAT, a container and others see the same IP address
which is allocated to the container. Kubernetes uses the “IP-per-pod” model. Every pod has
different IP address and the containers inside the pod can communicate with each other on
localhost. One of the most popular network implementation is Flannel. Flannel is a very
simple overlay network that satisfies the Kubernetes requirements. With Flannel, every pod
can communicate with each other inside the cluster.

All communications from the cluster to the master is terminated at the apiserver. By default,
the apiserver is listening on a HTTPS port. For secure communication nodes are provisioned
with the public root certificate of the cluster. Master can communicate with nodes on two
primary paths. The first is between the master apiserver and the node kubelet process. This
connection is terminated on the kubelet HTTPs port. In this path the master can fetch logs
for pods or attach to running pods. The second path is from the master apiserver to any
node, pod or services through the apiserver’s proxy function. This is a plain HTTP
connection.

Kubernetes provides liveness probes to detect the health status of the pods. The diagnostic
is performed periodically on a container. There are three possible diagnostic options. The
kubelet can execute a command inside the container or perform a tcp check on the specified

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 20 of 36

port or perform a HTTP Get against the container IP address to get the health status. The
probe can return with Success, Failure or Unknown status. The user can create a probe
description which will be executed by the liveness probes.

Kubernetes also provides a Node Problem Detector daemon which monitors the node
health. It collects node problems from various daemons and reports them to the apiserver. It
provides a kernel issue detection which supports only the file based kernel logs in version
1.2 of Kubernetes.

Kubernetes has a built in auto scaler component. The Kubernetes autoscaler was
implemented as a control loop. Every pod has a defined target CPU utilization. The
autoscaler periodically queries CPU utilization of the pods. Then, it compares the value of
the pods’ CPU utilization with the target and adjust the number of replicas if needed.

Kubernetes supports external load balancer which can be provisioned from the cloud
provider or users can create their own external load balancer.

The Kubernetes cluster has two type of users, the service accounts managed by Kubernetes
and the normal users. Normal users are managed by an external, independent service. An
admin has to add the users to a Kubernetes cluster. Kubernetes does not have objects
which represent normal user accounts, and users cannot be added to a cluster through an
API call. This type of account is for humans who will use the cluster. The service accounts
are for processes which run in pods.

The service accounts are managed by the Kubernetes API. These accounts are tied to a set
of credentials which are mounted into pods allowing in cluster processes to talk to the
Kubernetes API.

Docker Swarm

Docker Swarm [14] is a native clustering tool for Docker. It turns a pool of Docker hosts into
a single, virtual Docker host. Docker Swarm serves the standard Docker API therefore every
tool which uses the standard Docker API can be used with Docker Swarm.

Since the 1.12 version of the Docker Engine, the Docker Swarm is included into the Docker
Engine like swarm mode. With swarm mode, the Docker Engine can natively manage a
cluster of Docker Engines. To deploy application services to the swarm and to manage
swarm behavior is also possible through the Docker CLI.

In a swarm cluster there are two type of nodes: the manager and the worker nodes. The
manager node gets the service definition. It divides the service into tasks and dispatches
them to the worker nodes. It also performs the cluster management. The worker node
receives and executes the task from the manager nodes. The service is a definition of tasks
and the tasks are the atomic scheduling units in the swarm. The task is carried in a Docker
container and assigned to one node. It cannot be moved to another node, therefore the task
can only run or fail on the original node. Figure 5 shows the architecture of the swarm
cluster.

There are two types of service deployment: replicated and global service. The global service
runs on every node in the cluster and when the new node is added to the cluster the global
service will automatically start on it. The replicated service runs in a specified number in the

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 21 of 36

cluster.

Figure 5 The Docker Swarm architecture

The swarm mode’s public key infrastructure is built into the Docker Engine. The nodes in the
swarm use Transport Layer Security (TLS) to authenticate, authorize and encrypt the
communication between themselves. In the initialization state of the swarm cluster, the first
manager node creates a root Certification Authority (CA) to secure the communication, or it
uses the specified CA which is set in the initialization command parameter. The swarm
should use minimum version 1.2 of TLS to secure the communication.

