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4. Introduction 

This deliverable, describes the design and implementation of the MiCADO (Microservices 
based Cloud Application-level Dynamic Orchestrator) scaling decision maker (SDM) 
subsystem. SDM is focusing on scaling virtual machines and container services. MiCADO is 
a compound service providing automatic scaling and orchestration of microservices, as well 
as of cloud resources (virtual machines) required for executing the services. The aim of 
MiCADO is to implement this double orchestration in an intelligent way following the scaling 
policies specified by the user together with the infrastructure description. This scaling 
functionality, realized by the scalability decision service (called Policy Keeper) is described in 
the following sections. 
  
This deliverable, reports the work performed by WP6 as a continuation of work described in 
deliverables D6.1 and D6.2. The work described in this deliverable also utilizes the results 
reported in deliverables produced by WP5 detailing the design of Application Description 
Template with TOSCA representing the description for applications and policies to be 
handled by MiCADO. The deliverables produced by WP8 specifying the application 
requirements are also considered as important input in this deliverable. Moreover, the work 
in this deliverable represents an important input for the deliverables produced by WP7.  
 
The rest of this deliverable is organized as follows: In Section 5 we overview the generic 
architecture of the MiCADO framework, while in Section 6 the design plan of the MiCADO 
scalability decision service is introduced. The next three sections detail the versions of 
MiCADO implemented during the reporting period. Improvements of MiCADO v3.1 are 
shortly introduced in Section 7, while MiCADO v4 integrating a job execution framework is 
detailed in Section 8. MiCADO v5 is introduced in Section 9 as the first version including the 
newly designed Scalability Decision Maker component. Scaling examples are introduced in 
Section 10 to demonstrate the operation of the Scalability Decision Maker component. 
Finally, current status and conclusion closes the deliverable. 
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5. The MiCADO generic architecture framework 

The layers of MiCADO supporting the dynamic application level orchestration of cloud 
applications are illustrated in Figure 1. This generic framework is based on the concept of 
microservices, as defined for example by Balalaie [1]. Cloud computing is a natural platform 
for microservices that provide decoupling of independent components from a monolithic 
application. Cloud enables execution and resource allocation of these independent 
components based on their specific needs. One microservice might require significant 
storage resources while another could be CPU intensive. Cloud execution offers the 
possibility to optimize resource allocation and resource cost dynamically. The alternative 
would be to allocate a monolithic infrastructure, the size of which is large enough to be 
sufficient to cover peak performance as well. The requirement for peak performance 
happens rarely, therefore allocated resources of the monolithic infrastructures remain 
unused in most of the time. 

 

 
Figure 1 MiCADO generic architecture framework 

The layers of the MiCADO generic architecture (from top to bottom), based on the above 
described microservices-based concept are as follows: 

 
1. Application layer. Application layer contains actual application code and data 
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2. Application definition layer. This layer allows definition of the functional 

architecture of applications using application templates. At this level, software 
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application, the application template can be shared with any application that requires 

such an environment. 

3. Orchestration layer. This layer is divided into four horizontal and one vertical sub-

layers. The horizontal sub-layers are: 

a. Coordination interface API. This sub-layer provides access to the orchestration 
control and decouples the orchestration layer from the application definition layer. 
This set of APIs enables application developers to utilize the dynamic 
orchestration capabilities of the underlying layer and supports the convenient 
development of dynamically and automatically scalable cloud-based applications 
by embedding these API calls into application code. 

b. Microservices discovery and execution. This sub-layer manages the execution 
of microservices and keeps track of services running. Execution management 
combines both start-up and shut down of microservices. Service management 
gathers information about currently running services, such as service name, IP 
address and port where the service is reachable and optional service tags to help 
service coordination. 

c. Microservices coordination logic. To reap the benefits from cloud-based 
execution, it becomes necessary to understand how the current execution 
environment is performing. Information needs to be gathered and processed. If 
bottlenecks are detected or the currently running infrastructure appears 
underutilized, it may be necessary to either launch or shut down cloud instances, 
and possibly move microservices from one physical worker node to another. 

d. Cloud interface API. It is responsible for abstracting cloud access from layers 
above. Cloud access APIs can be complex interfaces, as they typically cater for a 
large number of services provided by the cloud provider. On the other hand, the 
microservices execution and coordination logic layers (see b and c) only need to 
shut down and start instances. Abstracting this to a cloud interface API simplifies 
the implementation of the aforementioned layers, and if new Cloud access APIs 
are implemented, only this layer needs to change.  

e. Security, privacy and trust services. The orchestration layer also includes a 
vertical sub-layer that offers services related to security, privacy and trust. These 
services span among multiple levels of the orchestration layer, as it is illustrated 
in Figure 1. The main aim is to save the application developers from detailed 
security management. To achieve this, the security, privacy and trust services of 
the orchestration layer take the general security policies defined at the 
Application definition layer, as well as security credentials for the application 
domain. These inputs are used by the special purpose security policy 
enforcement services to enforce the security policies at orchestration level.  

4. Cloud interface layer. This layer provides functions to launch and shut down cloud 
instances. There can be one or more cloud interfaces to support multiple clouds. 
Besides directly accessing cloud APIs, generic cloud access services, such as the 
CloudBroker platform [2] can be also used at this layer to support accessing multiple, 
heterogeneous and distributed clouds via its uniform access layer.  

5. Cloud instance layer. This layer contains cloud instances provided by 
Infrastructure-as-a-Service (IaaS) cloud providers. These instances can run various 
containers that execute actual microservices. The layer typically represents state-of-
the-art of cloud technology provided by various public or private cloud providers. 
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6. Designing the MiCADO Orchestration Layer 

6.1 General design principles 

In this section, we are giving an overview of the MiCADO Orchestration Layer outlining its 
architecture and basic functionalities in order to let the reader understand how the work 
described in this deliverable fits into the architecture of MiCADO. 
 
It is important to mention that at this level of abstraction; each component is named after its 
functionality. In this section we introduce the overall high-level design where no concrete tool 
is assigned for implementing a particular functionality, to make this layer independent from 
technologies. This architecture has been designed taking COLA deliverable D8.1 - “Business 
and technical requirements of COLA use cases” as input, which specifies the requirements 
of the COLA use cases. 
 
The MiCADO Orchestration Layer is responsible for deploying, executing, scaling and 
managing microservices or network of microservices, and for maintaining the allocation of 
resources required for the microservices. The overall architecture of the MiCADO 
Orchestration Layer (MiCADO for short in the rest of this section) can be seen in Figure 2. 
 
MiCADO essentially forms a cluster which is able to dynamically allocate, attach, or detach 
and release cloud resources for optimizing the resource usage during executing the 
submitted microservices. MiCADO consists of two main logical components: Master node 
and Worker nodes. Master node is the head of the cluster performing the collection of 
information on microservices, the calculation of optimized resource usage, the decision 
making, and the realization of decisions related to handling of resources and scheduling of 
microservices. Worker nodes are volatile components, representing execution 
environments for the microservices, i.e. they are executing the actual microservices. Worker 
nodes are continuously allocated/released based on the dynamically changing requirements 
of the running microservices. Once a new worker node is allocated and attached to the 
cluster, the master node utilizes its resources by allocating microservices to it. 
 

 
Figure 2 Architecture of the MiCADO Orchestration Layer 
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MiCADO Master Node (box with dashed line on the left side of Figure 2) contains the 
following key components: 

 MiCADO Submitter is the primary service request endpoint for creating an 
infrastructure to run an application, managing this infrastructure and the application 
itself. Submitted infrastructures are received by this component. The incoming 
description (e.g. in TOSCA format) is interpreted and the different sections of the 
description are forwarded to the underlying components. 

 Cloud orchestrator is responsible for communicating to the Cloud API in relation to 
allocating and releasing resources, and for building up/shutting down new MiCADO 
worker nodes whenever required. 

 Container orchestrator is responsible for allocating new microservices (realized by 
containers) on the worker nodes, to keep track of their execution, and to destroy 
them if necessary. This component must also realize the scale up and down 
functionality on container services upon request. 

 Monitoring system is responsible for collecting information on load of the resources 
and on resource usage of the container services, and to provide this information for 
the other components on the MiCADO master node. Alternatively, it may provide 
alerting functionality in relation to the measured attributes to detect values that 
require reaction. 

 Policy keeper is the key component that implements policies and makes decisions 
related to allocating/releasing cloud resources and scheduling container services 
among worker nodes. Moreover, this component assures that the cloud and 
container orchestrators are instructed in a synchronized way during the operation of 
the entire system. 

 Optimizer is a background (micro)service performing long-running calculations on 
demand for finding optimized setup of both resources and container infrastructure. 
An optimization calculation can be initiated with the required parameters on 
resources and containers. Following this, the result of optimization is forwarded to the 
Policy Keeper component for consideration and execution. 

 
MiCADO Worker Nodes (boxes with dashed line on the right side of Figure 2) contain the 
following components: 

 Node/container monitor component is responsible for measuring the load of the 
resources and the resource usage of the container services. The measured attributes 
are then provided to the Monitoring system running on the Master Node. 

 Container executor is responsible for starting, executing and destroying containers 
upon requests from the Container Orchestrator on the Master node. 

 Container components are realizing the user services defined in the (container) 
infrastructure description submitted through the MiCADO submitter on the Master 
node. 

 
The basic operation of the architecture above can be summarized in the following way: a 
new application and infrastructure description is submitted through the MiCADO submitter. 
Based on this description, the initial number of MiCADO worker nodes is created by the 
Cloud Orchestrator. Once the MiCADO worker nodes are up and running, the Container 
infrastructure is submitted to the Container orchestrator component which realizes the 
container services on the worker nodes. Once the initial deployment has been done, policies 
related to the application are registered in the Policy Keeper component. The Monitoring 



 D6.3 Prototype and documentation of the scalability decision service 

 

 

 

Work Package: WP6  Page 12 of 74 

 

 

system starts collecting information on the nodes and containers, and the Policy Keeper 
starts updating the deployment (including both the worker nodes and the containers) when 
necessary. The Optimizer performs calculation in the background and provides advice for 
the Policy Keeper after a certain time interval. 
 
In this architecture, the Cloud Orchestrator and Container Orchestrator components together 
with the Submitter realize the initial deployment of the resources and containers. In case 
there are any policies defined in relation to controlling the resource consumption of the 
container infrastructure, the Policy Keeper, Optimizer and Monitoring system components 
together form a controlling loop implementing the predefined policy. Once the initial 
deployment has been done, updates can be only confirmed by the Policy Keeper 
component. 
 
This architecture is built by loosely coupled functionalities like resource allocation/release, 
container allocation/deallocation, initial deployment, monitoring and decisions on scalability. 
For example, the controlling components (Policy Keeper, Optimizer, Monitoring) can be 
detached from the architecture and it is still operational for realizing the initial deployment of 
the submitted infrastructure. 
 
One of the most important aim of this architecture is to provide a modular and pluggable 
framework where different functionalities can be delivered by different components on-
demand, and where these components can be easily substituted. The resulting solution will 
be agnostic to the underlying component implementation.  
 

6.2 Specific design principles related to COLA use cases 

When designing the MiCADO architecture, specific requirements of the COLA project use 
cases have also been considered. There are five categories of requirements defined in D8.1 
by the COLA use cases: system requirements, data requirements, performance 
requirements, security requirements, and other requirements.  

 System requirements relate to the underlying operating system, which is Ubuntu in 

most of the use cases, except for the Saker Solutions use case, where Windows is 

the base operating system.  

 Data requirements for the use cases are relatively low. However, using an external 

database is a good alternative for data intensive applications, if it is required.  

 Performance requirements are planned to be fulfilled by applying the policies and 

utilizing the auto-scaling mechanism. Container applications will be automatically 

scaled together with worker nodes to deliver additional computing resources.  

 Security requirements will be mainly addressed by WP7. However, a set of default 

security mechanisms, such as VPN, encrypted channels and certain firewall settings, 

are going to be supported. Moreover, both private and public clouds will be 

supported. 

 Other requirements in D8.1 include data protection, robustness, and quality of 

service. Even though these extra requirements are not considered as part of the 

main MiCADO architecture they will be investigated together with the application 

owners. 
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When implementing the architecture shown in Figure 2, the tools realizing the different 
components must be integrated together keeping in mind the possibility to replace them with 
alternate solution if it is required later. 
 

6.3 Overview of MiCADO implementation 

In the first phase of implementation reported in Deliverable D6.1, Cloud orchestration and 

Container orchestration (depicted by red boxes in  Figure 3) have been realized. As 

deliverable D6.1 details, Occopus [3][4] implements the cloud orchestration, while Docker 
Swarm [5] implements the Container orchestration subsystem.  
 
In the second phase of implementation, a Monitoring system (depicted by green boxes in  

Figure 3) has been integrated and documented in Deliverable D6.2. As deliverable details, 

the Prometheus monitoring subsystem [6] with Node exporter [7] and CAdvisor [8] 
components (as data sources) on the Worker nodes, has been added to the MiCADO 
implementation. 
 

 
 Figure 3 MiCADO implementation after stage 2 

In the current phase of implementation, the Policy Keeper (to support automatic decision 
making), Dashboard and Submitter with TOSCA support (depicted by blue boxes in  Figure 

3) is going to be introduced. The Optimiser component (depicted by uncolored, dotted box in  

Figure 3) will be the target of the next phase in the implementation work. 
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7. Designing the MiCADO Scalability Decision Maker 
microservice 

The MiCADO Scalability Decision Maker is intended to perform a decision on scaling by 
calculating the optimal number of instances needed to be created. The scaling decision must 
be made on two levels: 

1. Virtual machine level: Scaling up or down the number of virtual machines (on which 
Docker Swarm cluster is realized and the container application is running) realizes 
adding or removing resources from the cluster. Whenever virtual machine level 
upscaling happens, a new Docker node is attached and the Docker cluster grows. 
Downscaling at virtual machine level means removing Docker nodes from the Docker 
Swarm cluster i.e. Docker cluster loses resource. 

2. Container level: In Docker Swarm a (micro)service is realized by containers running 
on the nodes of Docker Swarm in a distributed way. In order to add more resources 
to a particular microservice, the number of instances of the containers (realizing the 
Docker service) must be increased. Docker Swarm makes sure the containers are 
executed in parallel on the nodes of the cluster and the user requests arriving to the 
service is distributed among the containers to be handled. Scaling up and down the 
number of containers of a given service increases the parallelism of the request 
handling at containers level i.e. increases the resources associated to the given 
service. 

