
 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 1 of 54

Project Acronym: COLA

Project Number: 731574

Programme: Information and Communication Technologies
Advanced Computing and Cloud Computing

Topic: ICT-06-2016 Cloud Computing

Call Identifier: H2020-ICT-2016-1

Funding Scheme: Innovation Action

Start date of project: 01/01/2017 Duration: 33 months

Deliverable:

D6.4 Prototype and documentation of

the price/performance optimization service

Due date of deliverable: 30/09/2019 Actual submission date: 27/09/2019

WPL: Jozsef Kovacs

Dissemination Level: PU

Version: V0.22

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 2 of 54

1. Table of Contents

1. TABLE OF CONTENTS .. 2

2. LIST OF FIGURES AND TABLES ... 4

3. STATUS, CHANGE HISTORY AND GLOSSARY .. 5

4. INTRODUCTION .. 7

5. THE MICADO GENERIC ARCHITECTURE FRAMEWORK ... 8

6. MICADO ORCHESTRATION LAYER ... 10

6.1 OVERVIEW OF THE DESIGN .. 10
6.2 OVERVIEW OF THE IMPLEMENTATION .. 12

7. DESIGNING THE MICADO PRICE/PERFORMANCE OPTIMIZATION SERVICE .. 14

7.1 BACKGROUND .. 15
7.2 CONCEPT ... 16
7.3 ARCHITECTURE, IMPLEMENTATION AND INTEGRATION .. 19
7.4 USER MANUAL .. 21

7.4.1 Current limitations .. 21
7.4.2 Basic principles .. 21
7.4.3 Activation of the Optimizer ... 22
7.4.4 Initial settings for the Optimizer ... 22
7.4.5 Definition of system metrics for the Optimizer ... 22
7.4.6 Definition of the target metric for the Optimizer .. 23
7.4.7 Requesting scaling advice from the Optimizer .. 23

7.5 TESTING RESULTS .. 23
7.5.1 Architecture of the application ... 23
7.5.2 ADT of the application .. 24
7.5.3 Evaluation of results ... 27

7.6 BENEFITS AND LIMITS ... 30
7.7 SUMMARY AND FUTURE PLANS ... 31

8. OVERVIEW OF MICADO DEVELOPMENTS .. 32

8.1 MICADO 0.6.0 ... 32
8.2 MICADO 0.6.1 ... 32
8.3 MICADO 0.7.0 ... 33
8.4 MICADO 0.7.1 ... 34
8.5 MICADO 0.7.2 ... 35
8.6 MICADO 0.7.3 ... 35
8.7 MICADO 0.8.0 ... 36
8.8 TERRAFORM INTEGRATION .. 36

8.8.1 Developing a Terraform Adaptor for MiCADO .. 36
8.8.2 Short overview of Terraform ... 37
8.8.3 The Adaptor .. 38
8.8.4 Future work ... 40

8.9 SECURITY RELATED FUNCTIONALITIES ... 41
8.9.1 Verifying OS images that are running the application containers .. 41
8.9.2 Storing cloud credentials in an encrypted way ... 42
8.9.3 Packet filtering firewall for the MiCADO master node.. 42
8.9.4 Encryption, authentication and authorization on web access to the MiCADO master node 42
8.9.5 Secure communication between MiCADO master and worker nodes .. 42
8.9.6 Application-level firewalling for MiCADO applications ... 43
8.9.7 Application-related secret handling and distribution ... 43

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 3 of 54

8.10 INTEGRATION WITH CLOUDBROKER .. 43

9. CURRENT STATUS AND CONCLUSION ... 46

10. REFERENCES ... 47

APPENDIX 1: MICADO SECURITY ENABLERS IMPLEMENTATION REFERENCE GUIDE 48

A. USER-VISIBLE FEATURES ... 48
A1. Verifying OS images that are running the application containers .. 48
A2. Storing cloud credentials in an encrypted way ... 48
A3. Packet filtering firewall for the MiCADO master node.. 49
A4. Encryption, authentication and authorization on web access to the MiCADO master node 49
A5. Secure communication between MiCADO master and worker nodes .. 50
A6. Application-level firewalling for MiCADO applications ... 51
A7. Application-related secret handling and distribution ... 52

B. SUPPORT FUNCTIONS ... 53
B1. Providing cryptographic functions to other components within MiCADO 53
B2. Security workflow director and common interface to security components 53
B3. Safely store and verify user accounts for accessing the MiCADO framework 54

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 4 of 54

2. List of Figures and Tables

Figures

FIGURE 1 MICADO GENERIC ARCHITECTURE FRAMEWORK .. 8
FIGURE 2 ARCHITECTURE OF THE MICADO ORCHESTRATION LAYER.. 10
FIGURE 3 MICADO IMPLEMENTATION STAGE BY STAGE .. 12
FIGURE 4 LINEAR REGRESSION MODEL FOR CPU LOAD .. 17
FIGURE 5 NEURAL NETWORK IN THE OPTIMIZER .. 18
FIGURE 6 OPTIMIZER AND ITS ENVIRONMENT .. 20
FIGURE 7 THE ARCHITECTURE AND ENVIRONMENT OF THE WORDPRESS APPLICATION DURING TESTING 24
FIGURE 8 THE CORRELATION OF THE SYSTEM METRICS AND THE AVERAGE RESPONSE TIME (LATENCY) ... 27
FIGURE 9 EVALUATION OF THE LINEAR REGRESSION MODEL CONCERNING THE KILOBYTE IN PER SEC METRIC 28
FIGURE 10 TRAINING THE OPTIMIZER .. 28
FIGURE 11 REQUEST RATE AND RESPONSE TIME IN A FUNCTION OF TIME DURING THE TRAINING PHASE 29
FIGURE 12 OPERATION DURING PRODUCTION PHASE .. 30
FIGURE 13 OVERALL MICADO ARCHITECTURE AND TERRAFORM.. 38
FIGURE 14 MICADO SUBMITTER WITH THE NEW TERRAFORM ADAPTOR ... 39
FIGURE 15 TRANSLATION DONE BY TERRAFORM_ADAPTOR.PY ... 40
FIGURE 16 CONCEPT OF CBP AND MICADO INTEGRATION ... 44
FIGURE 17 RUNNING THE INFRASTRUCTURE ON MICADO SCALE USING CB IVS .. 44

Tables

TABLE 1 STATUS CHANGE HISTORY ... 5
TABLE 2 DELIVERABLE CHANGE HISTORY .. 6
TABLE 3 GLOSSARY .. 6

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 5 of 54

3. Status, Change History and Glossary

Status: Name: Date: Signature:

Draft: Jozsef Kovacs 24/09/19 Jozsef Kovacs

Reviewed: Gabor Terstyanszky 25/09/19 Gabor Terstyanszky

Approved: Tamas Kiss 27/09/19 Tamas Kiss

Table 1 Status Change History

Version Date Page/Section Author(s) Modification

V0.1 23/08 ALL Jozsef Kovacs Empty Skeleton

V0.2 26/09 Section 7
Jozsef Kovacs,

Eszter Kail
Preword for Optimizer

V0.3 28/09 Section 7.3 Jozsef Kovacs
Add implementation details on

Optimizer

V0.4 04/09 Section 7.4
Jozsef Kovacs,

Reka Kosa
Add section on User manual

V0.5 06/09 Section 9 Balint Kovacs
Adding Security Enablers

Implementation Reference Guide

V0.6 10/09 Section 5 Jozsef Kovacs Writing section

V0.7 12/09 Section 6 Jozsef Kovacs Writing section

V0.8 13/09 Section 4 Jozsef Kovacs Writing section

V0.9 16/09 Section 8
James

Deslauriers
Description of WMIN developments

V0.10 17/09 Section 8 Jozsef Kovacs
Updating with SZTAKI

developments

V0.11 18/09 Section 7.1
Eszter Kail, Istvan

Pintye
Add background section for

Optimizer

V0.12 18/09 Section 7.5
Eszter Kail, Istvan

Pintye
Add section on testing results

V0.13 19/09 Section 7.2
Istvan Pintye,
Eszter Kail,

Jozsef Kovacs
Add concept on Optimizer

V0.14 19/09 Section 7.5 Jozsef Kovacs Rewriting, corrections

V0.15 20/09 Section 8.8 Resmi Ariyattu Adding description on Terraform

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 6 of 54

V0.16 20/09 Section 10 Jozsef Kovacs Writing section

V0.17 20/09 Section 1,2,3 Jozsef Kovacs Updating sections

V0.18 20/09 ALL Jozsef Kovacs Formatting

V0.19 23/09
Sections

7,8,9,10 and
Appendix1

Jozsef Kovacs
Updates based on Tamas Kiss

recommendation

V0.20 24/09 Section 8.10
Vitalii

Zakharenko,
Jozsef Kovacs

Writing and integrating section on
CloudBroker integration

V0.21 25/09 ALL
Gabor

Terstyanszky
Review of D6.4

V0.22 26/09 ALL Jozsef Kovacs Addressing review suggestions

Table 2 Deliverable Change History

Glossary

API Application Programming Interface

MiCADO Microservices-based Cloud Application-level Dynamic Orchestrator

COLA Cloud Orchestration at the level of Application

REST Representational State Transfer (service interface)

CLI Command Line Interface

TOSCA Topology Orchestration Specification for Cloud Application

VM Virtual Machine

IaaS Infrastructure-as-a-Service

JSON JavaScript Object Notation

Table 3 Glossary

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 7 of 54

4. Introduction

This deliverable describes the design and implementation of the MiCADO (Microservices
based Cloud Application-level Dynamic Orchestrator) price/performance optimization
service, called MiCADO Optimizer. This service was the last component to be developed in
the framework of the project. The work described in this document was completed in Task
6.4 in M16-M33. During this period there were several other developments performed by
WP6, which are also outlined in this report. Since the deliverable is the last one produced by
WP6, it also summarizes the security features developed by WP7 and integrated by WP6
into the MiCADO framework.