Creating a swarm cluster consists of many steps. First, the user has to initialize nodes with
Docker Engine in swarm mode. After that, the user has to choose the swarm manager to
create the cluster. Finally, the user has to add the other nodes to the swarm cluster as
swarm workers. The prerequisites of the nodes are that they can run the 1.12 or higher
version of Docker Engine in swarm mode and they can reach each other on the network.
Optionally, the user can add more swarm manager to the cluster. All the swarm managers
will be members of the Raft 1consensus group. On a built swarm cluster the defined services
are deployable and scalable on demand. The scheduling of the created task is made by the
swarm manager.

Swarm mode natively supports the overlay network to create a container-to-container
network. Multiple services can be attached to one overlay network and the service discovery

1
 https://raft.github.io/

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 22 of 36

assigns a virtual IP address and DNS entry to each service. Therefore, all the services on an
overlay network are reachable with their service names.

Swarm mode makes it possible to publish ports for services, making them available from the
outside of the cluster. All nodes are a member of an ingress routing mesh. The routing mesh
enables each node in the cluster to accept connections on a published port, and routes all
incoming requests to an active container in the cluster. Swarm uses an easy to use external
load balancer like HAProxy to route request to a swarm service.

Docker swarm cluster’s health can be monitored through the node API in JSON format. All
the swarm cluster nodes’ health can be queried from any manager node. Since Docker
Engine 1.12, it can perform a descripted health check on the application inside the container
and the status can be queried through the Docker CLI. The health check method has to be
described in the Dockerfile.

“Docker Stacks and Distributed Application Bundles are experimental features introduced in
Docker 1.12 and Docker Compose 1.8, alongside the concept of swarm mode, and Nodes
and Services in the Engine API. Similarly, a docker-compose.yml can be built into a
distributed application bundle, and stacks can be created from that bundle. In that sense, the
bundle is a multi-service distributable image format. As of Docker 1.12 and Compose 1.8,
the features are experimental. Neither Docker Engine nor the Docker Registry support
distribution of bundles.” [15]

8.2 Selected service: Swarm

The three tools outlined above have many similar features. The features are compared in the
following table:

Table 4 Comparison of Docker Clustering tools

Function Docker swarm mode Rancher Kubernetes

Docker container support X X X

Native command line
interface

Docker CLI Rancher CLI Kubectl

Graphical User Interface - X X

Private repository support X X X

User authentication - X X

Container level network X X X

Secure communication
within the cluster

X X X

Application monitoring X X X

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 23 of 36

Station monitoring X - X

Application scaling X X X

Automatic application
scaling

- - X

Load balancing X X X

Scheduling X X X

Live update X X X

External storage support X X X

Modular design - - X

Table 4 shows the evaluation of all the features the three different clustering tools have.
However there are several functionalities in the table we do not rely on when integrating one
of the tools as a Container Orchestrator in MiCADO.

 Graphical User Interface is not needed for Container Orchestration in MiCADO since

MiCADO will offer its services through its submitter, and will hide all other internal

services to avoid by-passing the submitter. Moreover, graphical user interface will be

implemented on the client side of the MiCADO submitter service.

 Since Cloud Orchestrator is considered as an internal service, it is not exposed for

external usage, there is no need for User authentication either.

 Decision on application scaling is going to be implemented by MiCADO therefore

Automatic application scaling is not needed in our case.

 Live update and Modular design aspects are not relevant in case of MiCADO since

for stability reasons we stick to a specified version and do not plan to integrate to

separate modules.

Having a look at the table again, the tools are more or less equivalent regarding the features
MiCADO will rely on. The selection therefore is not driven by features but by observations
and experiences. SZTAKI has deployed all the three systems and used them for several
weeks. Here is the summary of the experiences.

Docker Swarm uses default Docker CLI therefore every tool which is compatible with the
default CLI can use Swarm. Kubernetes uses a kubectl command line interface which is
different from the Docker CLI and the two CLIs are not compatible with each other.