In the next sections, the main concept, architecture, operation and low-level policy format will 
be detailed to introduce how the Scalability Decision Maker microservice has been realized 
inside MiCADO. 

7.1 Concept 

In MiCADO there are control loops realized on virtual machine and container levels. Control 
loops are depicted in Figure 4.  
 
The virtual machines (i.e. nodes) are represented by boxes entitled Node1 and Node2. First, 
information is collected on the nodes by the Prometheus monitoring system. As a decision 
maker service, the Policy Keeper component holds the list of monitored parameters 
(extracted from Prometheus) and the scaling rules describing the decision on scaling. Once 
a decision is made, Occopus performs the scaling of the nodes, i.e. launches or destroys 
virtual machines and attaches them as MiCADO workers to the Docker Swarm cluster. This 
mechanism realizes the virtual machine level control loop. 
 
The containers labelled by Cont A, B, C, D are forming a container infrastructure and 
realizing services for the users. Various types of parameters are monitored and collected by 
Prometheus which can be used for decision making. Policy Keeper holds the scaling rules 
for each service and performs the decision in function of the value of the incoming 
parameters. The decision of container scaling is finally realized by Docker Swarm. 
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Figure 4 Control loops in MiCADO 

In the latest MiCADO implementation, the monitoring system is already realized by 
Prometheus, while the orchestration on both levels are implemented by Occopus (on cloud 
level) and Swarm (on container level). To complete the control loop either at the level of 
nodes or at the level of containers, design decision must be made on the following: 

 what are the parameters to be monitored on the observed object (node or service); 

 what is the scaling rule which provides a decision based on the actual value of the 

monitoring parameters. 

Major design principles 
 
To avoid limiting the monitoring parameters in MiCADO, the first design principle is to let the 
monitoring parameters be defined dynamically for each submitted application. This must be 
true for parameters not supported by the current monitoring setup. The key principle is to 
make the monitoring system dynamically extendable in terms of data sources and monitoring 
parameters. 
 
To a make the scaling rule (which defines the behavior of MiCADO in terms of scaling) as 
flexible as possible, it must be an input parameter (together with the application description) 
instead of making fixed and selected from a predefined list of scaling rules. The key design 
principle is to make the scaling rule specifiable by the user in a flexible way. 
 
Monitoring parameters 
 
Most typical scaling rules require load-related parameters of the nodes at virtual machine 
level scaling. Monitoring the cpu-, memory- and network load of the nodes provides most of 
the parameters for a typical scaling rule. However, there are situations where the application 
(realized by a container infrastructure) requires scaling based on parameters that are not on 
the list of predefined monitored parameters. For example, the application may require 
significant disk capacity on the node to cache some data, or may require other types of 
resources inside the virtual machine that are not among the list of predefined monitored 
parameters to ensure proper scaling.  
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The main goal of MiCADO is to provide maximum flexibility in terms of monitored 
parameters. To do so, MiCADO aims to support dynamically configured list of monitored 
parameters instead of a selection from already configured parameters. To do that, Policy 
Keeper allows the user to dynamically specify new parameters that will be monitored, even if 
the current monitoring setup is not able to gather the value of these new parameters. This 
dynamic extension of the monitoring system is supported by Prometheus through its query 
language, query API and dynamically configurable exporters realizing the data extraction. 
 
Scaling rules on the level of application may require the implementation of more complex 
scenarios. These scenarios may rely on monitoring parameters which are not predefined 
and provided by the default built-in monitoring system. Moreover, if an application scaling 
rule requires some information which exists inside the application’s internal state, special 
data collection component is required to be attached to the monitoring system as data 
source.  
 
Scaling rules 
 
The scaling rule is intended to calculate the required number of replicas of containers for a 
certain service or the required number of instances of virtual machines. The scaling rule 
should express the direction (up/down) and quantity (instance number) of scaling. A scaling 
rule may be reutilized by different applications provided that the application characteristics 
are similar and the business policy needed by the operator/user of MiCADO is similar. A 
complex scaling rule has the task of coordinating the resource capacity available for the 
application (virtual machine level scaling) and the resource usage by the application 
(container level scaling). For both, the aim of the Policy Keeper is to provide maximum 
flexibility, configurability. The complexity of the scaling rules, and the variety of user 
requirements may easily result in insufficient support from scaling rules in case Policy 
Keeper tries to provide a predefined set of scaling rules.  
 
Using predefined scaling rules may perfectly support some groups of applications. However, 
the variety of requirements will always result in more complex rules to be implemented. To 
support scaling rules and policies for diversity of applications and requirements, Policy 
Keeper supports scaling rules to be defined as user inputs. Handling the scaling rules as 
inputs provides maximum flexibility for the user and removes limitations of MiCADO in 
relation to supported types of applications and scaling logic. 
 
The scaling rule for the Policy Keeper must be an expression that can be automatically 
evaluated with the monitoring parameters as input, and the output of the evaluation is the 
decision on scaling i.e. the number of instances. To give the user as much freedom as 
possible, the scaling rule should be able to formalize arithmetic, logic and control 
expressions. 
 
In Policy Keeper, the scaling policies contains the list of monitoring parameters together with 
their definition and the scaling rule. The policy is described in YAML and the language for 
expressing the scaling rule is selected to be Python, since the Policy Keeper itself is 
designed to be implemented by a microservice in Python language. The simplicity of the 
language and the easy evaluation resulted in introducing the support of Python language in 
the scaling rule definition. 
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7.2 Operation 

The overall architecture of MiCADO has been initially designed in COLA deliverable D6.1. 
The main components are Prometheus for monitoring, Docker Swarm for container 
execution, Occopus for virtual machine orchestration, Submitter to handle TOSCA-based 
descriptions and finally the Policy Keeper to perform decision on scaling. This section, 
focuses on the implementation of Policy Keeper and the surrounding components connected 
to it. A detailed architecture of the Policy Keeper and its environment can be seen in Figure 
5. 

 

 
Figure 5 Policy Keeper and its environment in MiCADO 

MiCADO integrates Prometheus as a monitoring tool on the MiCADO master node and has 
two exporters running on each worker nodes to collect information on the node and on the 
containers running on a given node. With the support of these two built-in exporters (node 
exporter and cadvisor) a long list of parameters (metrics) can be monitored and queried from 
Prometheus. 
 
To monitor a parameter that is not supported by the node exporter or the cAdvisor, Policy 
Keeper provides a mechanism to dynamically attach i.e. register new user-defined exporters. 
By defining the location of a new exporter, Policy Keeper can configure Prometheus to 
collect metrics from a user-defined exporter. The new exporter can be either executed by 
MiCADO (internal) or can be executed outside and independently from MiCADO (external). 
Deployment of the exporter is not performed by the Policy Keeper. Once the exporter is 
attached, the metrics become available in Prometheus. Policy Keeper uses the query 
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interface of Prometheus to collect the value of the parameters originating from the exporters 
and are specified in the scaling policy. 
 
Policy Keeper also supports alerting with the help of Prometheus. When the scaling policy 
contains definition of alerts, they are registered in Prometheus to be maintained. Alert 
manager is a component part of the Prometheus software package and handles alerts sent 
by Prometheus. Alert manager organizes the alerts and notifies Policy Keeper through its 
REST interface when an alert fires. Upon scaling decision Docker Swarm and Occopus 
realizes creation or removal of instances if necessary. 
 
The overall flow of operation focusing on realizing scaling is as follows (see Figure 5): 

 The submitter receives a TOSCA-based description of the scaling policy as part of the 

overall TOSCA description on the container infrastructure (Step 1). 

 The submitter uses its Policy Keeper adaptor to convert the TOSCA based scaling policy 

format of MiCADO to the native policy format (see Section 7.3) of the Policy Keeper. 

After the conversion, the policy is sent to the Policy Keeper through its REST interface 

for realization (Step 2). 

To keep the implementation of MiCADO components interchangeable (one of the design 

principles in MiCADO), the handling of TOSCA representation (for the infrastructure and 

policies) is kept in one single component, i.e. in the submitter. In case TOSCA or the 

entire application specification language changes, only the Submitter is affected. 

Following the design, the MiCADO components interfacing with the submitter receive 

information in their own specified format after conversion. 

 As a first step, the Policy Keeper registers the exporters specified in the policy (Step 3).  

 Prometheus immediately starts pulling the metrics from the exporters regardless they are 

built-in (Step 4a), user-defined internal (Step 4b) or user-defined external (Step 4c). 

 In case the policy contains definition of alerts, Policy Keeper registers them in 

Prometheus as well (Step 5). 

 At this point, Prometheus is ready to deliver value of metrics from its exporters. Policy 

Keeper periodically issues queries towards Prometheus to evaluate the expressions for 

the variables (referred by the scaling rule) (Step 6). 

 Whenever an alert is firing, Prometheus through Alert manager (Step 7a) notifies Policy 

Keeper (Step 7b) which registers the event. 

 Policy Keeper periodically evaluates the scaling rules (Step 8) which may refer to 

variables and alerts. 

 As a result of the evaluation of the scaling rules, Policy Keeper may instruct Docker 

Swarm (Step 9a) to scale up/down a given container (Step 9b).  

 The evaluation of the scaling rule may also result in scaling at virtual machine level. In 

this case, Policy Keeper instructs Occopus (Step 10a) for scaling which in turn asks the 

target cloud API to create instances (Step 10b). Finally, a new VM is launched (Step 

10c) on which a new MiCADO worker is built up and attached to MiCADO master. 

This step-by-step operation of Policy Keeper and its environment ensures the realization of 
two control loops on virtual machine and container levels. 
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7.3 Policy format 

The Policy Keeper component takes a policy description as input in order to implement 
handling Prometheus exporters, Prometheus expressions, Prometheus alerts and scaling 
rules. The policy description is structured to address sections for each of these topics. Policy 
description uses yaml syntax and has the following structure: 
 

stack: <name of docker stack> 

data: 

  sources: 

    - '<ip>:<port>' 

  constants: 

    <name of constant>: '<value of the constant>' 

  queries: 

    <name of parameter>: '<prometheus query expression>' 

  alerts: 

    - alert: <name of alert> 

      expr: '<prometheus logical expression>' 

      for: <time period: 1s, 1m, 1h, etc.> 

scaling: 

  nodes: 

    min: <minimum number of nodes> 

    max: <maximum number of nodes> 

    target: | 

      <python code to realize scaling rule> 

  services: 

    - name: "<name of docker service to scale" 

      min: <minimum number of containers> 

      max: <maximum number of containers> 

      target: | 

  <python code to realize scaling rule> 

 

The variable called ‘stack’ is required to identify the docker stack to be manipulated 

through docker swarm. Under the section named ‘data’, all Prometheus query and alert 

related settings can be specified. The section called ‘scaling’ contains the scaling related 

specification, both for ‘nodes’ i.e. to scale at virtual machine level and for Docker 

‘services’ i.e. to scale at container level. A more detailed description of the policy, will be 

provided in the next sections. 
 

7.3.1 Data sources 

Dynamic attachment of an external exporter can be performed under the ‘source’ 

subsection by adding a list item with the ip address and port number of the exporter. The 
following YAML structure shows an example: 
 

        data: 

          sources: 

            - '192.168.154.116:8090' 

    - 'rabbitmq_exporter:8090' 

    - 'myexporter.mydomain.com:6000' 
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Each item found under the ‘data’/’sources’ subsection is configured under 

Prometheus to start collecting the information provided/exported by the exporters. Once 
done, the values of the parameters provided by the exporters become available. 
 

7.3.2 Metrics 

To utilize one of the exporters i.e. to query a metric collected by the newly configured 
exporter, a Prometheus query expression must be defined. Prometheus queries must be 

listed under the ‘queries’ subsection under the ‘data’ section of scalability policy. An 

example is shown below: 
 

   data: 

          queries: 

            REMAININGTIME: '{{DEADLINE}}-time()' 

            ITEMS: 'rabbitmq_queue_messages_persistent 

{queue="machinery_tasks"}' 

 

In this example, two variables called ‘REMAININGTIME’ and ‘ITEMS’ have been defined 
with their corresponding Prometheus query expression. Each time the Policy Keeper 
evaluates the queries by Prometheus, it returns a value which is then associated to the 
variable name and can be referred in the scaling rule.  
 

7.3.3 Constants 

As can be seen by the previous example, for ‘REMAININGTIME’ variable, a predefined 

constant has been referred. Each referred constant, specified under the ‘constants’, 

subsection is replaced by its associated value. The following YAML structure shows an 
example: 
   

        data: 

          constants: 

            DEADLINE: 1529499571 

 
To refer to a constant, Jinja2 [9] type syntax (i.e. using double brackets around the name of 
the constant) must be used. Here is an example to refer to the value of a constant: 
 
   {{DEADLINE}} 

 

7.3.4 Alerting 

Prometheus supports alerting mechanism. Alerts can be considered as notifications over an 
event which is important in relation to scaling. For example, the event that a service 
becomes overloaded can be considered important provided that scaling up service can 
reduce load on the actual containers.  
 
To utilize Prometheus alerting system, alerts can be defined in the MiCADO scaling policy 

description under the ‘alerts’ subsection of ‘data’ in scalability policy with a dictionary 
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of three pieces of key-value (‘alert’, ’expr’, ’for’) organized as an item in the list 

of alerts. The following YAML structure shows an example (together with constants to make 
it clear) where an alert is configured to fire whenever the average cpu usage for all the 
containers belonging to the given service is above a certain threshold for at least 30 
seconds. 
  

        data: 

          constants: 

            SERVICE_NAME: 'stressng' 

            SERVICE_FULL_NAME: '{{stack}}_stressng' 

            SERVICE_TH_MAX: '60' 

            SERVICE_TH_MIN: '20' 

          alerts: 

          - alert: service_overloaded 

            expr: 'avg(rate(container_cpu_usage_seconds_total 

{container_label_com_docker_swarm_service_

name="{{SERVICE_FULL_NAME}}"}[30s]))*100 > 

{{SERVICE_TH_MAX}}' 

            for: 30s 

 
A named alert (‘alert’) is a logical expression (‘expr’) which is evaluated by Prometheus and 
the alert is fired when the expression is continuously evaluated to true for a predefined 
period of time (‘for’).  
 