This deliverable reports the work performed by WP6 as a continuation of work described in
deliverables D6.1, D6.2 and D6.3. The work described in this deliverable also utilizes the
results reported in WP5 and WP8 deliverables such as the design of Application Description
Template that describes applications and policies to be handled by the MiCADO framework
and the application requirements. Moreover, the work presented in this deliverable is an
important input for the deliverables produced by WP7.

The rest of this deliverable is organized as follows: In order to make this document self-
contained and to let the reader understand the background a short summary of the generic
architecture of the MiCADO framework in Section 5 and of the design and implementation of
the current MiCADO Orchestration Layer in Section 6. Next, Section 7 focuses on
introducing the main result of Task 6.4, namely the newly designed and implemented
MiCADO Optimizer service. Beyond this service, WP6 has developed further features and
functionalities for the MiCADO framework in M16-M33, These developments have been
summarized in Section 8. Finally, current status and conclusion in Section 0 closes the
deliverable. Appendix contains a reference guide about the security functions integrated into
MiCADO.

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 8 of 54

5. The MiCADO generic architecture framework

The layers of MiCADO supporting the dynamic application level orchestration of cloud
applications are illustrated in Figure 1. This generic framework is based on the concept of
microservices, as defined for example by Balalaie [1]. Cloud computing is a natural platform
for microservices that provide decoupling of independent components from a monolithic
application. Cloud enables execution and resource allocation of these independent
components based on their specific needs. One microservice might require significant
storage resources while another could be CPU intensive. Cloud execution offers the
possibility to optimize resource allocation and resource cost dynamically. The alternative
would be to allocate a monolithic infrastructure, the size of which is large enough to be
sufficient to cover peak performance as well. The requirement for peak performance
happens rarely, therefore allocated resources of the monolithic infrastructures remain
unused in most of the time.

Figure 1 MiCADO generic architecture framework

The layers of the MiCADO generic architecture (from top to bottom), based on the
microservices-based concept are as follows:

1. Application layer. Application layer contains the actual application code and data

described by application definition (layer 2) to work in such a way that a desired

functionality is reached. For example, this layer could populate database with initial

data, and configure HTTP server with look and feel and application logic.

2. Application definition layer. This layer allows definition of the functional

architecture of applications using application templates. At this level, software

components and their requirements (both infrastructure and security specifications)

as well as their interconnectivity are defined using application descriptions uploaded

to a public repository. As the infrastructure is agnostic to the actually executed

application, the application template can be shared with any application that requires

such an environment.

Cloud interface

Coordination interface

Microservices discovery and execution layer

Microservices coordination logic layer

Cloud access API (direct cloud APIs or CloudBroker API)

Worker node 1
Contai

ner
Contai

ner
Contai

ner

Worker node 2
Contai

ner
Contai

ner
Contai

ner

Worker node N
Contai

ner
Contai

ner
Contai

ner

Infrastructure and security requirement
definition 1

Infrastructure and security requirement
definition 2

App1 App2 App4
Application
layer

Application
definition layer

Orchestration
layer

Cloud interface
layer

Cloud instance
layer

Se
cu

ri
ty

, p
ri

va
cy

an

d
 t

ru
st

 s
er

vi
ce

s

App3

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 9 of 54

3. Orchestration layer. This layer is divided into four horizontal and one vertical sub-

layers. The horizontal sub-layers are:

a. Coordination interface API. This sub-layer provides access to the orchestration
layer and decouples it from the application definition layer. This set of APIs
enables application developers to utilize the dynamic orchestration capabilities of
the underlying layers and supports the convenient development of dynamically
and automatically scalable cloud-based applications by embedding these API
calls into application code.

b. Microservices discovery and execution layer. This sub-layer manages the
execution of microservices and keeps track of services running. Execution
management combines both start-up, running and shut down of microservices.
Service management gathers information about currently running services, such
as service name, IP address and port where the service is reachable and optional
service tags to help service coordination.

c. Microservices coordination logic. To reap the benefits from cloud-based
execution, it becomes necessary to understand how the current execution
environment is performing. Information needs to be gathered and processed. If
bottlenecks are detected or the currently running infrastructure appears
underutilized, it may be necessary to either launch or shut down cloud instances,
and possibly move microservices from one physical worker node to another.

d. Cloud interface API. It is responsible for abstracting cloud access from layers
above. Cloud access APIs can be complex interfaces, as they typically cater for a
large number of services provided by the cloud provider. On the other hand, the
microservices discovery and execution and coordination logic layers (see b and
c) only need to shut down and start instances. Abstracting this to a cloud
interface API simplifies the implementation of the aforementioned layers, and if
new Cloud access APIs are implemented, only this layer needs to change.

The vertical sub-layers are:
e. Security, privacy and trust services. These services span among multiple

levels of the orchestration layer, as it is illustrated in Figure 1. The main aim is to
save the application developers from detailed security management. To achieve
this, the security, privacy and trust services of the orchestration layer take the
general security policies defined at the Application definition layer, as well as
security credentials for the application domain. These inputs are used by the
special purpose security policy enforcement services to enforce the security
policies at orchestration level.

4. Cloud interface layer. This layer provides functions to launch and shut down cloud
instances. There can be one or more cloud interfaces to support multiple clouds.
Besides directly accessing cloud APIs, generic cloud access services, such as the
CloudBroker platform [2] can be also used at this layer to support accessing multiple,
heterogeneous and distributed clouds via its uniform access layer.

5. Cloud instance layer. This layer contains cloud instances provided by
Infrastructure-as-a-Service (IaaS) cloud providers. These instances can run various
containers that execute actual microservices. The layer typically represents state-of-
the-art of cloud technology provided by various public or private cloud providers.

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 10 of 54

6. MiCADO Orchestration Layer

6.1 Overview of the design

In this section, we are giving an overview of the MiCADO Orchestration Layer outlining its
architecture and basic functionalities in order to let the reader understand how the work
described in this deliverable fits into the architecture of the MiCADO framework.

It is important to mention that at this level of abstraction; each component is named after its
functionality. In this section we introduce the overall high-level design where no concrete tool
is assigned for implementing a particular functionality, to make this layer independent from
technologies. This architecture has been designed taking into consideration COLA
deliverable D8.1 - “Business and technical requirements of COLA use cases” as input, which
specifies the requirements of the COLA use cases.

The MiCADO Orchestration Layer is responsible for deploying, executing, scaling and
managing microservices and for maintaining the allocation of resources required for the
microservices. The overall architecture of the MiCADO Orchestration Layer (MiCADO for
short in the rest of this section) can be seen in Figure 2.

MiCADO essentially forms a cluster, which is able to dynamically allocate, attach, or detach
and release cloud resources for optimizing the resource usage during executing the
submitted microservices. MiCADO consists of two main logical components: Master node
and Worker nodes. Master node is the head of the cluster performing the collection of
information on microservices, the calculation of optimized resource usage, the decision
making, and the realization of decisions related to handling of resources and scheduling of
microservices. Worker nodes are volatile components, representing execution
environments for the microservices, i.e. they are executing the actual microservices. Worker
nodes are continuously allocated/released based on the dynamically changing requirements
of the running microservices. Once a new worker node is allocated and attached to the
cluster, the master node utilizes its resources by allocating microservices to it.

Figure 2 Architecture of the MiCADO Orchestration Layer

MiCADO Master Node (box with dashed line on the left side of Figure 2) contains the
following key components:

Node/container
monitor

Node/container
monitor

MICADO
WORKER
NODE

Info on
nodes/containers

Container create/destroy/scale
up/down, node evacuation, etc.