Kubernetes defines a new container format, the pod. Pods contain one or more Docker
containers and this is the smallest schedulable component in Kubernetes. This component
provides some new features but introduce a new layer and a new service format in the
system. The user or developer must create more descriptors to create pods and services
comparing to Swarm.

Kubernetes has a modular architecture containing many components. This is a good feature
because the architecture is more flexible and swappable but more complex, too. All

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 24 of 36

components must be configured during creation of MiCADO worker node which is more
difficult and generates overhead. Based on WP6 experiences these Kubernetes components
generate more network overhead than Swarm. Swarm cluster scales faster than Kubernetes.

Docker Swarm is a built-in solution in the Docker engine therefore the cluster building
process is easier and does not require any other component. However, Kubernetes has a
more complex building process because of the modular architecture and requires more third
party components like etcd key-value store. Swarm has a built-in container network however
the Kubernetes uses third party container network plugins.

Docker Swarm is an “out of the box” container cluster solution which developed by the
Docker developers while the Kubernetes is a more complex and robust system providing
extra features but claim a stable and permanent base infrastructure and generate more
overhead on the cluster than Swarm.

Because of the new features and components, users and developers who know the Docker
technology have a bigger learning curve with Kubernetes than with Swarm.

Comparing the developer communities working with the tools, Kubernetes has a wider
community behind than Swarm.

However, it is important to mention that during integration of Swarm in MiCADO,
interoperability and interchangeability aspects are taken into account to enable switching
between clustering tools later if necessary with reasonable work.

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 25 of 36

9. Occopus

9.1 Main characteristics

This section gives an overview of the most significant and valuable characteristics of the
Occopus solution including multi-cloud support, multiple configuration management support,
health monitoring, descriptors, multiple node definition support, scaling, on-the-fly, dynamic
reconfiguration of an infrastructure, interfaces and error reporting support.

Occopus supports orchestration activities on various cloud types, i.e. on public, private, multi
and hybrid clouds. Occopus does not depend on any cloud type specific feature, therefore it
is operational in any circumstances provided that the Cloud API is accessible. The
orchestration in Occopus involves the startup of the virtual machines with contextualization
and optionally health monitoring remotely. In the current version Occopus is mainly utilizing
cloud-init for contextualization, however it is not a requirement and can be skipped if not
needed for setting up services. The health monitoring of the virtual machines can be
optionally disabled in case they are behind in a private cloud and no access to the virtual
machines are enabled.

The current cloud APIs Occopus is able to interact with are EC2, Nova, Occi, Docker,
CloudBroker and CloudSigma. These interfaces covers the most important ones where
MiCADO is designed to be used.

In some situation it may happen that a predefined node which is reusable in different
infrastructures (e.g. mysql) is configured in a way that it requires a certain configuration
manager (e.g. chef) while other nodes in the same infrastructure require another type of
configuration manager (e.g. puppet). This requires the orchestration to coordinate the
infrastructure deployment with several different kind of Config Management services.
Occopus is able to handle these situations and, even more, nodes with the same type of
Config Manager but on different location does not cause any problem either.

When building an infrastructure running services on a node is the basic goal in every
situation. The infrastructure is operational when all the services running on the node are
properly working. There are solutions where config management tools (e.g. chef) can check
if a service is running correctly. However, in certain cases, for example, when the node does
not utilize any configuration management tool Occopus itself should provide some simple
health monitoring primitives. These include testing the network access of the node (e.g.
ping), testing the access of a port or an url of a node and testing the mysql database
connectivity. These have been selected as the most important primitives however, new
primitives can be added if required.

Occopus operates based on descriptors that describes the infrastructure layout, the
individual nodes, the resources to be used, the configuration management details, the
contextualization of the nodes and the way the services on the nodes can be monitored.
First of all, an infrastructure description is needed to list the nodes, their names, their
numbers (scaling) and their dependencies based on which the order of deployment is
calculated by Occopus. The infrastructure description tells Occopus what needs to be
instantiated, while the next level descriptors called node definition tells how the nodes should
be created. A node may have multiple implementations (e.g. one for Amazon, one in the
user's local OpenStack cloud, etc.) and the selection is done by Occopus, however the

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 26 of 36

available implementations can be filtered for example to exclude the unwanted
implementations.