The alert firing is detected by the Policy Keeper and for fired alerts a variable with the name 
of the alert is generated and set to true. Similarly to the queries expression, the alert 
definition may also refer to constants using {{ }} brackets. To check if an alert is firing, the 
scaling rule simply refers to the name of the alert as a Boolean variable. The following YAML 
code shows an example: 
 

scaling: 

  ... 

  services: 

         - name: ‘stressng’ 

           ... 

 target: | 

             if service_overloaded: 

m_container_count+=1 

 
A scaling rule (which is detailed in the next section) may contain the reference to the alert 
name to apply it in the decision process. 

7.3.5 Scaling rules 

Scaling rule in the policy description expresses the decision on scaling i.e. it is realized by a 
code snippet. Scaling rule must be defined for nodes (i.e. to scale at virtual machine level) 
and for services (i.e. to scale at container level). The following YAML code shows the 
structure of the scaling section inside the policy description: 
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scaling: 

  nodes: 

    min: <minimum number of nodes> 

    max: <maximum number of nodes> 

    target: | 

      <python code to realize scaling rule> 

  services: 

    - name: "<name of docker service to scale" 

      min: <minimum number of containers> 

      max: <maximum number of containers> 

      target: | 

  <python code to realize scaling rule> 

 
Policy Keeper supports the specification of the scaling rule by a Python expression under the 

‘target’ keyword. The Python expression must be formalized with the following 

conditions: 

 Each constant defined under the ‘constants’ section can be referred; its value is the 

one defined by the user 

 Each variable defined under the ‘queries’ section can be referred; its value is the 

result returned by Prometheus in response to the query string 

 Each alert name defined under the ‘alerts’ section can be referred, its value is a 

logical True in case the alert is firing, False otherwise 

 Expression must follow the syntax of the python language 

 Expression can be multiline 

 The following predefined variables can be referred; their values are defined and 

updated by Policy Keeper: 

o m_nodes: python list of nodes belonging to the docker swarm cluster 

o m_node_count: the target number of nodes 

o m_container_count: the target number of containers for the service the 

evaluation belongs to 

o m_time_since_node_count_changed: time in seconds elapsed since the 

number of nodes changed 

 In node level scaling rule, the name of the variable to be set is ‘m_node_count’; as an 

effect the number stored in this variable will be set as target instance number for the 

virtual machines. 

 In container level scaling rule, the name of the variable to be set is 

‘m_container_count’; as an effect the number stored in this variable will be set as 

target instance number for the given container service. 

Specifying a scaling rule with Python for the Policy Keeper to scale up and down based on 
the events ‘service_overloaded’ and ‘service_underloaded’ can be done simply as shown in 
the next YAML code: 
 
 scaling:   

   services: 

       - name: myservice 

         min: 1 
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         max: 5 

         target: | 

           if service_overloaded: 

              m_container_count+=1 

           if service_underloaded: 

              m_container_count-=1 

 

The scaling rule (specified under the ‘target’ keyword) is evaluated periodically. Before 

each evaluation, the values of the variables and alerts are updated based on Prometheus 
queries. The Python expression is expected to update the necessary variables 
(‘m_container_count’ in this case) to express the need for scaling. 
 
When the expression is evaluated and the target number of containers or nodes are 

available, the returned value is updated if necessary to be higher or equal to the ‘min’ 

value and to be lower or equal to the ‘max’ value. As a consequence, Policy Keeper always 

keeps the target number between the minimum and maximum regardless of the value 
returned by the scaling expression. 
 



 D6.3 Prototype and documentation of the scalability decision service 

 

 

 

Work Package: WP6  Page 24 of 74 

 

 

8. Implementation of MiCADO V3.1 

During the reporting period, MiCADO V3 has been further extended with some features and 
bugfixes and has been released as MiCADO V3.1. The architecture of V3.1 is the same as 
of MiCADO V3 defined in deliverable D6.2. 

8.1 Features, bugfixes, limitations 

The most important improvement in this version is to introduce configurability in regards to 
containers and their thresholds, In the previous version, MiCADO automatically assigned a 
scaling policy to each of the submitted containers. This is a serious limitation for those 
infrastructures where certain containers are not scalable by design (e.g. databases). To 
overcome this limitation, v3.1 introduced the possibility to define the list of containers to be 
scaled. 
 
Another limitation in V3.0 was that whenever a container was submitted the thresholds at 
which the scaling must happen to increase or to decrease the replicas were fixed, 
predefined/hardwired in the MiCADO deployment files. To make it configurable, MiCADO 
V3.1 provides the possibility to specify the thresholds for each container separately. 
 
Beyond these improvements, the alert generator component has been re-implemented to fit 
to the new requirements and features more easily.  
 
Here is a summary of the improvements in MiCADO V3.1 compared to MiCADO V3: 
 

Features 
 
 list of individual Docker services to be scaled can be defined by the user; 
 upscale and downscale thresholds of each Docker services can be defined by the user; 
 default threshold settings can be applied for services not defined individually. 

Bugfixes 
 
 applying fixed versions instead of “latest” versions of the Docker images; 
 undefined Docker service resource requirement is now considered unlimited instead of a 

fixed default value; 
 fixing too frequent upscaling, which caused unnecessary resource allocation 
 code refactoring. 

Container scaling policy  
 
Setting the scaling policy for each Docker container can be done in the “scaling_policy.yaml” 
file. This file specifies which Docker services will be auto-scaled and their scaling thresholds. 
One must specify the Docker service name (like service_name1) and scaling thresholds 
(scale down and scale up parameters). The format of the scaling policy file is as follows: 

services: 
  service_name1: 
    scaledown: 20 
    scaleup: 60 
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  service_name2: 
    scaledown: 20 
    scaleup: 80 
 

The name of the service is the same as defined in the compose file submitted to the 
MiCADO framework. 

Limitations of MiCADO V 3.1 
 
 scaling decisions are performed based on CPU load; 
 new virtual machines can be launched every 5 minutes and new containers every 

minute; 
 Docker containers will utilize newly launched Swarm node when a Docker service is 

scaled up; 
 Docker service upscaling happens only in case of free resources; new VM allocation is 

applied when average CPU load of the VMs reaches a certain threshold. 

8.2 Tutorial 

MiCADO V3.1 has been released and the user guide (see Figure 6) for it has been published 
on the COLA website. 
 

 
Figure 6 Screenshot of COLA webpage containing MiCADO V3.1 User Guide 

8.3 Availability 

Source code: 
https://github.com/micado-scale/micado/tree/0.3.1  

 
User guide for MiCADO V3.1: 

https://github.com/micado-scale/micado/tree/0.3.1
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https://project-cola.eu/micado-tutorial  
 
Source code of Alert generator component: 

https://github.com/micado-scale/component-alert-generator  
 
Docker container of Alert generator component: 

https://hub.docker.com/r/micado/alert-generator  

 

https://project-cola.eu/micado-tutorial
https://github.com/micado-scale/component-alert-generator
https://hub.docker.com/r/micado/alert-generator
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9. Implementation of MiCADO V4 

MiCADO V4 has been designed and implemented in order to support Batch Processing 
applications. This requirement was specifically raised by one of the COLA use case 
scenarios entitled Scalable Evacuation Planning Service, implemented by Saker Solutions 
and Brunel University. Details of this use-case can be found in the COLA deliverables D8.1 
and D8.2. The use case is based on a discrete event simulation scenario where a large 
number of jobs is submitted to be processed by a user-defined deadline, by a dynamically 
changing number of cloud workers. MiCADO V3.1, as described in the previous section, 
could only support the scaling of cloud-based services. In order to support batch processing 
applications and deadline-based poilicies, additional components have been designed and 
implemented. This section, describes these additional components and explains how they 
have been integrated into MiCADO V4. 
MiCADO V4 presents two components for Batch Processing applications. JQueuer and 
CAutoScaler take a list of jobs and an auto-scaling policy, start the application containers in 
the cloud, dispatch the jobs to the containers, and auto-scale up or down the number of 
containers in order to finish the jobs according to the given policy. JQueuer and CAutoScaler 
are designed to be platform-independent and cloud-independent. In addition to that they can 
work with any Container Orchestration Engine. 
Please note that MiCADO V4 was developed in parallel to MiCADO V5 (described in Section 
10). The rationale behind this parallel development was that we wanted to provide support 
for batch processing applications in a relatively early stage of the project to support the 
above-mentioned COLA use-case. Both MiCADO V4 and MiCADO V5 were based on 
MiCADO V3 (and V3.1). As a consequence, the MiCADO V4 components described in this 
section have not been integrated into the first release of MiCADO V5. However, the 
respective developer teams have investigated the integration of deadline-based batch 
processing scenarios into V5 and this integration is currently ongoing. MiCADO V4 
components will be added in V5 as external components to support the desired use-case 
scenarios. 
In the following, we present the structure of an experiment which is used in our design, the 
detailed design of JQueuer and CAutoScaler, respectively, the implementation of these 
components followed by testing and performance results, and finally the integration of these 
components into MiCADO. 

9.1 Experiment Structure 

In job submission type applications, for example simulations or image/video processing, 
there are always numerous scenarios that need to be completed on large computational 
resources. However, as these application areas evolved independently, the vocabulary used 
to identify the different units of execution is rather different. To avoid any confusion or 
misunderstanding, in this section we define and present these units of execution as 
experiment, job and task, as it is illustrated in Figure 7. These terms are described as 
follows: 
 
A. Experiment 

An experiment consists of two parts. The first part is a set of global parameters (upper part 
of Figure 7) while the second part consists of a list of jobs (lower part of Figure 7). Global 
parameters are, for example, the application container’s image, the auto-scaling policy (e.g. 
the deadline by which the experiment should be finished), the minimum and maximum 
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resources for each container, and an estimated length of each task. An experiment is 
considered to be “accomplished” when all jobs are executed successfully. 
 

 
Figure 7 Experiment Structure 

Experiment’s Description Language: An experiment (including jobs and tasks) might be 
stored using various formats, such as XML (Extensible Markup Language), JSON 
(JavaScript Object Notation), or YAML (Yet Another Markup Language). 
There are two options to describe an auto-scaling policy. In the first option, the auto-scaling 
policy can be described using the same format that describes the experiment. In this case, 
the implementation of the auto-scaling policy is part of the main system. The other option is 
to consider the auto-scaling policy as an external module/service (module-based policy) 
which could be called (along with the arguments) using a RESTful (Representational State 
Transfer) API. In this case, the auto-scaler calculates the number of containers and sends it 
back to the system to take the appropriate action. In this second option, the experiment 
should have a field that contains the URL of the auto-scaling policy service. This option 
could be used in science gateways since it separates the development of the auto-scaling 
policies from the main system and gives the possibility to application developers to add their 
own Policies. 
 
B. Job 

A job consists of three parts: 1) Pre-job Command, 2) Tasks and 3) Post-job Command. 
While the first and third parts are optional, the second part is required. Pre-Job, Post-Job 
and task commands will be invoked within the container so as to launch an application, 
execute a system call, etc. 
(1) Pre-Job Command (Optional): It is the command that should be invoked in the 
container at the beginning of each job and before running the tasks. The command might be 
used to initialize the parameters or to reserve the resources which are needed to execute a 
task. 
(2) Tasks (Required): It is a list of tasks that should all be executed sequentially in the same 
container. If any task failed for any reason, the whole job will be considered as “failed” and it 
will be re-queued or cancelled, depending on the configuration of the system. Most of the 
time, each job consists of one single task. However, in some experiments tasks are 
depending on each other and need to be executed in a certain order inside a job (e.g. the 
first task would parse the argument and download files from a server, the second task would 
run the application, while the third task will upload the results to a server). Another 
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motivation to put multiple tasks inside one job is to enhance network utilization and reduce 
overhead by fetching and executing multiple inputs in a batch (e.g. fetching of multiple 
images at once in order to be analyzed sequentially instead of fetching one image at a time). 
(3) Post-Job Command (Optional): This command should be executed after finishing all 
the tasks of the job and before getting a new job from the job queue. It might be used to free 
the resources, reset the parameters, etc. A job is considered to be “accomplished” when all 
of its tasks are executed successfully. 
C. Task 

A task is the smallest unit in this structure. It contains the command line that should be 
called in the container and the parameters (arguments) which should be passed along with 
this command. An example of the above structure is a simulation experiment. The 
experiment has global parameters including the container’s image. Let us consider an 
experiment with thousand jobs where each job consists of one task. The task in this case will 
contain the command line of the simulation application that needs to be executed inside a 
container, and different sets of parameters that this command line requires. 

9.2 JQueuer Design 

JQueuer is a queuing system that can be used in conjunction with container technologies to 
support the execution of a large number of jobs and the enforcement of certain up or down 
scaling policies. JQueuer is a distributed system that is composed of two independent 
components: JQueuer Manager and JQueuer Agent (Figure 8). In the following, we are 
going to discuss the structure and the functionality of each of these. Communication 
methods between the JQueuer Manager and the JQueuer Agent were left out so as to be 
defined in the implementation according to the technologies used.  

 

 
Figure 8 JQueuer Structure 
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9.2.1 JQueuer Manager 

JQueuer Manager is the main component of the JQueuer system which should be running 
on a Container Orchestration Manager (e.g. Docker Swarm) where it can control the 
containers and the services. The JQueuer Manager consists of several sub-components. 
Each sub-component has different sets of tasks. The sub-components and their tasks are 
described as follows: 
1) Experiment Receiver: Is a RESTful web service which provides a standard API to 

submit the experiment file/object to the JQueuer system via HTTP Request. When an 

experiment is received, the “Experiment Receiver” will generate an “Experiment ID” 

which will be used to identify this experiment in the system. The experiment sender will 

receive this ID as HTTP response. 

2) Experiment Queue: It is a list of the experiment IDs which have been submitted. Each 

experiment has two important items in this queue: the Experiment Service Name and 

the Job Queue ID. JQueuer Agents use this list to recognize whether the containers 

running (on their virtual machines) should be controlled or not. 

3) Experiment Controllers: It is an array of threads in which each thread controls a single 

experiment. A controller will be instantiated directly after receiving the experiment and it 

will keep running as long as the experiment is not accomplished. A controller is in 

charge of the following tasks:  

a. Job Parsing: It parses the jobs from the experiment file/object and adds these jobs in 

a job queue dedicated to this experiment. 

b. Monitoring (Data Analysis): It analyses the experiment execution data that was 

received from the Monitoring Database. The resulted information will be used for 

deciding whether the system should scale up, scale down or continue with the current 

number of containers. 

c. Decision of auto-scaling: This is done using the CAutoScaler component which 

calculates the number of containers needed to accomplish the experiment according to 

the auto-scaling policy. The CAutoScaler is discussed in detail in Section 9.3. 