Container
Orchestrator

Worker node create/destroy/scale up hor/verCloud
Orchestrator

Monitoring
System

MiCADO
Submitter

Policy Keeper

Register
policies

Scale/update
worker
nodes

Scale/update containers

description on
infrastructure
and policies

Create
Worker
nodes

MICADO
MASTER
NODE

container

container

container

Optimiser

Advice
Parameters

MICADO
WORKER
NODE

Container
Executor

Create
container
infra

Container
Executor

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 11 of 54

 MiCADO Submitter is the primary service request endpoint for creating an
infrastructure to run an application, managing this infrastructure and the application
itself. Description of submitted infrastructures is received by this component. The
description (e.g. in TOSCA format) is interpreted and the different sections of the
description are forwarded to the underlying components.

 Cloud Orchestrator is responsible for communicating to the Cloud API for allocating
and releasing resources, and for building up/shutting down new MiCADO worker
nodes whenever required.

 Container Orchestrator is responsible for allocating new microservices (realized by
containers) on the worker nodes, keeping track of their execution, and destroying
them if necessary. This component must also manage the scaling up and down
functionality on container services upon request.

 Monitoring System is responsible for collecting information on load of the resources
and on resource usage of the container services, and providing this information for
the other components on the MiCADO master node. Alternatively, it may provide
alerting functionality in relation to the measured attributes to detect values that
require action(s).

 Policy Keeper is the key component that implements policies and makes decisions
for allocating/releasing cloud resources and scheduling container services among
worker nodes. Moreover, this component assures that the cloud and container
orchestrators are instructed in a synchronized way during the operation of the entire
system.

 Optimizer is a background microservice performing calculations on demand for
finding optimized setup of cloud resources of the infrastructure. An optimization
calculation can be initiated with the required parameters on resources. Following this,
the result of optimization is forwarded to the Policy Keeper component for
consideration and execution.

MiCADO Worker Nodes (boxes with dashed line on the right side of Figure 2) contain the
following components:

 Node/container Monitor component is responsible for measuring the load of the
resources and the resource usage of the container services. The measured attributes
are provided to the Monitoring System running on the Master Node.

 Container Executor is responsible for starting, executing and destroying containers
upon requests from the Container Orchestrator running on the Master node.

 Container components realize the user services defined in the (container)
infrastructure description submitted through the MiCADO submitter on the Master
node.

The basic operation of the architecture above can be summarized in the following way: a
new application and infrastructure description is submitted through the MiCADO Submitter.
Based on this description, the initial number of MiCADO worker nodes is created by the
Cloud Orchestrator. Once the MiCADO worker nodes are up and running, the container
infrastructure is submitted to the Container Orchestrator, which realizes the container
services on the worker nodes. Once the initial deployment has been done, policies related to
the application are registered in the Policy Keeper. The Monitoring System starts collecting
information on the nodes and containers, and the Policy Keeper starts updating the
deployment (including both the worker nodes and the containers) when necessary. The
Optimizer performs calculation in the background and provides advice for the Policy Keeper
to improve the execution.

In this architecture, the Cloud Orchestrator and Container Orchestrator components together

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 12 of 54

with the MiCADO Submitter realize the initial deployment of the resources and containers. In
case there are any policies defined for controlling the resource consumption of the container
infrastructure, the Policy Keeper, Optimizer and Monitoring System components together
form a controlling loop implementing the predefined policy. Once the initial deployment has
been done, updates can be only confirmed by the Policy Keeper.

This architecture is built by loosely coupled functionalities like resource allocation/release,
container allocation/deallocation, initial deployment, monitoring and decisions on scalability.
For example, the controlling components (Policy Keeper, Optimizer, Monitoring System) can
be detached from the architecture and it is still operational for realizing the initial deployment
of the submitted infrastructure.

One of the most important aim of this architecture is to provide a modular and pluggable
framework where different functionalities can be delivered by different components on-
demand, and where these components can be easily substituted. The resulting solution will
be agnostic to the underlying component implementation.

6.2 Overview of the implementation

In the first phase of implementation reported in Deliverable D6.1, Cloud orchestration and
Container orchestration (depicted by red boxes in Figure 3) have been realized. As
deliverable D6.1 details, Occopus [3][4] implements the cloud orchestration, while Docker
Swarm [5] implements the container orchestration subsystem. However, later during the
project at M24 the consortium decided to replace Swarm with Kubernetes [6].

In the second phase of implementation, a Monitoring System (depicted by green boxes in
Figure 3) has been integrated and documented in Deliverable D6.2. As deliverable details,
the Prometheus monitoring subsystem [7] with Node exporter [8] and CAdvisor [9]
components (as data sources) on the Worker nodes, has been added to the MiCADO
implementation.

Figure 3 MiCADO implementation stage by stage

In the fourth phase of implementation, the Policy Keeper (to support automatic decision
making), Dashboard and MiCADO Submitter with TOSCA support (depicted by blue boxes in
Figure 3) has been introduced and reported in Deliverable D6.3.

Node exporter/
cadvisor

Node exporter/
cadvisor

MICADO
WORKER
NODE

Info on
nodes/containers

Container create/destroy/scale
up/down, node evacuation, etc.Kubernetes

Worker node create/destroy/scale up hor/ver
Occopus

Prometheus

Submitter
(propriatery)

Policy Keeper
(propriatery)

Register
policies

Scale/update
worker
nodes

Scale/update containers

TOSCA
description on
infrastructure
and policies
(designed by

WP5)

Create
Worker
nodes

MICADO
MASTER
NODE

container

container

container

Optimiser

Advice
Parameters

MICADO
WORKER
NODE

Docker

Create
container
infra

Docker

Dash-
board
(prop-
riatery)

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 13 of 54

Finally, in the recent project period, the Optimizer (depicted by uncolored, dotted box in
Figure 3) has been implemented and reported in the current D6.4 deliverable.

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 14 of 54

7. Designing the MiCADO Price/Performance Optimization
Service

The task of the MiCADO Price/Performance Optimization service (further called Optimizer) is
to provide scaling decision in a way that the application running under MiCADO is optimized
for costs and performance. This means that the application should provide the best/required
performance for as low cost as possible. Increasing the performance usually results in
increased costs, while lowering the costs usually decreases the performance for a given set
of resources.

Calculating and detecting the best performance can be a complicated task. It is much
simpler for the optimizer to let the user describe the expected performance, instead of
detecting it by the optimizer. Even for the same application, best performance can be
defined in different ways depending on what key feature(s) the application must provide to
achieve the best performance where performance may focus on user experience,
processing speed or memory usage, it is the task of the user to decide on.

In order to optimize the execution of an application towards costs, one of the possibilities for
cost tracking is to continuously monitor the actual costs for each resource consumed by the
application. Some clouds may provide it (e.g. Amazon Web Services), but most of them do
not, i.e. cost tracking cannot be applied in every cloud. Moreover, even if costs can be
extracted through the cloud API, for optimization costs must be discovered for each scaling
action in order to provide good decision, i.e. how a certain scaling command would affect the
overall costs. As a consequence, cost tracking can be a very complicated task when the
expectation is to gather cost details for each scaling action and for each resource individually
and on a per minute basis.

One possibility to avoid cost tracking (i.e. continuously calculating or monitoring the cost for
each monitoring resource) is to calculate/support the decision on scaling in a way, which
ensures that the resource usage is always kept to the minimum but still providing the
expected performance defined by the user. The basic assumption is with the lowest number
of resources used for the application the lowest cost can be reached for the same
application provided that the internal structure and operation of the application is already
optimal and cannot be affected by the optimizer.

To simplify the optimization, the optimizer implements virtual machine level horizontal
autoscaling, so the resources are represented by homogeneous virtual machines, while the
expected performance can be expressed by one measurable metric provided by the
Prometheus monitoring system integrated into MiCADO. Beyond the metric itself, threshold
levels are also required to let the optimizer know what values of the metric representing the
expected performance of the application are appropriate.

In order for the optimizer to find the lowest number of resources in every situation as quickly
as possible, it must learn the consequences generated by the scaling commands; increasing
or decreasing the number of resources assigned to the application. Learning the scaling
effects can be done by continuously monitoring certain metrics and variables of the
application and finding the relation among them. For this purpose, machine learning
algorithms and techniques have been applied.

The following sections will explain the details of the concept and operation.

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 15 of 54

7.1 Background

Based on exhaustive literature review we found that possible solutions for optimized scaling
were categorized into five different categories. These are threshold-based, queuing theory
based, control theory based, time-series analysis based and machine learning-based
solutions [10][11].

One of the most widely used scaling techniques is the threshold-based approach. Its main
advantage is simplicity. However, as it is based on statistical analysis of cost efficiency it is
not as optimal as it could be. Queuing theory and control theory-based solutions require
a system model before they can be applied, which is not possible in every situation or
requires lot of efforts to create this model. Classic time-series methods aim to forecast
future behavior from a huge amount of historical data to forecast future workload or resource
usage. The historical data on customers’ usage patterns is usually collected by cloud
providers. In case of MiCADO, this huge amount of historical data is not available since,
MiCADO collects information for one single application used by one single user.