Figure 6 Occopus descriptors

The node definition contains four main sections. The first and obligatory section called
“Resource” defines the target resource (cloud interface endpoint, image id, etc.) where the
virtual machine (or container in case of Docker) must be instantiated. The next three
sections are optional. The “Config management” section defines the configuration manager
tool to utilize (e.g. chef) and the main parameters associated with it (e.g. chef server
endpoint, role, validator key, etc.). The “Health-check” section details how the service -
running on the node - can be monitored externally. Currently supported primitives are ping,
port checking, database access, URL checking. Finally, the section called
“Contextualization” contains the description how the instantiated virtual machine is
contextualized. Optionally, it may point to an additional file containing the details of
contextualization, for example in case of cloud-init, it is the user-data file. With the user-data
file for cloud-init one may perform account management i.e. create users/groups, may
deploy credentials i.e. public keys, may deploy files/scripts, may install software packages by
OS package management or configuration manager (e.g. chef/puppet), but may execute any
command or script to perform any manipulation and preparation at start-up. However,
Occopus is not stuck to cloud-init, contextualization handlers are also implemented as
plugins, since different clouds may require own contextualization facility.

Each node has a node definition which defines what to instantiate. In case a node has
multiple implementations, one may perform selection by filtering the appropriate one through
the infrastructure description. For example, a node has a definition where the service
deployment is implemented by a config manger (e.g. chef) while another version implements
service deployment with another config manager or without so the infrastructure developer
can decide which version to use. It is also possible that one node definition describes the
details of the instantiation for one cloud while another describes for another target cloud.
Selecting among these definitions means selecting the appropriate target cloud.

Horizontal scaling functionality is a kind of natural requirement towards the orchestration

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 27 of 36

tools where the number of instances of a certain node can be increased and decreased.
When increasing the number of instances, it is the task of the infrastructure to recognize the
new instance and include it in the flow of operations. Occopus only performs the creation
and contextualization of the new instance. It is the task of the deployed infrastructure to
recognize the new instance. For example, Consul can be used for this purpose as it is
detailed in some use cases at [3]. Hard limits for the number of instances can be defined in
the infrastructure description as minimum and maximum. At start up Occopus creates the
minimum number of instances for a node. Occopus will not let the number of instances go
beyond these limits. Vertical scaling - where the capacity of the virtual machine is updated -
can be implemented based on the multi node definition feature of Occopus in case of
stateless services.

There are rare situations when an already running infrastructure must be updated not only
from scaling aspect, but also its layout i.e. a new node must be added or one of the running
ones must be excluded from the entire infrastructure. A possible use case for that is when a
database backend is replaced with a different one. For this functionality, Occopus gives the
possibility for the building phase to specify an already existing infrastructure, which is then
rebuilt. Occopus first takes the existing infrastructure then compares it to the target one and
performs realizing the difference i.e. creating new nodes and destroying unwanted ones.
Similarly to the scaling functionality, the infrastructure must be prepared for such situation
since Occopus itself does not alter the configuration of an already existing node instance.

Building and maintaining an infrastructure can be performed through different interfaces.
Occopus has CLI and REST API. Both, provides the main functionalities, like building,
maintaining, scaling or destroying. Moreover, the CLI and the REST interfaces can be used
in an alternate way, which means after building an infrastructure by the CLI one may
continue the maintenance of the infrastructure with the help of the REST API. During
maintenance the opposite direction is also a supported use case. There is a third interface
namely the library API that enables developers to integrate the functionalities of Occopus as
a library and use it by invoking the API methods.