4) Job Queues: Each experiment depends on a dedicated job queue which has a unique 

ID. The mechanism used to dispatch jobs from job queues is discussed in Section 9.2.2. 

5) Monitoring System: The monitoring system contains the monitoring data related to all 

experiments. The system will be accessed from the Experiment Controllers so as to 

gather the monitoring data related to their experiments. 

6) Container Orchestrator Agent: The agent works as a bridge between the Experiment 

Controllers and the Container Orchestrator Daemon that is used in the cloud. The agent 

receives the commands from the controllers, forwards them to the Daemon and waits for 

the results. The supported commands by the agent are: 

a. Create Service: This command is used to create the Experiment’s Service which 

requires two parameters: container’s image URL, and initial number of containers in 

the service. Before sending the command to the Daemon, the agent will form a third 
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parameter (Service Name) using the image URL parameter. Service Name will be 

used as an ID during the execution.  

b. Get Service’s Status: To get the status of its Experiment’s Service, the controller 

issues this command along with its Service Name. The result, consists of the data 

related to the service including the number of containers running under this service 

and their status. 

c. Scale Up/Down: The parameters required for this command are: Service Name and 

number of containers needed to run under this service which is calculated by the 

CAutoScaler. 

d. Destroy Service: This command will be issued by the controller when all the 

underlying jobs are executed successfully. 

9.2.2 JQueuer Agent 

An instance of JQueuer Agent component should be running on each Container 
Orchestration Node. An instance should exist in the Container Orchestration Manager if an 
Experiment Service is running one or more of its containers in this Manager. The JQueuer 
Agent is responsible of controlling the services’ containers of the experiments, fetching jobs 
from the job queues, monitoring the execution and sending data to the JQueuer Manager. 
From functional point of view, this component can be divided into sub-components as 
follows: 
1) Experiment Checker: This sub-component monitors the Experiment’s Queue in the 

JQueuer Manager. When a new experiment is added, the Experiment Checker will fetch 

the Experiment Service ID and the Job Queue ID items. 

2) Job Queue Fetcher: It uses the Job Queue ID which has been obtained from the 

Experiment Checker so as to fetch the jobs from an experiment job queue and execute 

them on the containers of the corresponding Experiment Service. 

3) Monitoring Updater: It monitors job execution on local containers and sends data and 

statistics to the Monitoring system in the JQueuer Manager. 

4) Container Orchestrator Agent: The agent acts as bridge between the JQueuer Agent 

and the Container Orchestration Daemon on the local machine. The first item is used by 

Job Queue Fetcher so as to recognize the containers that belong to a certain 

experiment. 

9.3 CAutoScaler Design 

CAutoScaler is the second main part in the system. It is responsible for taking and executing 
the decision of scaling up/down an experiment by calculating the number of containers which 
should be running according to the scaling policy. The CAutoScaler works as a sub-
component of the Experiment Controller. As there is a controller for each experiment, these 
will all have their own CAutoScaler instances. The current design focuses on one single 
policy, the deadline policy. In this policy the experiment should be accomplished before a 
given deadline by using at least the minimum number of containers and without surpassing 
the maximum number of containers. Each container will be allocated with minimum number 
of resources (memory and processing). Please note that the system is not limited to this one 
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policy, and it is very much possible to extend it to process different policies by implementing 
them in the CAutoScaler. The CAutoScaler has two main components: Container Calculator 
and Container AutoScaler. These two functionalities are explained in detail in the following 
two subsections. 

 

9.3.1 Container Calculator 

This functionality focuses on the process of calculating the number of containers needed at 
any moment. The process (Figure 9) starts as soon as the experiment is received and it 
calculates the number of containers needed to finish the experiment according to the scaling 
policy.  
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Figure 9 Container Count Calculator 

The algorithm applied to calculate the number of containers depends on the actual phase of 
the experiment. The first phase is called the “Initial Phase” which covers the period between 
receiving the experiment and the successful execution of the first job. The second phase is 
called the “Monitored Phase” which starts as soon as a job is successfully executed, and it 
finishes when the experiment is finished which means all jobs are executed.  
 
The main difference between the two phases is the way of calculating the average execution 
time of a task. Since there is still no monitoring data in the initial phase, the calculation is 
based on the estimation of duration needed to execute a single task as provided by the user. 
In the Monitored Phase, the calculation is based on the average of duration of all tasks (of 
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one particular experiment) which have been executed so far. The number of containers 
(“containers count”) will be equal to the multiple of the duration needed to execute a single 
task, the average number of tasks per job, and by number of jobs in the queue, and the 
result is divided by remaining time until the deadline. The resulted value will also be checked 
against the minimum and maximum number of containers. At the beginning, the controller 
will start the Experiment Service using the “containers count” as an initial number of 
containers. When the Experiment Service is started and the number of containers which are 
in “running” state is greater than zero, the Container AutoScaler will process the number 
resulted from the Container Calculator and scale up/down the service as explained in 
Section 9.3.2. 

 

 
Figure 10 Container AutoScaler 

9.3.2 Container AutoScaler 

The Container AutoScaler (Figure 10) starts processing the number of required containers 
(received from the Container Calculator) as soon as there is at least one container (of the 
Experiment Service) is in “running” state.  
 



 D6.3 Prototype and documentation of the scalability decision service 

 

 

 

Work Package: WP6  Page 35 of 74 

 

 

The process uses coherence index so as to delay the scaling up/down in order to make sure 
that the number of required containers is coherent with the last two results. The coherence 
index is increased by one every time the function receives a new calculation suggestion. For 
example, if the last calculation suggested a scaling up while the current one is suggesting a 
scaling down, the function will reset the counters and start over without performing any 
scaling. If the last calculation and the current one are both suggesting the same thing 
(scaling up or scaling down), the function will take the lesser number of containers between 
the two calculations in the case of scaling up and the greater number in case of scaling 
down. 
 
The idea behind selecting the lesser and greater number is to scale up and down gradually 
as much as possible which gives the system the possibility to re-evaluate the number of 
containers needed to finish the experiment. In both cases, the function will not scale up or 
down until the coherence index is at least three which means the last three calculations are 
suggesting the same action. 

 

9.4 System Implementation 

In this section, technologies and tools which have been used in the first implementation of 
JQueuer and CAutoScaler (Figure 11) are described. The two main components of the 
designed architecture, JQueuer Manager and JQueuer Agent have been developed using 
Python 3 and were prepared as Docker images. The MiCADO master which is the Docker 
Swarm Manager node in this solution (left hand side of Figure 11) hosts JQueuer Manager, 
with additional components for queuing, scheduling and data storage.  
 
These components include Celery, an asynchronous distributed task/job queuing system 
that was used together with Rabbitmq (message broker) [10] and Redis (an in-memory 
database) [11] for capturing results. Redis was also applied for experiment queuing, 
simplifying data exchange between the manager and the agents. For monitoring, statsd [12] 
is used for saving statistics and events of the JQueuer Agents so that they can be accessed 
from Prometheus [6], and Grafana [13] as data visualization tool. The Experiment is 
described in JSON format. Each MiCADO worker hosts an instance of JQueuer Agent (right 
hand side of Figure 11) which has two main components: Container Updater and Container 
Manager. 
 
A. Container Updater: The main function of this sub-component is to monitor the 

containers on the local machine so as to distinguish containers which belong to a 

particular experiment. Each Docker container shows in its information the name of its 

Docker Swarm Service. The Container Updater will check the container services against 

the experiment list in the Redis server. If the container is new and belongs to one of the 

experiments, a new Container Manager will be forked so as to manage this container 

and it will be added to its Manager List. 

B. Container Manager: It is responsible for managing and controlling an experiment 

container. The life cycle of a Container Manager starts by fetching a job from the job 

queue belonging to the container. It then executes the pre-job script in the container and 

goes through the list of tasks. Tasks are executed sequentially, and after finishing them 

successfully, the Container Manager will run the post-job script. It sends the statistics to 

the statsd server including: job starting/finishing time and task starting/finishing time. If 
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the job failed for any reason, it sends the time spent before the job has failed to statsd, 

and it signals this failure to the Celery server. After finishing the job, it fetches another 

job and starts executing it. Container Manager keeps working until the job queue of this 

experiment becomes empty.  

 
Figure 11 System Implementation 

Containers from different experiments can coexist on the same machine, as it is shown in 
(Figure 11). JQueuer Agent will provide each Container Manager with a Container ID and a 
Job Queue ID. The Container List contains only those containers that belong to an 
experiment and have been assigned to managers. This is why we do not see Container S2-
C3 on the list as this should be added only when the Container Updater checks the 
containers in its next round. The containers JQueuer Agent, XYZ, YXZ and ZXY have been 
ignored since they do not belong to any experiment. 

 

9.5 Testing & Results 

JQueuer was tested with Repast Simphony (RepastS), an open source agent-based 
modeling and simulation system using a simplified infectious disease simulation model. 
Modeling and simulations are often based on scientific work and involve interdisciplinary 
research teams which can be supported using science gateways.  
 
Jobs were added to the experiment’s JSON file along with the following parameters: 
RepastS Docker image URL, estimated execution time of a single task, minimum memory 
and CPU required by each RepastS container, minimum and maximum number of 
containers, and deadline. RepastS was deployed in a Docker container, also including a 
script that takes the HTTP URL of a simulation scenario and the FTP URL of the results 
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server. The script fetches the simulation scenario from the HTTP server, processes it, and 
then transfers the output file to the FTP server.  
Several scenarios have been tested with varying parameters. The number of jobs varied 
between 250 and 1000 jobs per scenario, the deadline was between one and two hours, and 
the maximum number of containers was between 10 and 20.  

 

 
Figure 12 Repast - Container Autoscaling 

The results shown in Figure 12 are for the following scenario: one task per job, 500 jobs, 
deadline is 90 minutes, estimated task duration is two minutes, the minimum number of 
containers is one while the maximum is ten, ten Docker Swarm Nodes.  
 
The duration statistics were as follows: Job Execution Duration (Min: 52 sec, Max: 80 sec, 
Avg: 59 sec), Failure Duration (Min: 28 sec, Max: 47 sec, Avg: 38 sec) and eight jobs have 
failed (during scaling down as their containers have been terminated), but these have all 
been resubmitted.  
 
Finally, Figure 12 shows how the CAutoScaler was scaling up/down the containers 
according to the accomplishment of the experiment. The figure clearly indicates that the 
experiment started with the maximum number of containers based on the estimated 
execution time provided by the user. However, as the system realised that a smaller number 
of containers will also be enough to finish the experiment by the set deadline, it started to 
scale down. Figure 12 also shows that the experiment finished exactly at the given deadline. 
 

9.6 JQueuer and CAutoScaler in MiCADO V4 
 
JQueuer and CAutoScaler have been applied to extend MiCADO V3 (as presented in 
Deliverable D6.2) to support batch processing applications. This section describes the 
design of MiCADO V4. MiCADO V4 (Figure 13) keeps the major components of the generic 
MiCADO design as described in D6.2. However, the MiCADO master node is extended with 
JQueuer Manager, while the MiCADO workers are running JQueuer Agent.  
 
In this integration, the JQueuer infrastructure can utilize the monitoring system (prometheus 
and grafana) from MiCADO. The JQueuer in this case only calculates the number of 
containers needed to finish the experiment according the policy (from the policy keeper) and 
to values stored in the monitoring system by the JQueuer agents. The autoscaler is in 
charge of scaling up/down the containers according the calculated number.  
 
The JQueuer in this case might be launched only when there is a need to run batch 
processing jobs in order to save the resources on master and worker nodes. 
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Figure 13 JQueuer & CAutoScaler Integration 

9.7 Availability 

Source code and a step by step guide on how to launch the infrastructure, submit the 
experiments and debug the JQueuer: 

https://github.com/micado-scale/micado/tree/0.4.x  
 
Even though the source code is documented, to understand the overall structure the reader 
needs to read the paper [14] which has been presented during IWSG2018. 
 
JQueuer Manager and JQueuer Agent source codes: 

https://github.com/micado-scale/component-jqueuer-manager/tree/0.1.x  
https://github.com/micado-scale/component-jqueuer-agent/tree/0.1.x  

 
Version 0.2.x of JQueuer Manager and JQueuer Agent are modified to work with MiCADO 
V5 which they separate the JQueuer from the autoscaling policy: 

https://github.com/micado-scale/component-jqueuer-manager/tree/0.2.x  
https://github.com/micado-scale/component-jqueuer-agent/tree/0.2.x  

 
 

https://github.com/micado-scale/micado/tree/0.4.x
https://github.com/micado-scale/component-jqueuer-manager/tree/0.1.x
https://github.com/micado-scale/component-jqueuer-agent/tree/0.1.x
https://github.com/micado-scale/component-jqueuer-manager/tree/0.2.x
https://github.com/micado-scale/component-jqueuer-agent/tree/0.2.x
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10. Implementation of MiCADO V5 

The architecture of MiCADO V5 follows the architecture design plan introduced in 
Deliverable D6.1. During the reporting phases, the different components have been realized 
step-by-step. The architecture can be seen in Figure 14 (different colors indicate the different 
phases). 
 

 
Figure 14 Architecture of MiCADO V5 

In the first and second phase of the implementation the components depicted by red and 
green boxes in Figure 14 have been realized. In the current phase, the components 
(depicted by blue boxes in Figure 14) are implemented. These are the Policy Keeper (to 
support automatic decision making), the Dashboard and the Submitter with TOSCA support. 
The implementation of these components has been realized in MiCADO V5 and is 
documented in the next sections. Beyond these components, MiCADO V5 has also been 
extended to support deployment based on Ansible playbook.  
 
MiCADO V5 is the first version which supports the entire life cycle of container applications 
including the submission, execution, automatic-scaling and shutdown. The TOSCA-based 
description containing the infrastructure and scaling policy specification is submitted through 
the REST API of the Submitter. The Submitter separates the information and communicates 
to the relevant components (Occopus,Docker and Policy Keeper) with its internal adaptors. 
First, Occopus allocates the necessary number of virtual machines to build MiCADO 
workers. Once the Workers are ready, Docker services are deployed and finally, Policy 
Keeper starts the automatic scaling of the nodes and containers based on the Scaling 
Policy. Policy Keeper uses the Monitoring system to collect metrics necessary for decision 
making. During the operation, internal status of the system can be inspected through the 
Dashboard of MiCADO. 
 