The above-mentioned approaches for optimized auto-scaling rely on a deep understanding
of the application, the underlying infrastructure and their dynamics to accurately scale
resources. In absence of such information, exhaustive instrumentation and experiments are
required from the user or developer to study the system. The main disadvantage of these
solutions is that an experienced application developer is needed, however the dynamics of
the application can vary from application to application, and from infrastructure to
infrastructure. Therefore, these solutions require significant human efforts.

There are many popular techniques used to carry out learning the relationship between
variables. “Machine learning” solutions such as regression, neural networks and
reinforcement learning techniques can be considered in auto-scaling. Regression is a
statistical method used to determine the polynomial function that is the closest to a set of
points (in this case, the w values of the history window). The objective is to find a polynomial
for which the distance from each of the points to the polynomial curve is as small as possible
and therefore fits the data best. Neural networks consist of an interconnected group of
artificial neurons, arranged in several layers. It has an input layer with several input neurons,
an output layer with one or more output neurons, and one or more hidden layers in between.
During the training phase, neural networks are fed with input vectors and random weights.
Those weights are adapted until it shows the desired output for a given input. Recently an
emerging new method, the Reinforcement Learning (RL) [12][13], concerning auto-scaling
has appeared. RL approach will adapt to suit the environment based on its own experience.
It offers the potential to develop optimal allocation policies without requiring explicit system
models and knowledge extracted from historical usage of data. RL also provides additional
advantages when it comes to delayed effects of a configuration change on both applications
and infrastructure performance metrics and also on future decisions on reconfiguration. Their
main drawback is that to find the optimal policy the system should scale the resources
randomly during the learning phase. During the learning phase this method discovers
decisions causing bad results, too. Due to characteristic, a very detailed large state space is
explored, so the learning period takes very long time. Therefore, this approach can be very
cost intensive.

The proposed solution for the Optimizer is to apply Machine learning method combining
Regression and Neural networks. This solution enables a guided state space discovery
which is less cost intensive and takes only a fraction of time compared to the RL solution.

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 16 of 54

7.2 Concept

The goal of the Optimizer is to give advice on the optimal number of virtual machines that
should be allocated to provide cost efficient resource usage from the perspective of the user.
In order to realize this, the Optimizer is designed along the following aspects. These are as
follows.

1. Expected performance: target variable

The Optimizer needs to know what the expected performance is that the application

should deliver for the users. The performance must be expressed with a variable,

which can be continuously monitored and tracked. This variable is called target

variable for which the Optimizer requires minimum and maximum values. These min

and max values define a range in which the Optimizer must keep the value of the

target variable.

2. Effect of scaling events on system variables

The Optimizer must learn the effect of the scaling events, i.e. how the different

system related parameters/variables/metrics change when a virtual machine is added

or removed from the set of resources the application is using. The assumption is that

when a new virtual machine is added the load is distributed among the nodes and the

monitored system parameters (expressing load-related values) will definitely change

after the scaling happened. Based on this assumption, the Optimizer must

continuously track the system parameters and extract (and register) their values

before and after the scaling events. Based on these values, the Optimizer can learn

and predict how the variables will change after scaling. The system variables in this

context express load-related parameters, like CPU usage, memory usage, number of

interrupts, size of incoming packets and so on. From the Optimizer point of view, we

call these variables as system (or input) variables.

3. Effect of scaling events on target variable

Once the relation among the pre and post values of each system variables is

learned, the Optimizer needs to learn the relation between the system variables and

the target variable. Based on this knowledge, when the Optimizer has the actual

values for each system variables the target variable can be predicted as well. Once

the target variable can be predicted based on the system variables, the Optimizer will

be able to predict the target variable for each investigated (hypothetical) scaling

event and as a result, it will be able to select the best alternative i.e. to suggest

scaling (or virtual machine number) which is predicted to be the best or most optimal

for the running application.

4. Lowest number of resources

The Optimizer must keep the number of virtual machines (resources) as low as

possible while keeping the target variable in the specified range. Since price-

performance optimization in the current solution does not involve the tracking of the

cost of the individual resources, the goal is to keep the resources as low as possible

in order to keep the cost (i.e. price) of operating the application as low as possible.

There are two learning mechanisms distinguished and designed for optimization as it has
been described above. They are as follows:

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 17 of 54

1. Learning the relation between values of system metrics before and after

scaling

The goal of this learning model is to learn the linear relation between the values of

the system metrics before the scaling action is executed and the values after the

scaling action was performed. For this purpose, the machine learning method applied

in the Optimizer is a collection of linear regression models. Several investigations

have been performed and linear regression model [14] has been chosen due to the

fact that it gives the best prediction results for this case [15].

Figure 4 Linear regression model for CPU load

These models are created for each system variable and the inputs are value pairs of

a variable before and after the scaling action. With many value pairs registered in a

linear regression model of a system variable (e.g. for CPU load see Figure 4), the

relation will be automatically calculated, and this calculated relation can be used later

for predictions. One regression model is able to predict the new value of a system

variable (metric) for a given VM number and its change. The calculation is based on

the following equation:

𝑚𝑒𝑡𝑟𝑖𝑐1𝑒𝑠𝑡 = 𝜔0 + 𝜔1 ∗ 𝑚𝑒𝑡𝑟𝑖𝑐1𝑎𝑐𝑡 ∗
𝑉𝑀𝑎𝑐𝑡

𝑉𝑀𝑎𝑐𝑡 + 𝑉𝑀𝑛𝑒𝑤
+𝜔2∗𝑚𝑒𝑡𝑟𝑖𝑐1𝑎𝑐𝑡 ∗

𝑉𝑀𝑛𝑒𝑤

𝑉𝑀𝑎𝑐𝑡 + 𝑉𝑀𝑛𝑒𝑤

where 𝑚𝑒𝑡𝑟𝑖𝑐1𝑎𝑐𝑡 refers to the actual measured value of the first system metric,

𝑚𝑒𝑡𝑟𝑖𝑐1𝑒𝑠𝑡 refers to the estimated value of this system metric, 𝑉𝑀𝑎𝑐𝑡 is the number of

VMs that are already allocated by the auto-scaling module, the 𝑉𝑀𝑛𝑒𝑤 is the number

of VMs after a hypothetical scaling. Solving the regression, the optimizer will know

the w0, w1, w2 weights. Once these weight are calculated, the LR can be used to

predict the values of system variables (metrics) if VM number changes from a given

value to a new value, i.e. scaling would happen.

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 18 of 54

2. Learning the relation between the system variables and target variable

The goal of this learning model is to discover and learn the non-trivial and non-linear

relation among the system variables and the target variable. Based on our

experiences this relation cannot be represented in a linear fashion. For modeling

non-linear relation, Neural Network called Multi-Layer Perceptron Neural Network

[12][15] have been chosen (see Figure 5). It has three layers altogether, where the

hidden layer (in the middle) has its activation functions configured as hyperbolic

tangent. The input layer (on the left side) receives the values of the system variables,

while the output layer (on the right side) represents the value of the target variable.

The neural network has two operational phases. During training phase, many sets of

input and output variables are fed to the network, which as a result learns their

relation automatically by adjusting the weight values of each neurons in the network.

The more set of variables are shown to the network the more precise prediction can

be expected. Once the weights are configured to provide relation between the input

and output values with an appropriate error rate, the neural network is considered as

trained and the phase turns to production. In production phase, the trained neural

network then can calculate the target variable for a set of input variables based on its

knowledge.

Figure 5 Neural Network in the Optimizer

The knowledge is represented by the weight values of the network, which are periodically

updated. The network can further train itself during production phase and is able to calculate

its error rate. Error rate is based on the fact that for each set of input variables the actual

value of the target variable is also shown to the network, so the difference can be measured.

Advice generation mechanism in the Optimizer

In order to get a proper advice from the Optimizer, it needs to have properly built knowledge.
This knowledge is represented as:

 several trained linear regression (LR) models for each system variable

 a trained neural network (NN) model for the target variable

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 19 of 54

The Optimizer performs the following steps when calculating an advice for scaling:

1. the Optimizer registers the actual number of virtual machines (N) and the actual

values of the system variables (I1…IM)

2. The Optimizer elaborates several hypothetical scaling alternatives. These

alternatives represent scaling down and up events i.e. the number of virtual

machines can be decreased and increased: NALT={N+∆Sup, N+∆Sup-1,…, N,…, N-

∆Sdown+1, N-∆Sdown} where ∆Sup and ∆Sdown are parameters specifying the maximum

allowed change in number of virtual machines in scaling down and scaling up events.

3. For each hypothetical number of virtual machines, NALT the Optimizer performs

checks whether the modified number of virtual machines offers better performance

for the application.