Both during development and maintenance Occopus provides error reporting mechanism
and logging to ease the development and maintenance of the infrastructure. When
developing an infrastructure the focus is on creating the appropriate descriptors for the node
and for the infrastructure. Occopus performs syntax and in some cases semantic checking
on the descriptors. Once a descriptor, e.g. cloud-init configuration has some syntax error,
error report details the exact location and the nature of the error in a user friendly form.
During the maintenance of the infrastructure, errors occurring during the communication of
the Cloud APIs are reported in details and the logging information enables the analysis of
the history of activities Occopus performed.

Occopus is able to build, maintain, scale and destroy the infrastructure. As a summary,
Occopus is a light-weight, easily deployable and usable orchestration tool with high level of
flexibility and cloud-independence.

9.2 Latest developments

Occopus is developed by MTA SZTAKI. The aim of the developments during the COLA
project is two-folded. One main direction in developments is to increase the user experience
by fixing handling issues, by improving interactions and by introducing user-friendly features.

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 28 of 36

Another important direction in developments is to improve functionalities required by the
COLA project by adding new plugins and by updating behavior to fit to the MiCADO
architecture. In the last 6 months, there have been three releases with the following release
notes:

Release v1.5
 Reimplemented cloudbroker plugin: handle instances, not jobs

 Remove cloud-broker node resolver (replaced by cloud-init)

 Add multiuser support in handling redis server

 Improve error handling and logging in cloudsigma, ec2 and occi plugins

 Improve nova plugin to handle interruption

 Add infra and node name syntax checking

 Add new Occopus installer script

 Improve parallel node creation

Release v1.4
 Improve node handling in cloudsigma plugin

 Improve floating ip handling in nova plugin

 Precise syntax error reporting for descriptors

 Unique VM name for nodes as default

 Introduce user defined VM name templates

 Improve error/exception handling and reporting

 Fix logging and evaluation in schema checker

 Fix calculating default scaling min, max

 Restructure health-check reporting

 Deprecate 'network_mode' attribute in docker plugin

 Introduce attach and detach functions in rest

 Compatible REST and cmd-line functions

Release v1.3
 New Puppet config-manager plugin: server-free, called "puppet_solo"

 Remove external redis config for occopus-import command

 Remove attribute dependency from plugins

 Reimplement floating_ip handling in nova plugin

 Fix bug in filtering

 New tutorial for puppet_solo plugin

 New tutorial to introduce autoscaling with prometheus

Here are the most important developments, serving the requirements of the MiCADO
integrations in the COLA project:

 Occopus configuration has been updated in order to be docker compliant. Internal

configuration was modified to separate the Occopus service from its database

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 29 of 36

service, called redis. After the update, Occopus and its redis database can be

executed in two separate containers under docker.

 Occopus command-line functions has been modified in order to let the user handle

the same infrastructure through REST-API and with command-line functions in an

alternate way. The infrastructure deployed through the REST API can be

manipulated by command-line functions and vica versa.

 Occopus docker plugin has been tested and updated to be compatible with the latest

docker version.

 Health-check reporting has been updated in order to be simpler and more

understandable for the user.

 Improving garbage collection in cloudsigma plugin in order to handle deployment

interruption in a way to deallocate all partially allocated resources.

 Introduce new Occopus installer script to provide a one command way of installation

and default configuration. Currently, Occopus can be installed as docker container,

too.

 New cloudbroker plugin which allocates cloudbroker instances instead of cloudbroker

jobs/applications. With this new plugin it is possible to deploy the MiCADO

architecture and to scale up and down the number of MiCADO worker nodes.

Beyond the current state, Occopus is continuously developing towards the MiCADO
requirements raising during building the MiCADO prototype.

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 30 of 36

10. Implementations of MiCADO Orchestration Layer

In Chapter 6 the development plan of MiCADO Orchestration Layer has been introduced
detailing the architecture, components, functionalities and behavior at high-level. This
chapter details the current status of MiCADO at the implementation level.

There are already several versions of MiCADO (1/a, 1/b, 2/a 2/b) developed and released by
the time of this deliverable. We give a short overview of these releases. The very next step
in the development is also described.