In the next subsections, components and improvements compared to the status reported in 
COLA deliverable D6.2 are detailed. They are as follows: 1) Ansible deployment, 2) Policy 
Keeper, 3) TOSCA Submitter and 4) Dashboard. 
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10.1 Ansible playbook 

Ansible-micado replaces MiCADO's cloud-init and shell script implementation (applied in 
MiCADO versions until V4) with an Ansible playbook-based deployment method. 
 

Ansible 
 
Ansible is an IT infrastructure automation tool that allows deploying and configuring 
infrastructure components using YAML-based description. The original MiCADO 
implementation used cloud-init and this MiCADO was only deployable on newly started 
VM's. Ansible allows deployment on existing resources and gives more refined control over 
the deployment procedure. Ansible is still invoke-able from cloud-init, thus the original 
deployment method still works. 

 

Deployment methods 
 
Ansible-MiCADO supports two different deployment methods: remote and local deployment. 
In the remote deployment, an empty virtual machine is contextualized from a controller node. 
This controller node contains the whole Ansible-MiCADO repository. The remote deployment 
is the recommended method.  
In the local deployment case, the created virtual machine will be contextualized locally 
without a controller node. In that case, the virtual machine has to download the copy of the 
Ansible-MiCADO git repository. These two deployment methods are displayed in Figure 15. 
 

 
Figure 15 Deployment methods for MiCADO V5 

Structure of Ansible playbook 
 
Playbooks are Ansible’s configuration, deployment and orchestration language. They can 
describe a set of steps in a general way to configure, build or modify applications. In the 
Ansible roles, there is commonly used directory layout, which contains the following building 
elements:  files, handlers, templates, tasks and vars. 
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 Files 

Files contain the component's files that no longer needed to be modified on the fly 

and can be transferred to the system. These are often configuration files or files that 

are needed for the deployment. 

 Handlers 

Modules should be idempotent which means that modules can relay when they have 

made a change on the system. Playbooks have a basic event system that can be 

used to respond changes. Handlers are defined by a list of tasks and the events can 

trigger the handlers.  

 Templates 

Templates are files that can be changed on the fly. Templates are processed by the 

Jinja2 [9] templating language. It is a very powerful feature because you can 

dynamically change the content in your configuration files and that gives more 

flexibility in configuring systems.  

 Tasks 

Each play contains a list of tasks. Tasks are executed in sequential order, one at a 

time before moving on to the next task. Modules should be idempotent, which means 

that if you are running a module multiple times you should get the same effect as 

running it just once.  

 Vars 

You could define a specific variable in each role. You can highlight variables that can 

be later referenced. 

 

Structure of MiCADO Ansible repository 
 
Ansible-MiCADO playbook deploys the MiCADO master: configures the network, installs 
Docker and Docker Compose, downloads the required components images, configures 
Docker Swarm and starts the environment via Docker-Compose. 

 
Under the files section (see Figure 16) in the MiCADO-master role there are the components 
config files. The misc file is a script, which waits the unattended upgrade in the cloud virtual 
machine to finish. The tasks folder contains the main parts of the whole task separated with 
logical separation. The templates folder contains the dynamically changing configuration. 
Usually, it depends on the IP or the hostname, but variables or gathering fact can be used 
here as well. 
 
The order of the execution is the following: first the main task runs the wait-updates.sh to 
wait for the unattended upgrade to finish. After that, the role sets the DNS server (some 
provider does not have DNS server) hostname and includes the docker-install task. The 
Docker-install task installs the Docker and the required packages, initializes the Docker 
Swarm with setting the master availability to drain. Next, the files task creates the 
configuration and log folder and files for the different components. The docker-pull-images 
task pulls every required container image from Docker hub. The worker_node task creates 
the authentication file and generates an infrastructure template file.  The start_micado task 
clones the source code from GitHub for the TOSCA submitter and Policy Keeper and starts 
the MiCADO master containers by using the Docker compose command.  
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Figure 16 Structure of MiCADO Ansible playbook 

10.2 Policy Keeper 

Policy Keeper realizes the functionality of the scalability decision service. The design 
directions and goals have been summarized in Section 6. This section focuses on the 
implementation details. 
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10.2.1 Implementation 

Policy Keeper implements the scalability decision service by monitoring, evaluating and 
instructing. The policy keeping functionality has been developed by scratch in Python using 
Flask for implementing the service endpoint. 
 
The Flask based python code is running in a container on the MiCADO Master node and 
communicates to Prometheus (for evaluating queries and alerts), to Occopus to realize node 
scaling and to Docker to realize Docker service scaling. 
 
The user-defined input for Policy Keeper is a YAML-based description specified in Section 
7.3. The internal operation of Policy Keeper is illustrated in Figure 17. The following 
paragraphs details the internal operation. 
 
The operation of Policy Keeper starts with the invocation of the start method of its REST API 
(Step1 in Figure 17). The parameter is a scaling policy description in which Policy Keeper 
first resolves the text where references are used. At this step Jinja2 [9] resolution is used.  
 
The next phase (Step2 in Figure 17) configures Prometheus. Configuration involves the 
registration of the user-defined exporters. In case the exporter is an external entity no more 
to be done by the Policy Keeper. For internal exporters (running as a service under 
MiCADO) Policy Keeper instructs Docker to let the Prometheus service attach to the network 
of the exporter service. Otherwise, no communication is possible. The next step, is the 
generation of the rule files based on the alert definition specified in the policy file. At the end 
of this phase, Prometheus is notified to reload its configuration i.e. to activate the changes. 
 
At this point, all preparation has been done, the periodic maintenance (evaluation and 
scaling) cycle can start. Each cycle starts with the node maintenance followed by the 
container maintenance. Between two consecutive cycles, a predefined period elapsed. 
 
Node maintenance (Step3 in Figure 17) starts with collecting all the inputs necessary to 
evaluate a scaling rule (specified by the policy). The first step, is to evaluate the variables 
defined in the queries section of the policy. For each item a Prometheus query expression is 
defined which is sent to Prometheus for evaluation. When all variables are evaluated, it 
continues with collecting the state of alerts if specified any. 
 
When an alert is fired, Policy Keeper is notified by Prometheus through the Alert Manager. 
These notifications are registered inside the Policy Keeper and evaluated when the status of 
alerts is prepared for the scaling rules. For each alert, a Boolean variable is generated (as 
specified in Section 7.3.4) which can be referred by the scaling rule. 
 
The final step in collecting inputs for the evaluation is to update the values of the built-tin 
variables (specified in Section 7.3.5). 
 
Evaluating the scaling rule for the node means the execution of the Python code specified in 
the scaling policy as scaling rule (specified in Section 7.3.5). The evaluation is done by a 
separate module in the Policy Keeper. The result of the evaluation is the number of 
instances to scale the nodes to. The final step is to notify Occopus about the scaling 
decision and set the number of MiCADO worker instances target number to the one returned 
by the evaluation. 
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Figure 17 Internal high-level operation of Policy Keeper 
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The next stage during the operation is to perform the maintenance of the Docker Services 
(Step4 in Figure 17). The procedure described in the following paragraphs is performed for 
each individual Docker Service specified in the scaling policy. Practically, it has the same 
pattern as a for the node maintenance, since the same steps are performed for the Docker 
Service. 
 
To scale a Docker Service, collecting the inputs to evaluate the scaling rule of the Docker 
Service starts, including the evaluation of the queries by Prometheus, collecting the status of 
the alerts and to update the internal variables. Following the pattern drawn by the node 
maintenance, evaluating the scaling rule happens for the Docker Service and the outcome of 
the evaluation realized by instructing Docker Swarm to scale the Docker Service to the 
calculated number of replicas. 
 
When the Policy Keeper is instructed to stop the maintenance (Step5 in Figure 17), 
maintenance loop (Step3 and Step4 in Figure 17) is completed. As a consequence, Policy 
Keeper rolls back all the changes made in Step2, i.e. removes changes from the 
configuration file of Prometheus, detaches Prometheus from any network it was attached to, 
removes rule files containing the alerts and notifies Prometheus to reinitialize its 
configuration. 
 
At this point, Policy Keeper becomes inactive and waits for further instruction through its 
REST API specified in detail in Section 10.2.2. 
 
For the proper operation, it is necessary to configure Policy Keeper through its configuration 
file. The details on how to configure Policy Keeper can be found in Section 10.2.3. 
  

10.2.2 REST API 

Policy Keeper is a microservice with a service endpoint exposing several functionalities on 
different paths. This section details the REST API of Policy Keeper. 

 
POST /policy/set <policy description> 

Invoking this call results in storing the policy description (passed as an argument) 
internally and permanently. Policy Keeper does not start maintaining the number of 
nodes and containers. 

 
POST /policy/start 

Invoking this call results in starting the policy keeping procedure based on the policy 
description set previously by the /policy/set function. 

 
POST /policy/start <policy description> 

This call is the combination of the previous two calls (/policy/set and policy/start). 
Invoking this call results in storing the policy description (passed as an argument) 
internally and permanently, then start maintaining the number of nodes and 
containers. Prometheus configuration is updated according to the specification found 
in the policy description. 

 
POST /policy/stop 
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Invoking this call results that the Policy Keeper stops maintaining the number of 
nodes and containers. All previous updates on the Prometheus configuration is 
removed. 

 
POST /alerts/fire 

This call is reserved for Prometheus Alert manager to notify Policy Keeper on the 
state of the alerts.  

 

10.2.3 Configuration 

The Policy Keeper microservice can be configured to fit to its environment. The configuration 
mainly includes Prometheus, Docker Swarm and Occopus related settings since Policy 
Keeper is communicating with these components. 
 
The following list details the variables to be set in the Policy Keeper configuration file with an 
example value: 
 

prometheus_endpoint: 'http://prometheus:9090' 

 Endpoint of Prometheus in ‘http://<ip>:<port>’ format. 
prometheus_config_template: '/config/pk/pr_cfg_template.yaml' 

Path of Prometheus configuration template file to be used when generating a new 
configuration file for Prometheus 

prometheus_config_target: '/config/prometheus/prometheus.yml' 

Path of Prometheus configuration file to update 
prometheus_rules_directory: '/config/prometheus' 

Path of directory for storing Prometheus rules 
swarm_endpoint: 'localhost:2375' 

Endpoint of Docker Swarm in ‘<ip>:<port>’ format. 
occopus_endpoint: 'http://occopus:5000' 

Endpoint of Occopus in ‘http://<ip>:<port>’ format. 
occopus_infra_name: 'micado_worker_infra' 

Name of infrastructure under Occopus containing the woker nodes 
occopus_worker_name: 'worker' 

Name of the worker node under Occopus to be scaled up/down 
docker_node_unreachable_timeout: 60 

Timeout for detaching unreachable docker nodes. 
logging: 

Python logger configuration structure 
 

10.3 TOSCA Submitter 

10.3.1 General overview  

The COLA project has selected OASIS TOSCA (Topology and Orchestration Specification 
for Cloud Applications) [15] as the platform language specification for creating templates that 
describe the topology and policies of an application to be deployed in the cloud. The TOSCA 
Submitter is the main entry point for MiCADO and its main goal is to provide the user of the 
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system with an interface with which they may submit TOSCA templates in order to deploy 
applications in MiCADO. TOSCA is built on inheritance and typing, and supports 
customisation and extensibility within the bounds of the language. This permits the 
expression of platform-specific details when describing different parts of a deployment, 
making it easy to describe topologies and policies that can be understood by the varying 
components inside MiCADO. 

The TOSCA Submitter runs in a Docker container on the MiCADO Master Node, and 
exposes a RESTful API to a user looking to deploy an application to the cloud. Through the 
API the user can submit a TOSCA template to deploy an application, can update an 
application using a modified version of the original TOSCA template, can bring the 
application down, and can retrieve data on one or all applications deployed in MiCADO. 

The technology agnostic approaches of TOSCA and of MiCADO were strong motivations 
behind the design of the TOSCA submitter. Before understanding the TOSCA Submitter’s 
functionality at a low-level, a general overview is necessary. A TOSCA template describes 
the properties and configuration relevant to the different aspects of an application’s 
deployment in the cloud. The different sections that describe deployment include, but are not 
limited to: 

 The hardware resources required for deployment (HDD, memory, CPU, network…); 

 The software requirements (the application itself, dependencies…); 

 Deployment policies (geographical restrictions, available connections, scaling 
rules…); 

 Security policies (credential management, firewall configuration…). 

These descriptions of the different aspects of deployment are required by specific end 
components, and the TOSCA Submitter, as the entry point, is the main conduit for this 
information. The TOSCA submitter is thusly tasked with feeding the relevant descriptions to 
their respective components, which should then process the information in order to deploy 
the application. 

MiCADO, in turn, has a vendor-neutral interface that permits for interchangeability in the 
individual components that drive the different aspects of deployment. This drove another 
aspect of the design of the submitter, and to match the pluggable design of MiCADO with the 
technology agnostic approach taken by TOSCA, the Submitter uses small purpose-built 
adaptors to translate from the high-level TOSCA to a format understood by the chosen end 
component. These adaptors are also responsible for execution, or ensuring that the 
components use the translation to carry out the necessary tasks for the launch and tear 
down of the deployment. In the current implementation of MiCADO, adaptors have been 
written for the following components that relate to the aforementioned four aspects of 
deployment: 

 Cloud Orchestration: Occopus [4] ; 

 Container Orchestration: Docker [5]; 

 Deployment-Policy Management: PolicyKeeper (proprietary); 

 Security-Policy Management: SecurityEnforcer (proprietary). 
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10.3.2 High-level functionality  

The high-level architecture of the MiCADO TOSCA Submitter is illustrated in Figure 18.  The 
most basic function of the TOSCA Submitter is the submission of a TOSCA template to 
deploy an application in the cloud. Upon submission of the template to the TOSCA 
Submitter, it first passes to the OpenStack TOSCA Parser [16] for validation and parsing. 
The TOSCA Parser validation checks not only for correctness in the YAML syntax of the file, 
but also for adherence to TOSCA naming conventions and to the rules of basic inheritance, 
a key concept in TOSCA. Successful validation returns a parsed ToscaTemplate object, with 
a variety of attributes and methods that facilitate future handling of the TOSCA template. The 
parsed template object then passes through a MiCADO validator that performs checks to 
ensure that the TOSCA template conforms with further syntactic conventions and custom 
type definitions described by MiCADO. These checks are performed by comparing the 
MiCADO-specific relationships and types used in the TOSCA template with their original 
definition. 