4. The evaluation starts with calculating the new system variables (I1…IM) using the LR

models. Each system variable is submitted to the LR model belonging to the given

system variable and LR returns the new value of the system variable for the specified

number of virtual machines. The result is the set of new system variables for a given

VM number.

5. The newly calculated values for the set of system variables (I1…IM) then fed to the

NN model, which returns the predicted value of the target variable (Tx).

6. When the value of target variables is calculated for each investigated number of

virtual machines (T1…TX) a filtering happens. The filtering criteria for the modified

number of virtual machines is that the corresponding value of target variable must be

within the expected range. As a result, only those VM numbers remain in the list for

which the prediction shows proper value of the target variable. If there is no virtual

machine number that can keep the target variable in the expected range, the virtual

machine number, with target variable closest to the range, will be selected. This

means that the most cost effective VM number is selected.

7. Beyond the VM number selection, reliability is also calculated to give feedback on the

goodness of the suggested VM number for consideration. The reliability is based on

the Pearson’s Correlation coefficients returned by the models. This value is

normalized to the 0..100 domain to express percentage.

The description above gives a simple, but understandable explanation of the optimal virtual
machine number selection mechanism of the Optimizer. With this mechanism, the Optimizer
recommends to use the smallest VM number keeping the performance (i.e. the target
variable) still in the expected range.

7.3 Architecture, implementation and integration

The Optimizer is implemented as a service with a REST API and is running on the MiCADO
master node. The MiCADO architecture with the Optimizer can be seen on Figure 6.

The Optimizer service is linked and cooperating with the Policy Keeper (PK). As it has been
described in D6.3, Policy Keeper is responsible for executing the user-defined scaling rules
(which are realized by short python code) considering the advice coming from the Optimizer
as input to the user-defined scaling rule.

The communication is initiated by PK in every situation. At startup, PK forwards the
Optimizer a set of user defined parameters and variables. These are the settings, system
and target variable. PK periodically collects the actual values of the system and target

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 20 of 54

variables from Prometheus monitoring service and reports them to the Optimizer. Based on
these reported values the Optimizer learns the relations and develops its knowledge. Having
this knowledge, the user-defined scaling rule may request an advice from the Optimizer at
any time. When a scaling rule requires an advice, PK contacts the Optimizer and ask for an
advice. As a response, the Optimizer sends an advice on the number of virtual machines,
which is the most optimal in the current situation. The user-defined scaling rule receives the
advice in the form of a dictionary. This dictionary contains the number of virtual machines
where validity, reliability, production phase and error messages if any are also part of the
advice dictionary. Having this information PK makes the final decision, i.e. either to launch
extra VMs or destroy some VMs, or to override the advice and scale VMs to a different
value.

Figure 6 Optimizer and its environment

The Optimizer is implemented as a service, written in Python and implemented using Flask
[16] library for the REST API. For implementing learning, neural network and linear
regression mathematical models are used for which scikit-learn[17], pandas[18] and
numpy[19] libraries are integrated. The Optimizer, similarly to the other components in
MiCADO master, is running in a container, in which it maintains its own internal knowledge
base.

The Optimizer has a REST API, which is as follows:

 POST /init <settings>

Initializes the Optimizer. Resets (or keep) the knowledge based and registers the

new set of input variables and the target variable. The <settings> may contain

parameters with values associated affecting the operation of the Optimizer. This

method is invoked once by Policy Keeper when starting a new policy.

 POST /sample <variables>

Invoking this method with a data structure containing the value of each input variable

and the target variable, trains the optimizer and helps further developing the

knowledge base. It is periodically invoked by the Policy Keeper.

 GET /advice

This method returns an advice for the number of virtual machines in the form of a

data structure with a few additional fields like validity, reliability, error if any, phase

Node exporter/
cadvisor

Node exporter/
cadvisor

MICADO
WORKER
NODE

Info on
nodes/containers

Container create/destroy/scale
up/down, node evacuation, etc.Swarm

Worker node create/destroy/scale up hor/ver
Occopus

Prometheus

Submitter

Policy Keeper

Register
policies

Scale/update
worker
nodes

Scale/update containers

TOSCA
description on
infrastructure
and policies

Create
Worker
nodes

MICADO
MASTER
NODE

container

container

container

Optimiser

Advice
Parameters

MICADO
WORKER
NODE

Kubernetes/
Docker

Create
container
infra

Kubernetes/
DockerKubernetes/

Docker

Dash
board

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 21 of 54

and so on. This method is invoked by the Policy Keeper once the user code requests

an advice.

 GET /report

This method returns a webpage containing diagrams, statistics on the current input

and target variables and on their relations gained by the knowledge base built.

The invocation of the methods of the Optimizer by the user is not recommended. This is the
reason it is not specified in details. The REST API of the Optimizer is used directly by the
Policy Keeper, which exposes a different user interface for the developers. This user
interface can be found in section 7.4.

7.4 User manual

For implementing more advanced scaling policies, it is possible to utilize the built-in
Optimizer in MiCADO. The role of the Optimizer is to support decision making in calculating
the number of worker nodes (virtual machines) i.e. to scale the nodes to the optimal level.
Optimizer is implemented using machine learning algorithm aiming to learn the relation
between various metrics and the effect of scaling events. Based on this learning, the
Optimizer is able to calculate and advise on the necessary number of virtual machines.

7.4.1 Current limitations

Optimizer supports

 only web-based applications

The current version of the Optimizer requires the average and sum request rate of the

web server (Apache, Nginx, etc.) where the web-based application is running. This

limitation is planned to be eliminated by the next version.

 only one of the node sets

MiCADO supports multiple set of nodes scaling independently. The current Optimizer

can be configured to provide advice for only one of the node sets in the application. No

plan to remove this barrier at the moment.

 no container scaling

MiCADO supports virtual machine (node) and container scaling independently. However,

the Optimizer currently supports only VM scaling. To override this, container scaling rule

is recommended to follow the number of nodes. There is no plan to remove this barrier at

the moment.

7.4.2 Basic principles

 User specifies a so-called target metric with its associated minimum and maximum

thresholds. The target metric is a monitored Prometheus expression for which the value

is tried to be kept between the two thresholds by the Optimizer giving scaling advices.

 User specifies several so-called system metrics which represent the state of the system

correlating to the target variable

 User specifies several initial settings (see later) for the Optimizer

 User submits the application through the ADT activating the Optimizer

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 22 of 54

 Optimizer starts with the ‘training’ phase during which the correlations are learned.

During the training phase artificial load must be generated for the web application and

scaling activities must be performed (including extreme values) in order to present all

possible situations for the Optimizer. During this phase, Optimizer continuously monitors

the system/target metrics and learns the correlations.

 When correlations are learnt, Optimizer turns to ‘production’ phase during which advice

can be requested from the Optimizer. In this phase, Optimizer returns advice on request,

where the advice contains the number of virtual machines (nodes) to be scaled to. In the

production phase, the Optimizer continues its learning activity to adapt to the new

situations.

7.4.3 Activation of the Optimizer

The Optimizer can be activated, configured and utilized through the ADT of MiCADO under
the scaling policy (see example in Code 2). The Optimizer-related parameters must be
inserted into subsections “constants” and “queries”. Each parameter relating to the Optimizer
must start with the “m_opt_” string. In case no variable name with this prefix is found in any
sections, Optimizer is not activated.

7.4.4 Initial settings for the Optimizer

Parameters for initial settings are defined under the “constants” section and their name must
start with the “m_opt_init_” prefix. These parameters are as follows:

 m_opt_init_knowledge_base is a parameter which specifies the way how the

knowledge base must be built under the Optimizer. When defined as “build_new”,

Optimizer empties its knowledge base and starts building a new knowledge i.e. starts

learning the correlations. When using the “use_existing” value, the knowledge is kept

and continued building further. Default is “use_existing”.

 m_opt_init_training_samples_required defines how many samples of the metrics

must be collected by the Optimizer before it starts learning the correlations. Default is

300.

 m_opt_init_max_upscale_delta - maximum change in number of nodes for an

upscaling advice. Default is 6.

 m_opt_init_max_downscale_delta - maximum change in number of nodes for a

downscaling advice. Default is 6.

 m_opt_init_advice_freeze_interval - how many seconds must elapse before the

Optimizer advises a different number of nodes. Can be used to mitigate the frequency of

scaling. Defaults to 0.

7.4.5 Definition of system metrics for the Optimizer

System metrics must be specified for the Optimizer under the “queries” subsection to
perform the training i.e. learning the correlations. Each parameter must start with the
“m_opt_input_” prefix, e.g. m_opt_input_CPU. The following two pieces of variable must be
specified for the web application:

 m_opt_input_AVG_RR - the average request rate of the web server.

 m_opt_input_SUM_RR - the summary of request rate of the web server.