Based on chapter 7, WP6 will use Occopus as the cloud orchestrator in the MiCADO
platform. The initial versions of MiCADO has been implemented by using Occopus as cloud
orchestrator. Similarly, according to chapter 8 Swarm will be used as container clustering
tool in the first versions of MiCADO. In order to realize the controlling loop in MiCADO, a
monitoring system was also necessary. The current selection for the monitoring system is
Prometheus about which the next deliverable D6.2 will contain a detailed description.

10.1 MiCADO v0

This version has two sub-versions: v0/A and v0/B. MiCADO v0/A (see Figure 7) uses only
Linux services to develop and create configuration files in a Linux based environment. We
soon discovered that supporting the latest virtualization technologies, such as Docker
containers makes MiCADO better. So we implemented the version v0/B using Docker. Both
versions are highly scalable.

Figure 7 Architecture of MiCADO v0/A

Scaling is executed in two layers: first user requests have to be shared in a load balancer
layer, and then the requests have to be executed in the worker node where the

Node monitor
Node monitor

MICADO
WORKER
NODE

Info on
nodes/containers

Worker node create/destroy/scale up hor/ver
Occopus

Prometheus

Prometheus
alerting and
notification

Scale/update
worker
nodes

MICADO
MASTER
NODE

MICADO
WORKER
NODE

Launch
Master
node

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 31 of 36

computational tasks are getting done. MiCADO automatically scales both the load balancers
(not part of Figure 7) and the worker nodes and makes sure that the implemented
application works as it is expected with the optimum number of resources.

Version v0/A utilizes Linux based virtual machines to run all MiCADO services as Linux
services. This is the base infrastructure of all further versions and all developments are
aimed at making it better while using the same concept. In this version user applications are
hard coded into the worker node start-up configuration files because knowledge of the cloud-
init files is required.

Version v0/B extends v0/A by implementing Docker, a well-known virtualization technology.
In this version every service is dockerized to create shorter configuration files which are
more understandable by the users. Implementing user applications doesn’t require intensive
knowledge of the cloud-init files but the application still have to be specified in these files.
Instead of creating all the configuration files and setting up the runtime environment, users
can simply paste their application with a “docker run” command into the end of the
application node descriptor file.

Comparing to the development plan, presented in Chapter 6, most of the components are
missing, but automatic scaling of worker nodes is already operational. In this version the
entire MiCADO infrastructure including the Master and Worker nodes were deployed by
Occopus as an external service instead of being part of the Master node. This modification
of the original design was made to simplify the development and testing, but later it will be
eliminated.

10.2 MiCADO v1

Figure 8 Architecture of MiCADO v1

In MiCADO v1 (see Figure 8) WP6 improved two major features. The first one was that not

Node monitor
Node monitor

MICADO
WORKER
NODE

Info on
nodes/containers

Container create/destroy/scale
up/down, node evacuation, etc.Swarm

Worker node create/destroy/scale up hor/ver
Occopus

Prometheus

Prometheus
alerting and
notification

Scale/update
worker
nodes

MICADO
MASTER
NODE

container

container

container

MICADO
WORKER
NODE

Docker CE Docker CE

Launch
Master
node

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 32 of 36

every application makes advantage of a fully scalable load balancing layer so there were
unnecessary virtual machines that was eliminated. The second and probably the bigger one
was to make it easier to change user applications. The two problems were solved by
implementing Docker Swarm. With the help of Swarm users do not need to write their
applications into the configuration files before they build up the infrastructure and do not
need to know cloud init configuration files in advance. Instead, with the help of Swarm they
can start applications with a simple command. Swarm also has a built-in load balancer that
can be used in case the application is more a computation heavy and not used by a huge
number of users and to deal with user requests (V1/A). In other situations the previously
implemented load balancing layer is necessary (V1/B).

MiCADO v1/A version extends v0/B by adding Docker Swarm to the orchestration layer. In
this version there is no separate load balancing layer because Swarm’s built-in load balancer
is used. It can only scale the worker nodes. As a result users do not need to modify cloud-init
files at all. Users can start the application as a Docker service on the Master node through
the Swarm Docker API. This requires less knowledge of the cloud-init files making easier
replacing the user application later since the application is not hard-coded anymore into the
cloud-init files.