 
 Figure 18 MiCADO Tosca Submitter architecture 

After validation, the template object passes to the adaptor configuration component, which 
performs two tasks. First it configures the adaptors as specified in key_config.yaml by setting 
configuration parameters such as working directory and output paths. Then it performs a 
mapping step, which can separate out sections of the TOSCA template based on a 
configurable key list, and pass the resultant sections to the intended component adaptors. 
Sections relevant to security policies are a strong candidate for being mapped out and 
passed to only a relevant adaptor, but other configurations are possible too. 

The template object then arrives, in part, or in whole at each of the adaptors that have been 
configured for MiCADO. The adaptors are developed to match the chosen end components 
responsible for deployment. Adaptors must extend an abstract base class that defines 
methods that relate to translation, execution, update and undeployment of the relevant part 
of deployment overseen by the respective component. Adaptor developers have freedom in 
development as long as these abstract methods achieve the deployment steps they are 
expected to.  
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In an order specified within the adaptors’ configuration, the Submitter first calls the translate 
method of each of the adaptors to complete the translation. This step involves converting 
data of the TOSCA template object into a format that can be understood by the targeted 
component. As an example, the Docker adaptor in the current implementation of MiCADO 
produces a Docker Compose file. The second step is execution. Adaptors, in a configurable 
order, pass the data to their components in order to achieve their portion of deployment. For 
example, the Occopus cloud orchestrator makes the relevant API calls to launch the virtual 
machines required for the infrastructure. After translation and execution, application 
deployment is complete and a unique ID which refers to this deployment is returned to the 
user in the API response.  

The update and undeploy methods of the adaptors are called when the relevant API calls 
are made to the TOSCA Submitter. An update requires a modified TOSCA template as well 
as the unique ID of the deployment in question. The update method of the adaptor should 
carry out the specific tasks necessary for updating their component’s part of the deployment, 
though this often involves another translation and execution step, albeit slightly modified. 
The undeploy call takes the unique ID of the deployment and the adaptors, and in a 
specified order instructs their components to take down the resources allocated, or 
provisions made for this specific deployment. 

10.3.3 Implementation details  

The internal architecture of the TOSCA Submitter is demonstrated in Figure 19.  

 
Figure 19 MiCADO Submitter internal architecture 

The current MiCADO Submitter is composed of the following components:  

 submitter_engine.py 
 api.py 
 micado_parser.py 
 micado_validator.py 
 plugin_gestion.py 
 submitter_config.py 
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 utils.py 
 abstracts/[abstracts_module].py 
 adaptors/[adaptors_module].py 
 system/key_config.yaml 
 system/ids.json 

The next part of the document describe these modules in detail.  

submitter_engine 

This module is the main component of the MiCADO submitter and it instructs the different 
other components to launch the application described in the provided template. Only one 
class is present in this module (SubmitterEngine) which has three main methods: launch, 
update and undeploy.  

The constructor (__init__)  instantiates the class SubmitterConfig for the whole instance of 
the submitter. This configuration object contains multiple dictionaries for the different 
configurations, as it is explained under the submitter_config module (section 7.3.3.6). Based 
on the adaptors set in the configuration file, also creates a list with the different adaptors’ 
class names that will be available across the instance by calling the plugin_gestion module.  

The launch method can take up to three parameters: path_to_file, which is required and is 
the path of the template to launch, parsed_params, which is an optional key:value dictionary 
for filling inputs defined in the template, and app_id which allows for user-defined IDs. This 
method will first parse the input TOSCA template using the micado_parser module, and 
retrieve the TOSCAParser object template. The OpenStack TOSCAParser project being still 
in development, there are current issues that required workarounds. One of these issues 
relates to policies: when get_input is used for properties, the TOSCAParser does not resolve 
it as a get_input object, but leaves it as a string (which will look like { get_input: 
name_of_input }). To fix this we have to manually replace this field with the value linked to 
the name of the input. This step is achieved after the micado_parsing. If no app_id has been 
provided then an id is generated. The adaptors are instantiated providing them with app_id, 
its configuration and the template, and a dictionary is created whose keys contain the name 
of the adaptor class, and whose values contain the adaptor object just instantiated. The json 
containing the ids of the application is updated by adding the new app_id. Next, each 
adaptor  calls its translate method. The order in which the adaptors are calling the translate 
method is defined in the config file. In the following step the execute method of each adaptor 
is called. The order of these calls is also set in the config file. If there is any issue during the 
execution of the execute method, e.g. AdaptorCritical error is caught, and the undeploy 
method is called on the already executed adaptors in reverse order of the original execute 
method call. 

If no errors are detected following the repeated execution of the execute method, there is a 
check to see if some outputs need to be saved (the outputs described in the TOSCA 
template). If outputs do exist, the id.json file is updated under app_id of the current adaptor, 
and the output is saved (for more explanation see on the following id.json part). The launch 
method returns the id of the application. 
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The update method takes up to three parameters: app_id, which is required and is the id link 
to the deployment of the application we want to update, path_to_file, which is also required 
and is the location where we can find the template, and optionally, parsed_params, which is 
the same kind of dictionary described in the launch method. Similarly to the launch method, 
the same first few steps are completed, meaning that 1) the TOSCA template is parsed, 2) 
the TOSCAParser object is returned, 3) get_input in the template is replaced by the actual 
value of the input, 4) the adaptors are instantiated. Next, for each adaptor following the order 
set in the config, the update method is called. If everything went well, the id.json file is 
updated as previously, and nothing is returned. 

The undeploy method takes the required app_id, which is the id of the target application to 
be undeployed. The first step of this method is to instantiate the adaptors. This time the 
adaptors are instantiated with only the app_id and their own config. Then the undeploy 
function of each adaptor, in the order set in the config, are executed. Finally, the cleanup 
method of all the adaptors are invoked, following the order setup in the config file. 

api 

The api module provides an interface for the user to submit, monitor and update the 
application through TOSCA templates via the previously described submitter_engine 
methods (launch, update, undeploy). 

micado_parser 

This module is composed of one class called MiCADOParser which has only one method 
called set_template. The set_template method takes as input up to two parameters: a path 
which is going to be the path of the desired template; and an optional parameter called 
parsed_params which is a dictionary with the keys being the inputs that the user wants to 
modify, and the values being the values of the input. The first step in this method is to check 
whether the path provided is an absolute path or a url. Depending whether it is an url or an 
absolute path, the TOSCAParser object called ToscaTemplate is instantiated with the 
parameters path, parsed_params and isfile. isfile is a Boolean variable set to True if the path 
is absolute, and False if it is an url, basically indicating whether the file is local or remote. 
Next the MiCADO validator is instantiated, and the validation method is called on the 
TOSCAParser object template to check whether it is compliant with the MiCADO submitter. 

micado_validator 

This module checks whether the input template is compliant with the MiCADO submitter. 
There is some specificity related to the submitter component that needs to be there to be 
able to launch an application. The micado_validator checks the template that received from 
the micado_parser. If everything is compliant with the MiCADO submitter, then it returns no 
error, and the process of launching the application can continue.  

plugin_gestion 
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This module has one class called PluginsGestion and it implements one main method called 
get_plugins. get_plugins takes one required parameter called plugin_name. First, all the 
plugins which are located under the adaptor’s directory are going to be loaded. Second, the 
method looks for the plugin with the required class name. If the plugin is found, then the 
method returns the requested adaptor class.  

submitter_config 

The submitter_config module has one class called SubmitterConfig, and it implements two 
main methods: get_lists_adaptors and mapping.  

The constructor (__init__) first reads the config file (key_config.yaml) located under the 
system directory, and splits it into different dictionaries (main_config, step_config and 
adaptor_config).  

The mapping method alters the adaptor_config part to add into each adaptor the 
main_config dryrun parameter that will be needed by the adaptor. This acts as a mapper 
step. If a template is passed as a parameter while calling the mapping method, the 
adaptor_config will also be altered and it will create a sub-dictionary. If one of the types for 
the adaptor is present, the nodetemplate object or the policytemplate object will be set as the 
value, otherwise if no object with the same type has been found a None type will be returned 
as value. Figure 20 illustrates how the adaptor_config dictionary is structured. 

 
Figure 20 Adaptor_config dictionary 

The get_list_adaptor method returns a list of all adaptors required in the key_config.yaml file.  

utils 

The utils module includes three methods used across the submitter. An id_generator that will 

generate a random eight-character long id, a get_yaml_data which will return a yaml object 

that is read from an unput path, and a dump_order_yaml which will dump into the path 

wanted a yaml object ordered. 

abstracts 
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The abstracts directory contains multiple modules inside, all of which are describing the 
requirements for other modules that derive from it (e.g. base_adaptor and exceptions). 

key_config 

The key_config.yaml file is used to configure the whole submitter, as it is illustrated in the 
example shown in Figure 21. Each adaptor can decide what configuration it requires under 
its respective section in the key_config file. The step section defines for each action the 
order of adaptors to follow. The config section is the main configuration of the submitter, 
which describes the path of the log file and whether or not the adaptors should run in dryrun 
mode for development purposes. 

 
Figure 21 Structure of the key_config.yaml file 
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ids 

The ids.json file, generated/updated by the SubmitterEngine, is shown in Figure 22. This file 
is a dictionary that has been created by the SubmitterEngine. It includes the id of the 
application with a sub-dictionary that describes the possible outputs requested in the TOSCA 
template. In the example of Figure 22, E1CVCI4Q is the id of the application, and ip_address 
and port are the results of the output requested by the TOSCA template. 

.  
Figure 22 example of a ids.json created 

Here E1CVCI4Q is the id of the application, and ip_address and port are the results of the 
output requested by the TOSCA template. 

10.3.4 Implementing the Adaptors 

As it was explained previously, the adaptors are in charge of communicating with the 
underlying service. Based on the relevant part of the TOSCA template, they 
transform/translate the input into the desired format that the targeted service can 
understand. To achieve this, each adaptor has to implement the abstract base_adaptor 
class. There are five main methods in this class: translate which takes care of translating the 
input template, execute which launches the execution of the service with the required 
information, update which is used when the template needs to be updated, undeploy which 
brings down the instance of the service for this particular application, and cleanup which is a 
method used to do some cleaning after undeployment. The constructor takes three 
parameters: the id of the application, the config that is a dictionary defined by the adaptor 
developer in the key_config.yaml, and an optional parameter being a TOSCA Template 
object. 
 

10.3.4.1 Docker/Swarm Adaptor 

The Docker/Swarm Adaptor is implementing the abstract class base_adaptor. The __init__ 
method stores file paths and the unique ID, and creates placeholder variables for the data 
and eventual output. 

When the translate method is invoked, it reads the template object and creates a new 
compose-formatted dictionary containing all the Docker-relevant TOSCA types and their 
properties. Once this is done, the dictionary will be dumped into the YAML format, and will 
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be readable as a Docker compose file. The file is named using the application ID and is 
saved to a location specified in the key_config.yaml file.  

The execute method uses Python’s subprocess module to run the Docker client’s docker 
stack deploy command, pointed at the Docker-Compose file which was created during the 
translate step. If output has been requested in the TOSCA template, the get_output method 
will use subprocess, the Docker client’s inspect command and store the requested data for 
the user. 

The update method calls translate to create a temporary Docker compose file based on the 
newly provided TOSCA template. The new temporary compose file is compared to the 
original, and if there is any difference, the temporary compose file replaces the original, 
and execute is called again which forces an update on the running services. If there is no 
difference between the two files, then the temporary Docker compose file will be discarded. 

The undeploy method uses subprocess to call the Docker client’s docker stack 
down command to remove the service from Swarm.  
 
The cleanup method will then remove the Docker compose file.  

 

10.3.4.2 Occopus Adaptor 

The Occopus adaptor is implemented from the base_adaptor class. The __init__ method 
defines the required variables that are necessary for processing. The adaptor is currently 
capable of handling four types of cloud interfaces, such as: CloudBroker, CloudSigma, EC2 
and Nova. The adaptor uses Docker SDK 3.3.0 to execute the Occopus container and run 
the occopus-import and occopus-build commands. These calls will be replaced with REST 
API calls in the future when the functionality will be ready in Occopus. The other operations 
such as maintain, attach and undeploy are called via the Occopus REST API.  

In the translate method the adaptor receives the application to be deployed in the TOSCA-
based description, and also Occopus related information which defines the cloud resource 
and node information for Occopus that are required for the virtual machine orchestration. 
The adaptor translates the TOSCA file and creates 1) an infra definition and 2) a node 
definition file. These files are stored under a preconfigured storage volume specified in the 
key_konfig argument of the translate method. For both files, the names are generated to 
contain application ID to ease debugging.  

In the execute method the adaptor executes the occopus-import command inside the 
Occopus container to import the node definition file through CLI. After the import succeeded, 
the adaptor executes the occopus-build command (with the infrastructure description as 
argument) inside the Occopus container to start the building process of the MiCADO Worker 
infrastructure based on virtual machines. Occopus performs the MiCADO Worker 
infrastructure deployment and when it is done, the adaptor finally instructs Occopus through 
its REST API to start the maintenance of the infrastructure.  

In the undeploy method the adaptor receives the APPLICATION ID from the submitter 
engine. Based on this information the adaptor sends an infrastructure destroy request to 
Occopus through its REST API. Finally, Occopus performs a graceful removal of the all the 
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virtual machines (including preallocated temporary cloud storage volumes) implementing a 
MiCADO Worker. 

In the update method first the adaptor generates the Occopus infrastructure and node 
definition files as described in the translate method. After the comparison of the newly 
generated files with the ones actually running under MiCADO the operation of the adaptor 
differs. If there is change only in the infrastructure definition, the adaptor starts the execute 
phase again. As a result, Occopus will update the stored infra definition without shutting 
down any virtual machines. In case the node definition file changes, the adaptor destroys 
and redeploys the virtual machines since the updates can only be ensured with these steps. 
The adaptor in this situation executes its own undeploy and start methods (defined above) to 
perform the changes. 

During the cleanup phase the adaptor gets the APPLICATION ID from the Submitter engine 
and removes the associated infrastructure and node definition files generated by the 
translate method. 

10.3.4.3 Policy Keeper Adaptor 

The Policy Keeper Adaptor is implementing the abstract class base_adaptor. The __init__ 
method sets all the variables that will be available across the instance of the adaptor.  
 
The translate method reads the TOSCA template and parses the policies section into a 
dictionary. It then dumps the dictionary into a YAML file that is named after the application id, 
and the file path is set in the key_config.yaml file. The created YAML file is compatible with 
the Policy Keeper.  
 