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 23 of 54

7.4.6 Definition of the target metric for the Optimizer

Target metric is a continuously monitored parameter that must be kept between thresholds.
To specify it, together with the thresholds, “m_opt_target_” prefix must be used. These three
parameter must be defined under the “queries” sections. They are as follows:

 m_opt_target_query_MYTARGET - prometheus query for the target metric called

MYTARGET.

 m_opt_target_minth_MYTARGET - value above which the target metric must be kept.

 m_opt_target_maxth_MYTARGET - value below which the target metric must be kept.

7.4.7 Requesting scaling advice from the Optimizer

In order to receive a scaling advice from the Optimizer, the method m_opt_advice() must be
invoked in the scaling_rule section under the scaling policy section of the ADT.

IMPORTANT! Minimum and maximum one of the node scaling policy, must contain
this method invocation in its scaling_rule section for proper operation!

The m_opt_advice() method returns a python dictionary containing the following fields:

 valid stores True/False value indicating whether the advice can be considered or not.

 phase indicates whether the Optimizer is in “training” or “production” phase.

 vm_number represents the advice for the target number of nodes to scale to.

 reliability represents the goodness of the advice with a number between 0 and 100.

The bigger the number is the better/more reliable the advice is.

 error_msg contains the error occurred in the Optimizer. Filled when valid is False.

7.5 Testing results

The Optimizer has been tested and evaluated. For this purpose, we have used an existing
web server-based application with some changes. The Wordpress application is already part
of the demo applications of MiCADO stored in the GitHub repository. Moreover, detailed
description on how the Wordpress demo application can be deployed to MiCADO can be
found in the documentation of MiCADO [20].

7.5.1 Architecture of the application

The Wordpress application is an Apache server with a Wordpress blog on top it inside a
container. In order to perform the measurements and monitoring some metrics related to
Apache, an Apache exporter has been integrated into the same container. So, the container
contains the Apache webserver and the Apache exporter (see Figure 7) denoted with
dashed line on the MiCADO worker node. Beyond this container, each worker node contains
a Node exporter in order to monitor the system variables required by the Optimizer. Both
exporters are linked with Prometheus, which collects the values of the variables periodically.

Beyond these components an NFS volume is also hosted on the MiCADO worker node as a
Kubernetes pod. This has the functionality to share a file system between the Apache
webserver instances. Whenever a new Apache instance is created on a new MiCADO
worker node the same file system with the same content is visible for the Apache webserver.
This functionality is realized by Kubernetes volumes.

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 24 of 54

The Wordpress application requires a database in order to persist data stored on the
webpages. For this purpose, a database has been attached and has been deployed in the
Amazon cloud. The database in the current use case is realized by the RDS service of AWS
to provide flexibility and significant capacity for handling a huge number of requests during
the testing.

Figure 7 The architecture and environment of the Wordpress application during testing

The MiCADO master node contains quite a few components, however for the current use
case only the Optimizer and its environment are represented, the rest is hidden in Figure 7.
Prometheus is collecting the values of the variables periodically, while Policy Keeper
requests the values whenever the scaling rule is evaluated. During the operation the Policy
Keeper reports the values for the Optimizer, which then builds its knowledge.

7.5.2 ADT of the application

During the testing, a MiCADO 0.8.0 pre-release version was used and executed on the
OpenNebula cloud of MTA SZTAKI. After the deployment of MiCADO, the Wordpress
application was deployed using the ADT where topology is shown in Code 1 and scaling is
shown in Code 2.

The topology has been shortened with removing the details in some of the ‘interface’ and
‘capabilities’ sections to fit into one page. 3 pods/containers (nfs-server-pod, nfs-volume,
Wordpress) and 1 worker node (worker-node) is created (see Code 1). It can be seen how
the Wordpress container utilizes the Amazon RDS (‘WORDPRESS_DB_HOST’ environment
variable) and how it utilizes the shared file system (‘requirements’ section of ‘wordpress’
pod). The ‘endpoint_cloud’ at the end of ‘worker-node’ points to Opennebula.

Database

AWS

NFS

Volume

Apache +
wordpress

Apache
exporter

Open
nebula

MiCADO Worker

MiCADO Master

Pr
o

m
e

th
e

us

Node
exporter

Pol icy
Keeper

Optimizer

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 25 of 54

Code 1 Topology part of ADT for Wordpress tested with the Optimizer

tosca_definitions_version: tosca_simple_yaml_1_0

imports:

 - https://raw.githubusercontent.com/micado-scale/tosca/develop/micado_types.yaml

repositories:

 docker_hub: https://hub.docker.com/

topology_template:

 node_templates:

 nfs-server-pod:

 type: tosca.nodes.MiCADO.Container.Application.Docker

 properties:

 name: nfs-server-container

 securityContext:

 privileged: True

 args: ['/exports']

 ports:

 - target: 2049

 clusterIP: 10.96.0.240

 - target: 111

 protocol: udp

 requirements:

 artifacts:

 image:

 type: tosca.artifacts.Deployment.Image.Container.Docker

 file: itsthenetwork/nfs-server-ubuntu

 repository: docker_hub

 interfaces:

…

 nfs-volume:

 type: tosca.nodes.MiCADO.Container.Volume

 properties:

 name: nfs-volume

 interfaces:

 Kubernetes:

 create:

 inputs:

 nfs:

 server: 10.96.0.240

 path: /

 wordpress:

 type: tosca.nodes.MiCADO.Container.Application.Docker

 properties:

 name: wordpress

 env:

 - name: WORDPRESS_DB_HOST

 value: database-1-instance-1.cvu3fktdwzal.eu-central-1.rds.amazonaws.com:3306

 - name: WORDPRESS_DB_USER

 value: root

 - name: WORDPRESS_DB_PASSWORD

 value: Passw0rd

 resources:

 requests:

 cpu: '900m'

 ports:

 - target: 80

 nodePort: 30010

 type: NodePort

 - containerPort: 80

 name: wordpress

 - containerPort: 9117

 name: wp-apache-exp

 artifacts:

 image:

 type: tosca.artifacts.Deployment.Image.Container.Docker

 file: emodimark/wordpress:5.1-metrics

 repository: docker_hub

 requirements:

 - volume:

 node: nfs-volume

 relationship:

 type: tosca.relationships.AttachesTo

 properties:

 location: /var/www/html

 interfaces:

 …

 worker-node:

 type: tosca.nodes.MiCADO.EC2.Compute

 properties:

 region_name: ROOT

 image_id: ami-00000526

 instance_type: t2.medium

 context:

 append: yes

 cloud_config: |

 runcmd:

 - apt-get install -y nfs-kernel-server nfs-common

 interfaces:

 Occopus:

 create:

 inputs:

 interface_cloud: ec2

 endpoint_cloud: https://opennebula.lpds.sztaki.hu:4567

 capabilities:

…

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 26 of 54

Code 2 Scaling policy part of ADT for Wordpress tested with the Optimizer

The scaling part of the ADT is shown in Code 2. It realizes a scaling with the help of the
Optimizer. The Optimizer settings, system and target variables are specified under the
‘constants’ and ‘queries’ sections with m_opt_init_, m_opt_input_ and m_opt_target_
prefixes.

There are two settings in the current ADT. The parameter ‘m_opt_init_knowledge_base’ tells
the Optimizer to use its existing knowledge (from previous runs) to perform the calculations.
If a new application and new knowledge base must be built, the value of this parameter must
be set to ‘build_new’.

The system variables are listed with ‘m_opt_input_’ prefixes where the value is the query
expression that can be evaluated by Prometheus using the built-in exporters or the ones
listed under the ‘sources’ section. The following system variables have been defined for the
Optimizer:

 AVG_RR - average request rate of the last two minutes

 SUM_RR - summary of request rate of the last two minutes

 CPU - average cpu load of the nodes of the last two minutes

 Inter - average number of system interrupts happened in the last minute

 CTXSW - average number of context switch happened the last two minutes

 KBIn is average number of KBs received by the network of the nodes

 PktIn - average number of packets received by the network of the nodes

 policies:
 - monitoring:

 type: tosca.policies.Monitoring.MiCADO

 properties:

 enable_container_metrics: false

 enable_node_metrics: true

 - scalability:

 type: tosca.policies.Scaling.MiCADO

 targets: [worker-node]

 properties:

 sources:

 - 'wordpress:9117'

 constants:

 MINNODES: 1

 MAXNODES: 12

 m_opt_init_knowledge_base: "use_existing"

 m_opt_init_training_samples_required: 300

 queries:

 m_opt_input_AVG_RR: 'avg(rate(apache_accesses_total[2m]))'

 m_opt_input_SUM_RR: 'sum(rate(apache_accesses_total[2m]))'

 m_opt_input_CPU: 'avg(100 - (avg by (instance) (irate(node_cpu_seconds_total{mode="idle"}[2m])) * 100))'

 m_opt_input_Inter: 'avg(irate(node_intr_total[1m]))'

 m_opt_input_CTXSW: 'avg(irate(node_context_switches_total[1m]))'

 m_opt_input_KBIn: 'avg(irate(node_network_receive_bytes_total{device="eth0"}[1m]))/1024'

 m_opt_input_PktIn: 'avg(irate(node_network_receive_packets_total{device="eth0"}[1m]))'

 m_opt_input_KBOut: 'avg(irate(node_network_transmit_bytes_total{device="eth0"}[1m]))/1024'

 m_opt_input_PktOut: 'avg(irate(node_network_transmit_packets_total{device="eth0"}[1m]))'

 m_opt_target_query_AVG_LAT_05: 'avg(http_request_duration_microseconds{quantile="0.9",instance=~"10.*:9117"})'

 m_opt_target_minth_AVG_LAT_05: 9000

 m_opt_target_maxth_AVG_LAT_05: 15000

 min_instances: 1

 max_instances: 9

 scaling_rule: |

 adv = m_opt_advice()

 print(' ADVICE.valid: '+str(adv['valid']))

 print(' ADVICE.phase: '+str(adv['phase']))

 print(' ADVICE.vm_number: '+str(adv['vm_number']))

 print(' ADVICE.reliability: '+str(adv['reliability']))

 print(' ADVICE.error_msg: '+str(adv['error_msg']))

 if adv['valid']:

 m_node_count = adv['vm_number']

 - scalability:

 type: tosca.policies.Scaling.MiCADO

 targets: [wordpress]

 properties:

 min_instances: '{{ MINNODES }}'

 max_instances: '{{ MAXNODES }}'

 scaling_rule: |

 m_container_count = len(m_nodes)

 print 'REQ CONT:',m_container_count

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 27 of 54

 KBOut - average number of KBs sent by the network of the nodes

 PktOut - average number of packets sent by the network of the nodes

For the target variable expressing the expected performance, the following variables are
defined in the ADT (see Code 2):

 AVG_LAT_05 - response time i.e. the latency of the http requests

 ‘minth’ and ‘maxth’ - minimum and maximum thresholds for a range in which the

latency must be kept by the Optimizer.

Scaling rule for the Virtual machines becomes simple by using the Optimizer since the
returned/suggested advice is simply returned for the Policy Keeper for scaling. The scaling
rule for the containers is implemented in a way to place one container of Wordpress for each
node/virtual machine.

7.5.3 Evaluation of results

The ADT above was used for running some experiments with the Optimizer.

Figure 8 The correlation of the system metrics and the average response time (latency)

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 28 of 54

The graphs (see Figure 8) show the correlation of the different, monitored system variable
and the user defined target variable (AVG_LAT_05) representing that it is an average value
over the monitoring interval (15s). The variables assigned to the horizontal axis are the ones
listed as input variables plus an extra diagram shows the same for the Worker count.

Figure 9 Evaluation of the linear regression model concerning the Kilobyte in per sec metric

Figure 9 gives a special representation, on how close real measure values of the Kilobyte in
per sec system metrics to the estimated value of these metrics are. The x axis represents
the real measured while the y axis represents the estimated Kilobyte in per sec metric. Each
point on the graph represents a pair of the before mentioned values. The blue line in the
middle represents the linear regression function. The closer the dots to the line are the better
the model is. In this case, we can see that this model is not perfect, but it can grab the
relation between the KBOut metric values after a scaling action. In the top right corner of the
figure, the ‘pearsonr’ value is 0.96. This refers to the Pearson’s correlation coefficient which
shows how strong correlation can be observed between the two variables. The closer this
coefficient to 1, the stronger the correlation is. During the execution of the application similar
diagrams are generated for each system variables (metrics).

Figure 10 Training the Optimizer

We set the minimum number of samples required for proper operation, i.e.: estimation to
2750 with 15-sec sampling interval which means that the training phase lasted 687.5
minutes (11 hour and 45 minutes). During this time, we load the system with a quite ad-hoc
and random way. The load was generated by Apache JMeter [21] with requests sent to the

0

500000

1000000

1500000

2000000

2500000

3000000

0

5

10

15

1

4
6

9
1

1
3

6

1
8

1

2
2

6

2
7

1

3
1

6

3
6

1

4
0

6

4
5

1

4
9

6

5
4

1

5
8

6

6
3

1

6
7

6

7
2

1

7
6

6

8
1

1

8
5

6

9
0

1

9
4

6

9
9

1

Response Time - VM number -
Adviced VM number

vm_number advised_vm_number AVG_LAT_05

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 29 of 54

system. The number of the VMs allocated to the application was also continuously changed
during this period. With this action our regression model was able to discover the linear
relationship between the system metrics before and after a scaling action. The number of
Virtual Machines was increased from the minimum value to the maximum value than reverse
from the maximum to the minimum value. This scaling up and down process was repeated
until the end of the training phase.

Figure 10 was captured during the training phase. The horizontal line represents the number
of samples. The observations were taken periodically in every 15 sec. The blue line shows
the real number of Virtual Machines which were artificially increased and decreased during
the training phase. The orange line represents the average response time of the requests
sent by the Apache JMeter. The grey line represents the given advice by the Optimizer
module. It is observable that regardless of the current number of Virtual Machines, when the
Response Time increased above a given limit, the Optimizer advised a higher number of
Virtual Machines than the current number of Virtual Machines i.e. a scaling up action was
suggested. For example, observing the samples from 800 to 860 when the response time
increased above this limit, the Optimizer advised an increase in the number of VMs even if
the current number of VMs were between 6 and 9. The same effect can be observed when
the response time is lower than a certain limit the, e.g.: from samples 571 to 691 the
Optimizer tried to decrease the number of Virtual Machines. The results can be
comprehensively understood together with Figure 11.

Figure 11 Request rate and response time in a function of time during the training phase

On Figure 11 the green line shows the incoming request rate, while the orange line remains
the Response Time. Of course, the Request Rate, the current number of VMs and the
Response time correlate to each other, but there are a lot of other factors that can have
effect on the Response Time as well. From observation number 541 the request rate started
to increase but the current number of VMs (see Figure 10) were enough to keep the
response time at the desired level. Moreover, based on the Optimizer “knowledge” it advised
a little bit lower number of VMs to keep the response time in the desired range.

While if we have a look at observation 841 beside the same request rate with the same
number of VMs the system was not able to hold a response time under a certain level. In
such a circumstance the Optimizer advised increasing the number of VMs (see Figure 10).

0

500000

1000000

1500000

2000000

2500000

3000000

0

100

200

300

400

500

600

1
3

1
6

1
9

1
1

2
1

1
5

1
1

8
1

2
1

1
2

4
1

2
7

1
3

0
1

3
3

1
3

6
1

3
9

1
4

2
1

4
5

1
4

8
1

5
1

1
5

4
1

5
7

1
6

0
1

6
3

1
6

6
1

6
9

1
7

2
1

7
5

1
7

8
1

8
1

1
8

4
1

8
7

1
9

0
1

9
3

1
9

6
1

9
9

1

Request Rate - Response Time

SUM_RR AVG_LAT_05

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 30 of 54

After collecting enough number of samples and the machine learning modules were trained
the production phase may start, which means that auto-scaling will happen based on the
advices of the Optimizer module. Figure 12 presents the operation of the Optimizer module
during the production phase.

Figure 12 Operation during production phase

The horizontal axis represents the time, where each point stands for one observation. There
can be seen 78 observations. There is a double vertical axis chart in the figure. The values
on the left vertical axis represent the performance, in our case the response time in sec. The
values on the right axis refer to the number of Virtual Machines from 0 to 12. During this
measurement we fixed the maximum number of available VMs in 12. The blue line indicates
the real – measured – response time. The black line shows the estimated response time and
the orange values show the number of VMs proposed by the Optimizer.

After the Optimizer was trained, its task was to keep the response time within the interval
represented with the parallel lines (upper 13000 ms, lower 12000 ms) under varying load. It
can be seen that when the Response time was above the upper limit the Optimizer tried to
define the optimal number of VMs what would result in getting back the response time into
the predefined range.

7.6 Benefits and limits

The following list summarizes the most important benefits of the Optimizer:

 It realizes a so-called black-box modelling technique because the complex non-linear

correlation between the system metrics and the target performance is revealed by

the neural network.

 It is application agnostic, i.e.: the operation of the Optimizer is independent of the

actual application. The only necessary condition is to ensure enough number and

diverse samples for the machine learning module.

 When the characteristic of the application changes the machine learning module will

detect it since it continuously learns or adjusts the weights upon receiving new

samples.

 There is no need for the user to thoroughly know its application. The users only

determine the metric which best characterizes the required performance or target

SLA.

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 31 of 54

 It uses machine learning. Therefore, it inherits the advantages of machine learning

techniques, i.e. it is not needed to reveal complex dependencies between system

metrics and target performance metric, this has to be done by the neural network

which is hidden from the user.