Version v1/B extends v1/A with a scalable load balancing layer to support user heavy
applications where Swarm’s load balancer is a bottleneck and a fully scalable load balancing
layer is required. WP6 implemented the same layer used in v0/B which means that both the
load balancing and the application layer can be scaled up/down independently. User
applications can be started as Swarm services as in the v1/A version.

Figure 9 Architecture of MiCADO v2

This version (see Figure 8) implemented the orchestration layer in the MiCADO platform
combining with Occopus, Swarm and Prometheus to realize the controlling loop for the
resource allocation and release. Based on the information Prometheus collected on the load

Node/container
monitor

Node/container
monitor

MICADO
WORKER
NODE

Info on
nodes/containers

Container create/destroy/scale
up/down, node evacuation, etc.Swarm

Worker node create/destroy/scale up hor/ver
Occopus

Prometheus

Prometheus
alerting and
notification

Scale/update
worker
nodes

Scale/update containers

MICADO
MASTER
NODE

container

container

container

MICADO
WORKER
NODE

Docker CE Docker CE

Launch
Master
node

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 33 of 36

of the worker nodes, the properly configured alerting system (which is a partial realization of
policy keeper) of Prometheus is able to instruct Occopus (through its REST interface) to
scale up/down the MiCADO worker nodes. Occopus is still implemented as an external
service in this version. Swarm has been integrated to act as a container orchestration
component.

10.3 MiCADO v2

In MiCADO v2 (see Figure 9) we implemented container monitoring, and with the help of the
collected information, now the deployed application can be also scaled up/down in the
container level. It means that changing the number of containers of the application and the
worker nodes is only required if no resource left on any of the worker nodes. This gives
faster feedback in the control loop and with container level scaling this solution can meet real
time demands better. Deploying multiple applications on the same infrastructure has
improved as well and limiting the resource usage of the applications works. Application
specific alerts in Prometheus are generated and removed automatically when container
application starts or finishes.

In MiCADO v2 (see Figure 9) development targeted the implementation of the control loop of
scaling up and down the number of container instances for a given container service.
Comparing to the previous version, the link between the box denoted by ‘Prometheus
alerting and notification’ and the box denoted by ‘Swarm’ has been implemented. This new
version is now able to continuously monitor the resource consumption of the container
services (‘Node monitor’ on worker node in Figure 8 became ‘Node/container monitor in
Figure 9) and scales up if resource consumption is above a certain threshold. Occopus is
still implemented as an external service in this version.

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 34 of 36

10.4 MiCADO v3 (under development)

Figure 10 Architecture of MiCADO v3

In MiCADO v3 (see Figure 10) the next proposed step, which is currently being implemented
is the integration of Occopus in the MiCADO master node.

Occopus will be deployed as a microservice inside the MiCADO Master node to support the
creation and shutdown of the worker nodes. Once Occopus is integrated, the deployment of
the Master node must be automatized. For this purpose, there are several alternatives: using
Occopus with a one node description, using docker compose with a description of containers
services on the Master node or using any other orchestrator tool.

Node/container
monitor

Node/container
monitor

MICADO
WORKER
NODE

Info on
nodes/containers

Container create/destroy/scale
up/down, node evacuation, etc.Swarm

Worker node create/destroy/scale up hor/ver
Occopus

Prometheus

Prometheus
alerting and
notification

Scale/update
worker
nodes

Scale/update containers

Create
Worker
nodes

MICADO
MASTER
NODE

container

container

container

MICADO
WORKER
NODE

Docker CE

Create
container
infra

Docker CE

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 35 of 36

11. Conclusions

In this deliverable we introduced the design and implementation of the MiCADO framework
starting with the big picture in Chapter 5, continuing with the design plan of the orchestration
layer in Chapter 6, detailing the investigation and selection of the tools for the
implementation in Chapter 7, 8, 9 and finally showing the phases of MiCADO development in
Chapter 10.