The execution method invokes the start REST API call of the Policy Keeper to start the 
realization of the scaling policy passed as arguments. The argument is the scaling policy 
description in YAML translated by the translate method defined above.  
 
The undeploy method invokes the stop REST API call of the Policy Keeper to finish the 
realization the scaling policy passed previously by the start method.  
 
The update method calls the translate method and creates a temporary policy YAML file. 
Next, it compares the original and the temporary YAML files. If the two files are the same, 
the temporary YAML file will be deleted. If there is any difference between the two YAML 
files then the original policy YAML file is deleted and the undeploy and execute methods are 
invoked to update the scaling policy to be realized by the Policy Keeper.  
 
The cleanup method removes the created YAML file from the defined location. 
 

10.3.5 REST API definition 

 To launch an application from a url you can use one of the following curl commands: 
o curl -d input="[url to TOSCA Template]" -X POST 

http://[IP]:[Port]/v1.0/app/launch/url/  

o curl -d input="[url to TOSCA Template]" -d id=[ID] -X POST 

http://[IP]:[Port]/v1.0/app/launch/url/  

http://[IP]:[Port]/v1.0/app/launch/url/
http://[IP]:[Port]/v1.0/app/launch/url/
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o curl -d input="[url to TOSCA Template]" -d 

params='{"Input1": "value a", "Input2": "value b"}' -X POST 

http://[IP]:[Port]/v1.0/app/launch/url/ 

o curl -d input="[url to TOSCA Template]" -d id=[SOMEID] -d 

params='{"Input1": "value a", "Input2": "value b"}' -X POST 

http://[IP]:[Port]/v1.0/app/launch/url/  

 To launch an application from a file that you pass to the api you can use one of the 
following curl commands: 

o curl -F file=@[Path to the File] -X POST 

http://[IP]:[Port]/v1.0/app/launch/file/  

o curl -F file=@[Path to the File] -F params='{"Input1": 

"value a", "Input2": "value b"}' -X POST 

http://[IP]:[Port]/v1.0/app/launch/file/ 

o curl -F file=@[Path to the File] -F id=[SOMEID] -F 

params='{"Input1": "value a", "Input2": "value b"}' -X POST 

http://[IP]:[Port]/v1.0/app/launch/file/  

o curl -F file=@[Path to the File] -F id=[SOMEID]  -X POST 

http://[IP]:[Port]/v1.0/app/launch/file/  

 To update from a url a wanted application you can use one of the following curl 
commands: 

o curl -d input="[url to TOSCA template]" -d 

params='{"Input1": "value a", "Input2": "value b"}' -X PUT 

http://[IP]:[Port]/v1.0/app/udpate/file/[ID_APP] 

o curl -d input="[url to TOSCA template]" -X PUT 

http://[IP]:[Port]/v1.0/app/udpate/file/[ID_APP]  

 To update from a file a wanted application you can use one of the following curl 
commands: 

o curl -F file=@"[Path to the file]" -d params='{"Input1": 

"value a", "Input2": "value b"}' -X PUT 

http://[IP]:[Port]/v1.0/app/udpate/file/[ID_APP] 

o curl -F file=@"[Path to the file]" -X PUT 

http://[IP]:[Port]/v1.0/app/udpate/file/[ID_APP]  

 To undeploy a wanted application you need to feed it the id: 
o curl -X DELETE http://[IP]:[Port]/v1.0/app/undeploy/[ID_APP]  

 To get the ids of the application deployed and its information related: 
o curl -X GET http://[IP]:[Port]/v1.0/list_app/  

 To get the information for an application: 
o curl -X GET http://[IP]:[Port]/v1.0/app/[ID_APP]  

http://[IP]:[Port]/v1.0/app/launch/url/
http://[IP]:[Port]/v1.0/app/launch/url/
http://[IP]:[Port]/v1.0/app/launch/file/
http://[IP]:[Port]/v1.0/app/launch/file/
http://[IP]:[Port]/v1.0/app/launch/file/
http://[IP]:[Port]/v1.0/app/launch/file/
http://[IP]:[Port]/v1.0/app/udpate/file/%5bID_APP
http://[IP]:[Port]/v1.0/app/udpate/file/%5bID_APP
http://[IP]:[Port]/v1.0/app/udpate/file/%5bID_APP
http://[IP]:[Port]/v1.0/app/udpate/file/%5bID_APP
http://[IP]:[Port]/v1.0/app/undeploy/%5bID_APP
http://[IP]:[Port]/v1.0/list_app/
http://[IP]:[Port]/v1.0/app/%5bID_APP
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10.4 Dashboard 

 
Figure 23 MiCADO Dashboard showing Docker Visualizer 

MiCADO Dashboard collects web-based user interfaces into a single coherent Dashboard. It 
is a Python Flask [17] based application that uses a modified Bootstrap [18] based 
administrative template called AdminLTE v2 [19]. Bootstrap is an open source web frontend 
library for developing with CSS, JavaScript and HTML. It was originally developed at Twitter 
(and originally named Twitter Blueprint). AdminLTE is an open source admin dashboard and 
control panel theme based on Bootstrap v3. It provides a range of common reusable and 
responsible components.  
 
The Dashboard integrates all interfaces via IFrames and custom CSS that provides 
responsive behavior (i.e., the IFrame resizes with the window). Additionally, all user 
interfaces are also available via pop out windows for convenience.  New user interfaces can 
be easily configured and added later to the Dashboard. 
 
Currently, the Dashboard contains (see Figure 23) a title bar and a left-side menubar 
containing three menu items. The three menu items are covering the web interface of three 
components to visualize the internal status of MiCADO. They are  

 Docker Visualizer 

 Prometheus 

 Grafana 

The MiCADO Dashboard is integrated via the Ansible playbook with the rest of the MiCADO 
infrastructure. It runs in a separate Docker container on the master node. Within the 
container it runs as a WSGI service using the Gunicorn Python WSGI HTTP Server [20].  
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10.4.1 Docker Visualizer 

Docker Visualizer (is an open-source tool for visualizing the internal status of a Docker 
Swarm. The tool shows the Swarm Docker Nodes with vertically aligned rectangles with 
labels on top of them. Whenever a new MiCADO worker node is attached it immediately and 
automatically appears in Docker visualizer. 

 

 
Figure 24 Docker Visualizer showing the overview of Docker Swam 

Each rectangle representing a Docker node contains boxes representing the containers 
hosted by that particular Docker node. The Docker container box details the name, image, 
command and state of the container. 
 
This tool has been selected to be part of the dashboard since it provides an easy overview of 
the docker nodes and containers executed by MiCADO. 
 

10.4.2 Grafana 

Grafana is an easy-to-use visualizer tool to display data in various formats like charts, 
diagrams, graphs, etc. Grafana has a configurable dashboard which has been customized 
under MiCADO (see Figure 25) to show various information, like 

 Number of worker nodes; 

 Number of containers; 

 Time elapsed since MiCADO is deployed; 

 Alerts configured under Prometheus. 

Beyond several numbers listed above, a few time-based graphs have also been configured 
to continuously show resource usage related information in MiCADO: 

 Average CPU usage of virtual machines (nodes) and containers; 
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 CPU usage per nodes and per containers; 

 Memory usage per nodes and per containers; 

 Network traffic on cluster; 

 Network usage per container. 

 
Figure 25 Grafana showing the resources usage diagrams under MiCADO 

The dashboard is automatically deployed under Grafana at the deployment time of MiCADO 
master. 
 
This tool has been selected to be part of the dashboard since it provides configurable and 
flexible graphical overview of any metrics e.g. resource usage in time under MiCADO. 

10.4.3 Prometheus 

The Prometheus monitoring system is part of MiCADO. Hence, making it accessible from the 
dashboard is natural. Prometheus has a simple, but useful web interface where any of the 
user defined metrics can be visualized. 
 
One of its useful features is that the details of the configured alerts can be visualized (see 
Figure 26). Beyond simply inspecting the alerts, the user of MiCADO can control whether all 
alerts have been successfully configured by the Policy Keeper. 
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Figure 26 Prometheus showing the state of alerts under MiCADO 

 
Figure 27 Prometheus showing the value of a metric in time under MiCADO 
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Another important and useful feature of Prometheus is to inspect the value of any metrics 
and its value in time (see Figure 27). The metric can be the one which has been configured 
under the scaling policy as a definition of variable or can be the value based on which an 
alert is configured. 
 
Prometheus graphical user interface is made accessible primarily for the application 
developers due to the possibility to easily formalize a Prometheus query which then can be 
inserted in the scaling policy of a given application. 

10.5 Availability 

Ansible playbooks for deployment: 
https://github.com/micado-scale/ansible-micado  

 
Short user guide: 

https://github.com/micado-scale/ansible-micado/blob/master/README.md  
 
Source code of Policy Keeper component: 

https://github.com/micado-scale/component-policy-keeper  
 
Frame Docker container of Policy Keeper component: 

https://hub.docker.com/r/micado/policykeeper/  
 
Source code of Tosca Submitter component: 

https://github.com/micado-scale/component_submitter  
 
Docker container of Tosca Submitter component: 

https://hub.docker.com/r/micado/toscasubmitter/  
 
Documentation of Tosca Submitter: 

https://rawgit.com/micado-scale/component_submitter/master/documentation/ 
_build/html/index.html  

 
MiCADO related TOSCA templates: 

https://github.com/micado-scale/tosca  
 
Source code of Dashboard component: 

https://github.com/micado-scale/component-dashboard  
 
Docker container of Dashboard component: 

https://hub.docker.com/r/micado/dashboard/  
 

https://github.com/micado-scale/ansible-micado
https://github.com/micado-scale/ansible-micado/blob/master/README.md
https://github.com/micado-scale/component-policy-keeper
https://hub.docker.com/r/micado/policykeeper/
https://github.com/micado-scale/component_submitter
https://hub.docker.com/r/micado/toscasubmitter/
https://rawgit.com/micado-scale/component_submitter/master/documentation/%20_build/html/index.html
https://rawgit.com/micado-scale/component_submitter/master/documentation/%20_build/html/index.html
https://github.com/micado-scale/tosca
https://github.com/micado-scale/component-dashboard
https://hub.docker.com/r/micado/dashboard/
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11. Scaling examples in MiCADO V5 

11.1 Consumption based policy 

The consumption-based policy makes scaling decisions based on percent over time 
thresholds set against some hardware resources. For this example, the CPU load of 
containers and virtual machines are queried through Prometheus. The upper threshold for 
CPU load is set at 60% and the lower threshold is at 20%, with a minimum elapsed time for 
nodes set at 1minute and a minimum elapsed time for containers set at 30 seconds. When a 
Prometheus query fetching the CPU load of a container or node returns a value above the 
60% threshold for longer than the minimum allowed time, an alert is generated for the 
container or node that is overloaded, and the infrastructure scales the container or node up 
by a count of one. Conversely, when Prometheus queries for CPU load return under the 
lower 20% threshold for the minimum allowed time, the infrastructure will scale the unused 
resource down by a count of one. 
 
As a test application for the consumption-based policy, stressng [21] has been selected. The 
stressng tool is an extension of Linux stress, which is an intentional load generator for 
stressing hardware resources including CPU, memory and IO.  The stressng extension 
offers more customization and consistency in load tests, which makes it ideal for the 
purposes of testing a policy based on CPU consumption. The tool is deployed inside a 
Docker container, and Docker Swarm settings are set such that a maximum of one instance 
of stressng is permitted to run on each virtual machine node. No minimum number of 
stressng containers is set. 
 
 
 

 
Figure 28 MiCADO scale-up using a consumption-based policy on stressng 

To create a test scenario for the consumption-based policy, a TOSCA template is written for 
the stressng application that describes the application itself (and the load it should produce), 
the cloud topology in which it is deployed, and the policies that govern its scaling decisions, 
including the upper and lower thresholds for scaling. This template is then submitted to the 
TOSCA Submitter and the appropriate data is translated by the configured adaptors before 
being passed to the end components for deployment. Occopus spins up a virtual machine 
with the resources described in TOSCA, and a container running stressng is launched on 
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Docker Swarm. The PolicyKeeper is given identification information of the virtual machine 
node and the application container so that it may build and enforce a consumption-based 
policy that uses the necessary Prometheus queries to target this particular deployment.  
 
Upon successful deployment, stressng will begin to load the CPU to the specified 
percentage, 85% in the test described herein. After 30 seconds, a first alert, indicating an 
overloaded container, will fire. As there is no virtual machine node for Docker to use, nothing 
will happen until after one minute, when the second alert, indicating an overloaded virtual 
machine node, fires. When the overloaded node alert fires, a call from the PolicyKeeper to 
Occopus will scale up and provision a new virtual machine, which will take a short time to 
spin up and join Docker Swarm. Once it has, the earlier alert can be satisfied and the 
PolicyKeeper will call Docker to scale up the number of containers so that one exists on 
each of the virtual machines. 
 

 
Figure 29 MiCADO scale-down using a consumption-based policy with stressng 

The scale-up response will continue until the maximum number of instances as set in the 
TOSCA template is reached, or until the stressng service is manually stopped and removed. 
The entire scale-up response can be visualised in Figure 28. In order to force a scale-down 
response, testing continues and a modified TOSCA template is submitted to the TOSCA 
Submitter as an update. The only modification that the new template carries is a reduction in 
the load generated by stressng down from the earlier 85% to a very low 5%. As soon as the 
update is applied, Prometheus queries will return a figure under the lower threshold, and 
underloaded alerts will be generated. After 30 seconds the container alert will be generated, 
and the PolicyKeeper will instruct Docker to scale down containers by a count of one. After 1 
minute the virtual machine underloaded alert will be generated, and Occopus will be called 
to tear down a node. This will continue until the minimum number of instances as set in the 
TOSCA template is reached, or until a greater CPU load is imposed on the infrastructure. 
After scaling down, the various parts of the deployment are brought down together with an 
API call to the TOSCA Submitter. The scale-down response can be seen in Figure 29. 
 
Snippet 1 shows the complete TOSCA template which realizes the above deployment of 
stressng. The template describes three important sections – the application in container to 
run, the cloud and cloud resources to provision, and the consumption-based policy for 
scaling.  
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The first entry in the node_templates key defines the stressng container as being of the 
type tosca.nodes.MiCADO.Container.Application.Docker. Properties set the application’s 
command at runtime, and set a restriction so a maximum of one container exists on each 
virtual machine. The artifacts section describes the Docker image to use, and the repository 
where it can be found.  
 