The design plan of MiCADO covers the deployment, orchestration for cloud resources and
containers, the monitoring of cloud resources and containers, the decision making
functionality of the controlling loops and finally the submitter functionality.

For cloud deployment and orchestration Occopus has been chosen, for container
orchestration Swarm with Docker has been chosen. For monitoring the Prometheus tool has
been selected. Based on these tools several implementations of MiCADO have already been
done.

Implementation versions of MiCADO have shown the progress of the MiCADO framework
towards the design plan step by step. Deployment and orchestration in MiCADO have been
successfully implemented by the time of writing this deliverable, since the key components
namely Occopus and Swarm are fully integrated together with Prometheus to form the
double controlling loops for resources and containers.

The next step for the implementation of the MiCADO framework is MiCADO version 3 which
has been introduced in Chapter 10.4. Beyond MiCADO v3 the implementation must continue
with the MiCADO submission service and later with the Optimizer component.
Implementation of the MiCADO submitter and Optimizer requires a strong cooperation with
WP5 which defines the format of the infrastructure description and policies.

Releases of the Occopus tool are listed on the official Occopus webpage [3] under the
‘Releases’ menu. The installation procedure of the latest release is described in the Occopus
manual located at http://occopus.lpds.sztaki.hu/user-guide under the ‘Setup’ section. The
source code of Occopus (including all previous versions) can be downloaded from
https://github.com/occopus .

Releases of the MiCADO framework are listed on the official COLA website [16] under the
‘Tutorials’ menu. Here one can download the package, personalize the settings and deploy
MiCADO based on the detailed step-by-step description of the tutorials located at
http://project-cola.eu/micado-tutorials/ .

http://occopus.lpds.sztaki.hu/user-guide
https://github.com/occopus
http://project-cola.eu/micado-tutorials/

 D6.1 Prototype and documentation of the cloud deployment orchestrator service

Page 36 of 36

12. References
[1] Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2015). Migrating to Cloud-Native Architectures Using

Microservices: An Experience Report

[2] CloudBroker GmbH. “CloudBroker Platform”. [Online]. Available: http://cloudbroker.com/platform/.

[Accessed: 7 Mar 2017]

[3] Occopus website, http://occopus.lpds.sztaki.hu

[4] Linh Manh Pham, Alain Tchana, Didier Donsez, Noel De Palma, Vincent Zurczak, et al. Roboconf: a

Hybrid Cloud Orchestrator to Deploy Complex Applications. 2015 IEEE 8th International Conference on

Cloud Computing, Jun 2015, New York, United States. <10.1109/CLOUD.2015.56>. <hal-01228353>

[5] X. Wang, Z. Liu, Y. Qi and J. Li, "LiveCloud: A lucid orchestrator for cloud datacenters,"4th IEEE

International Conference on Cloud Computing Technology and Science Proceedings, Taipei, 2012, pp. 341-

348. doi: 10.1109/CloudCom.2012.6427544

[6] Caballer, M., Segrelles, D., Moltó, G., and Blanquer, I. (2015) A platform to deploy customized scientific

virtual infrastructures on the cloud. Concurrency Computat.: Pract. Exper., 27: 4318–4329. doi:

10.1002/cpe.3518.

[7] Heat, https://wiki.openstack.org/wiki/Heat

[8] Cloudformation, https://aws.amazon.com/cloudformation/

[9] Marpaung, Sain, & Hoon-Jae Lee. (2013). Survey on middleware systems in cloud computing integration.

Advanced Communication Technology (ICACT), 2013 15th International Conference on Advanced

Communications Technology, 709-712.

[10] Cloudify, http://getcloudify.org/

[11] Binz, Breiter, Leyman, & Spatzier. (2012). Portable Cloud Services Using TOSCA. Internet Computing,

IEEE, 16(3), 80-85.

[12] Terraform, https://www.terraform.io/

[13] Kubernetes overview, https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

[14] Docker, http://www.docker.com

[15] Docker stacks and bundles, https://docs.docker.com/compose/bundles/

[16] COLA website, http://project-cola.eu/