Next, a worker_node virtual machine is defined with the TOSCA type 
tosca.nodes.MiCADO.Occopus.CloudSigma.Compute. Properties define endpoints and 
cloud names, and the capabilities define the hardware resources, disk images and security 
details of the virtual machine to be launched. 
 
Lastly, the policies section defines two scalability policies of type 
tosca.policies.Scaling.MiCADO, one which targets the worker_node virtual machine, and the 
other for the stressng container. Constants define resource thresholds at which to scale up 
or down, and for containers, the name of the application stack. Named alerts are described 
using Prometheus queries, and specify a length of time after which the alert should be fired. 
The maximum and minimum number of instances to scale up and down to are also defined 
here in the properties section. The last property is the scaling_rule, which carries the 
Python code to perform the act of scaling based on the targets, constants and alerts defined 
just above. 
 

imports: 

  - https://raw.githubusercontent.com/micado-scale/tosca/master/micado_types.yaml 

repositories: 

  docker_hub: https://hub.docker.com/ 

topology_template: 

  node_templates: 

    stressng: 

      type: tosca.nodes.MiCADO.Container.Application.Docker 

      properties: 

         command: "--cpu 0 --cpu-method pi -l 85" 

         deploy: 

           resources: 

             reservations: 

               cpus: '1.0' 

      artifacts: 

       image: 

         type: tosca.artifacts.Deployment.Image.Container.Docker 

         file: lorel/docker-stress-ng 

         repository: docker_hub 

    worker_node: 

      type: tosca.nodes.MiCADO.Occopus.CloudSigma.Compute 

      properties: 

        cloud: 

          interface_cloud: cloudsigma 

https://raw.githubusercontent.com/micado-scale/tosca/master/micado_types.yaml
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          endpoint_cloud: https://zrh.cloudsigma.com/api/2.0 

      capabilities: 

        host: 

          properties: 

            num_cpus: 2000 

            mem_size: 1073741824 

            vnc_password: secret 

            libdrive_id: 87ce928e-e0bc-4cab-9502-514e523783e3 

            public_key_id: ADD_YOUR_ID_HERE 

            firewall_policy: ADD_YOUR_ID_HERE 

  policies: 

    - scalability: 

        type: tosca.policies.Scaling.MiCADO 

        targets: [ worker_node ] 

        properties: 

          constants: 

            NODE_TH_MAX: '60' 

            NODE_TH_MIN: '20' 

          alerts: 

          - alert: node_overloaded 

            expr: '(100-(avg(rate(node_cpu{group="worker_cluster",mode="idle"}[60s]))*100)) > 

{{NODE_TH_MAX}}' 

            for: 1m 

          - alert: node_underloaded 

            expr: '(100-(avg(rate(node_cpu{group="worker_cluster",mode="idle"}[60s]))*100)) < 

{{NODE_TH_MIN}}' 

            for: 1m 

          min_instances: 1 

          max_instances: 3 

          scaling_rule: | 

            if len(m_nodes) <= m_node_count and m_time_since_node_count_changed > 60: 

              if node_overloaded: 

                m_node_count+=1 

              if node_underloaded: 

                m_node_count-=1 

            else: 

              print('Transient phase, skipping update of nodes...') 

    - scalability: 

        type: tosca.policies.Scaling.MiCADO 

        targets: [ stressng ] 

        properties: 

          constants: 

https://zrh.cloudsigma.com/api/2.0
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Snippet 1. TOSCA Template for stressng deployment with consumption based policies 
 

11.2 Deadline based policy 

In order to demonstrate the flexibility of the policy keeper, a deadline-based policy has been 
compiled. For the needs of the demonstration, we used CQueue [22], a container execution 
tool containing a master and a worker. The Master node implements a queue, where each 
item (called task in CQueue) represents the specification of a container execution (image, 
command, arguments, etc.). The Worker node fetch the tasks one after the other and 
execute the container specified by the task. 
 
With this lightweight container queueing system we implemented a simple deadline based 
policy. In our example, the container to be executed stores Autodock Vina [23], a popular 
molecular docking simulation application. One container execution equals one job execution. 
The list of jobs has been inserted into the queue of CQueue. 
 

            SERVICE_NAME: 'stressng' 

            SERVICE_FULL_NAME: '{{stack}}_stressng' 

            SERVICE_TH_MAX: '60' 

            SERVICE_TH_MIN: '20' 

          alerts: 

          - alert: service_overloaded 

            expr: 

'avg(rate(container_cpu_usage_seconds_total{container_label_com_docker_swarm_service_name="{{SERVICE_F

ULL_NAME}}"}[30s]))*100 > {{SERVICE_TH_MAX}}' 

            for: 30s 

          - alert: service_underloaded 

            expr: 

'avg(rate(container_cpu_usage_seconds_total{container_label_com_docker_swarm_service_name="{{SERVICE_F

ULL_NAME}}"}[30s]))*100 < {{SERVICE_TH_MIN}}' 

            for: 30s 

          min_instances: 1 

          max_instances: 3 

          scaling_rule: | 

            if len(m_nodes) == m_node_count: 

              if service_overloaded and m_node_count > m_container_count: 

                m_container_count+=1 

              if service_underloaded: 

                m_container_count-=1 

            else: 

              print('Transient phase, skipping update of containers...') 
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Figure 30 Architecture for deadline-based policy with CQueue in MiCADO V5 

Figure 30 shows the high-level architecture of the demonstrated scenario. On the left hand 
side, a separate VM executes the Master node of CQueue, which implements a queue 
based on RabbitMQ to store the items representing the container executions. The 
CQWorker is submitted into MiCADO to be scaled up/down in order to reach a set deadline. 
 
A scaling a policy has been defined which requires three parameters: deadline, actual 
number of items, and average execution time of a container (job). Average execution time 
and deadline are considered as fixed parameters in this demonstration. However, the 
number of items in the queue must be continuously monitored.  
 
To monitor the number of items in the queue, a RabbitMQ exporter has been attached to 
RabbitMQ on the CQueue master node. The policy can continuously monitor the number of 
items with Prometheus utilizing the exporter. 
 
The demonstration is executed as follows: 200 molecule docking simulation jobs have been 
submitted, with an average of 40 seconds execution time and with a deadline of 20 minutes 
from the time of submission. The policy has been implemented in a way that each node 
executes maximum two simulations (containers) in parallel.  
 
After the submission, when the initial calculation happened, MiCADO started to scale the 
worker nodes up to four. After approximately one minute, there are already two nodes 
available, and therefore scaling still continues (see the log in Figure 31). After four minutes 
all four nodes are available. However, in order to meet the deadline, seven containers are 
necessary. The number of nodes and containers started to scale down after 15 minutes, and 
by 18 minutes all simulation jobs have been finished. 
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Figure 31 Log messages (extraction) during deadline-based execution 

On the MiCADO Dashboard, the number of nodes and containers are continuously shown. 
See Figure 32 for a screenshot showing the peak performance (4 nodes, 7 containers) 
during running the simulations. 
 

 
Figure 32 Nodes and container at peak during deadline-based execution 

As the deadline is approaching, the simulations are continuously processed by the 
containers. To get the number of simulations remaining, the following Prometheus 
expression is used in the policy:  
“rabbitmq_queue_messages_persistent{queue="machinery_tasks"}” 
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To inspect the number of simulation jobs remaining in a graphical way, MiCADO Dashboard 
can be used by simply specifying this Prometheus expression as an input on the query page 
of Prometheus under the ‘Prometheus’ menu. Figure 33 shows how the number of 
simulations remaining reaches zero by the deadline. 
 

 
Figure 33 Number of jobs in time during deadline-based execution 

To see the resource usage, Grafana (part of MiCADO Dashboard) can be used (Figure 34).  
 

 
Figure 34 Resource usage during deadline-based execution 

deadline
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Grafana under MiCADO is configured to show the CPU, memory and network usage both for 
the virtual machines (left side) and for the containers (right side). Currently, Figure 34 shows 
the CPU (upper row) and Memory usage (lower row) per nodes and per containers. 
 
To present all the details of the deadline-based policy implemented for the demonstration, 
the complete TOSCA description is also presented for full understanding. The TOSCA 
description has been cut into two parts. The first part (see Figure 35) contains the 
infrastructure specification, while the second part (see Figure 36) contains the scaling policy. 
 

 
Figure 35 Deadline-based policy with CQueue under MiCADO V5, Part 1/2 

The infrastructure description (in Figure 35) shows that the MiCADO worker nodes were 
launched on the SZTAKI Opennebula cloud. The CQueue worker container is defined under 
the cqueue_worker section with all the environment variables necessary for CQueue worker 
to build up connection to the CQueue master.  
The scaling policy (in Figure 36) shows the main sections (sources, constants, queries) for 
both nodes and containers. Under sources, the RabbitMQ exporter location is defined. The 
constants section contains average execution time (AET) and deadline (DEADLINE) as most 
important parameters. The queries section specifies the time remaining (REMAININGTIME) 
and number of simulation job remaining (ITEMS) to be monitored. Finally, the scaling rules 

tosca_definitions_version: tosca_simple_yaml_1_0 

 

imports: 

  - https://raw.githubusercontent.com/micado-scale/tosca/master/micado_types.yaml 

 

repositories: 

  docker_hub: https://hub.docker.com/ 

 

topology_template: 

  node_templates: 

    cqueue_worker: 

      type: tosca.nodes.MiCADO.Container.Application.Docker 

      properties: 

        environment: 

          BROKER: amqp://guest:guest@192.168.154.116:5672 

          RESULT_BACKEND: redis://192.168.154.116:6379 

        deploy: 

          restart_policy: 

            condition: any 

        volumes: 

          - /usr/bin/docker:/usr/bin/docker 

          - /var/run/docker.sock:/var/run/docker.sock 

      artifacts: 

       image: 

         type: tosca.artifacts.Deployment.Image.Container.Docker 

         file: sanyi86/cqueue_worker 

         repository: docker_hub 

 

    worker_node: 

      type: tosca.nodes.MiCADO.Occopus.EC2.Compute 

      properties: 

        cloud: 

          interface_cloud: ec2 

          endpoint_cloud: https://opennebula.lpds.sztaki.hu:4567 

      capabilities: 

        host: 

          properties: 

            region_name: ROOT 

            image_id: ami-00000371 

            instance_type: m1.small 
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for nodes and containers specify how many instances need to be launched based on the 
values of parameters specified under the constant and queries sections. 
  

 
Figure 36 Deadline-based policy with CQueue under MiCADO V5, Part 2/2 

… 

  policies: 

    - scalability: 

        type: tosca.policies.Scaling.MiCADO 

        targets: [ worker_node ] 

        properties: 

          sources: 

          - '192.168.154.116:8090' 

          constants: 

            AET: 40 

            DEADLINE: 1530270216 

            MAXNODES: 5 

            MAXCONTAINERS: 10 

          queries: 

            REMAININGTIME: '{{DEADLINE}}-time()' 

            ITEMS: 'rabbitmq_queue_messages_persistent{queue="machinery_tasks"}' 

          min_instances: 1 

          max_instances: '{{MAXNODES}}' 

          scaling_rule: | 

            reqnodes=0 

            if ITEMS>0: 

              reqconts = ceil(AET/(REMAININGTIME/ITEMS)) if REMAININGTIME>0 else 

MAXCONTAINERS 

              reqnodes = ceil(reqconts/2) 

              if reqnodes<m_node_count-1: 

                m_node_count-=1 

              if reqnodes>m_node_count: 

                m_node_count+=1 

            else: 

              m_node_count = 0 

            print "Number of required nodes:",reqnodes 

            print "Number of requested nodes:",m_node_count 

    - scalability: 

        type: tosca.policies.Scaling.MiCADO 

        targets: [ cqueue_worker ] 

        properties: 

          sources: 

          - '192.168.154.116:8090' 

          queries: 

            REMAININGTIME: '{{DEADLINE}}-time()' 

            ITEMS: 'rabbitmq_queue_messages_persistent{queue="machinery_tasks"}' 

          min_instances: 1 

          max_instances: '{{MAXCONTAINERS}}' 

          scaling_rule: | 

            print "Length of queue:",ITEMS 

            required_count = 0 

            if ITEMS>0: 

              required_count = ceil(AET/(REMAININGTIME/ITEMS)) if REMAININGTIME>0 else 

MAXCONTAINERS 

              m_container_count = min(required_count, len(m_nodes) * 2) 

            else: 

              m_container_count = 0 

            print "Number of required containers:",required_count 

            print "Number of requested containers:",m_container_count 
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12. Current status and conclusion 

In this deliverable we introduced the design and implementation of the Scalability Decision 
Maker component. A new component, called Policy Keeper realizes the scaling policies 
where the main design principle was to provide a flexible solution where both monitoring the 
parameters and specification of the scaling rules can be defined by MiCADO users. For 
monitoring parameters, on demand extension of monitoring data sources has been 
introduced by utilizing dynamically configurable Prometheus exporters. For flexible scaling 
rule definition, a scripting language, Python has been selected to formalize the scaling 
algorithm needed for the submitted application. Policy Keeper provides scaling decision 
functionality based on user’s input both on virtual machine and container level. 
 
Moreover, the deliverable introduced three versions of MiCADO that were developed during 
the reporting period. MiCADO V3.1 is an enhanced version of MiCADO V3 developed 
previously and reported in COLA deliverable D6.2. MiCADO V4 is developed to provide a 
flexible, easy-to-use job execution framework. MiCADO V5 aims to be a general scaling 
framework integrating the Policy Keeper to provide autoscaling functionality to various types 
of application. For each version, availability of the source code and documentation have 
been detailed. 
 
MiCADO v5 has also been improved in various aspects such as deployment, visualization 
and TOSCA compliance, when compared to MiCADO V3. Ansible deployment and 
Dashboard has been introduced in MiCADO v5 to make it more user friendly. TOSCA 
compliance has been developed by integrating the new submitter component. TOSCA is 
supported at the level of infrastructure definition and at the level of scaling policy description 
in MiCADO v5. 
 
To show the applicability of the Policy Keeper and Submitter in MiCADO v5, detailed 
description of two different scenarios (consumption-based and deadline-based) has been 
elaborated and demonstrated. 
 
The next step in the MiCADO framework development is the design and development of the 
optimizer component to target cost-based optimization in relation to scaling which will be 
reported in deliverable D6.4. 
 



 D6.3 Prototype and documentation of the scalability decision service 
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