The following list summarizes the limits of the Optimizer concept:

 The training phase is an important and unavoidable step to train the Optimizer to build its

knowledge. This training phase may generate extra costs. However, the relations can be

discovered after a very short time and the training can continue during the production

phase. Theoretically, it is possible to start the application in a production mode and leave

the Optimizer to train itself during this period, however the scaling policy must be

extended with the capability of scaling the application without Optimizer advices.

 The Optimizer is sensitive on the collected information i.e. how deeply is the state space

of the application has been discovered during the training phase. The optimization will

produce better advices when the state space is discovered in more details.

 Defining the thresholds for the target variable requires some experience and

measurement. Moreover, the range between the thresholds must be specified carefully

to avoid too narrow or too wide ranges.

7.7 Summary and future plans

The Optimizer has been designed (Section 7.2) and implemented (Section 7.3) according to
the report above. The Optimizer has been integrated into MiCADO and user interface
(Section 7.4) has been added. A sample application has been designed and executed to
show the results (Section 7.5) achieved with the Optimizer. During the development and
testing, several benefits and limits (Section 7.6) have been discovered.

We identified the following functionality-related improvements:

 support other application types compared to web-based applications

 support for up/downscaling during training with the Optimizer

 support for calculating the intensity of load generation towards the application

 alleviate the intensity of up/downscaling proposed by the Optimizer

 user-defined time interval for sampling

 exporting the knowledge base of Optimizer

There are also several future works related to the Optimizer implementation:

 further develop the neural network

 integrating autogrid search i.e. test and probe new NN layout after every n sample

 instead of continuous learning, learning should be done when the error rate is above

certain level

 the algorithm for generating advice can be further improved

 improvements on the field of fault-detection and handling, logging

The integrated Optimizer with its features and capabilities is first released and accessible in
MiCADO version 0.8.0. The source code of the Optimizer is stored on GitHub under the
micado-scale organization at https://github.com/micado-scale/component-optimizer.

https://github.com/micado-scale/component-optimizer

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 32 of 54

8. Overview of MiCADO developments

During the reporting period i.e. since deliverable D6.3, the project continued the
development of MiCADO in every aspect. In this section, we give a short overview of the
MiCADO releases, which were produced since D6.3 with a short summary of the most
important changes and features.

8.1 MiCADO 0.6.0

This release was a milestone for the project, since this was the first version with full
functionalities like scaling, dashboard, submission and monitoring including all the
components except the Optimizer.

Several improvements were made to the API of the TOSCA submitter to improve the user
experience, including:

 Adjusting all server responses so they contained a uniform set of messages and

correct status code, in line with the standard set of HTTP status codes1.

 Allowing the user to query the submitter for more information on a deployed

application. Operations to query available worker nodes and available Docker

services were implemented.

 Extending the translation of TOSCA to Docker-Compose to support the complete set

of available Docker options

 Improvements to the set of included “helper scripts” which provided the user with

examples by way of automating communication with the TOSCA Submitter API

 Bug fixes to the translation of TOSCA to an Occopus resource which previously

affected OpenStack and EC2 worker node deployments

A significant update in this version was the appearance of the first security related
functionalities like firewall, proxy, authentication and authorization management. For more
detailed description on security related components, see Section 8.9.

For the code, please visit

https://github.com/micado-scale/ansible-micado/releases/tag/v0.6.0
For the manual, please visit

https://micado-scale.readthedocs.io/en/0.6.0

8.2 MiCADO 0.6.1

The goal of this release was to create a version for beta testing based on the feedbacks
coming from project partners after using MiCADO 0.6.0. As a consequence, most of the
updates were bug fixes in every aspect, however some notable new features also appeared:

 Removing checks for containerized applications during TOSCA translation, enabling

deployments of standalone virtual machines

 Extending the set of ADT templates included as sample test applications to include a

full example of the required TOSCA description for each supported cloud service

provider.

1 https://restfulapi.net/http-status-codes/

https://github.com/micado-scale/ansible-micado/releases/tag/v0.6.0
https://micado-scale.readthedocs.io/en/0.6.0/
https://restfulapi.net/http-status-codes/

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 33 of 54

 Several smaller bug fixes and stability improvements including a health check on the

TOSCA Submitter Docker container, better clean-up of resources by the Occopus

adaptor, and the option to disable automatic updates on MiCADO worker nodes.

For the code, please visit
https://github.com/micado-scale/ansible-micado/releases/tag/v0.6.1

For the manual, please visit
https://micado-scale.readthedocs.io/en/0.6.1

8.3 MiCADO 0.7.0

The major version shift to MiCADO v0.7.0 marked a change in the container orchestrator
component, from Docker Swarm to Kubernetes2. We decided to change the container
orchestrator because we found that Swarm was not suitable for a planned application
demonstrator. Kubernetes was selected because it met the demonstrator requirements and
because of its soaring popularity in the market and uptake by the community. Initially
envisaged as a proof-of-concept for demonstrating the modularity of MiCADO, the
Kubernetes implementation proved popular and powerful and would become the main
upstream of MiCADO.

The goal of the MiCADO v0.7.0 release was to maintain the same functionality, stability and
feature-set of the v0.6.1 release, but with the different container orchestrator component –
Kubernetes in place of the previously supported Docker Swarm. The focus was on swapping
components with a minimal impact to the codebase of other components. Four main areas of
MiCADO were identified as targets, which had to change in order to support Kubernetes:

 Deployment of Kubernetes to the MiCADO Master and Worker nodes

 Translation to and execution of Kubernetes templates by the TOSCA Submitter

 Support scaling of Kubernetes workloads by the Policy Keeper

 Replacing the Docker Swarm visualizer on the MiCADO Dashboard with a

Kubernetes tool

Deployment
Ansible3, the deployment tool used to deploy the MiCADO Master node, describes
deployment and provisioning steps in an Ansible Playbook. Additional steps were added to
the playbook, which would install and configure the master node of a basic Kubernetes
cluster. MiCADO Worker nodes are configured via cloud-init4 scripts, to which the
appropriate steps were added to ensure these nodes installed Kubernetes and joined the
Kubernetes cluster as workers.

TOSCA Submitter
The TOSCA Submitter was designed to support the modularity of MiCADO with pluggable
adaptors which would handle the translation steps and execution calls of any desired
component. Adding the functionality to translate to and execute Kubernetes templates was
achieved by writing a new Kubernetes Adaptor to replace the existing Swarm Adaptor. Inside
the new adaptor, calls to the Kubernetes control module, kubectl, managed the creation,

2
 https://kubernetes.io

3
 https://www.ansible.com/

4
 https://cloudinit.readthedocs.io/en/latest/

https://github.com/micado-scale/ansible-micado/releases/tag/v0.6.1
https://micado-scale.readthedocs.io/en/0.6.1/
https://kubernetes.io/
https://www.ansible.com/
https://cloudinit.readthedocs.io/en/latest/

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 34 of 54

management and removal of Kubernetes applications. An open-source tool called Kompose5
was used together with the original translation code of the Docker Swarm adaptor to produce
Docker-Compose files as before, and then translate them to Kubernetes templates. While
this meant that several native features of Kubernetes were not supported in this version of
MiCADO, it fit with our goal of maintaining the feature set of MiCADO v0.6.1.

Policy Keeper
The Policy Keeper was also designed with modularity in mind, and features handlers for
interacting with the various pluggable components of MiCADO. A new Kubernetes handler
was written to replace the Swarm handler and was responsible for querying and scaling the
Kubernetes workloads running on MiCADO.

MiCADO Dashboard
The Docker Swarm visualizer which previously featured as a component of MiCADO
accessible via the MiCADO Dashboard was removed and was replaced with the Kubernetes
Dashboard. The Kubernetes Dashboard was deployed in a Kubernetes Pod and its endpoint
configured in the Zorp firewall and MiCADO Dashboard components.

For the code, please visit

https://github.com/micado-scale/ansible-micado/releases/tag/v0.7.0
For the manual, please visit

https://micado-scale.readthedocs.io/en/0.7.0

8.4 MiCADO 0.7.1

MiCADO v0.7.1 addressed a number of bug fixes and began to extend the functionality of
MiCADO to benefit from some of the functionalities of Kubernetes. The minor version
upgrade to Kubernetes v1.13.1 introduced incompatibilities with MiCADO v0.7.0, which were
critical fixes in the v0.7.1 release. To prevent further such cases and ensure a stable
release, Kubernetes versions and component descriptions were locked to a minor version,
which would be upgraded as required at each MiCADO release.

MiCADO v0.7.1 also included a new test demonstrator application which provided an
example for ingress into an NGINX web server with the Kubernetes NodePort feature. The
NGINX demonstrator also served as the first example of an application scaling based on a
network-based scaling policy. This policy monitors the number of incoming requests as
reported by the web server and scaled the application up or down accordingly to meet the
load. Finally, this demonstrator provided an example for the Kubernetes service discovery
feature of Prometheus for which support was introduced in this version of MiCADO. This
made the configuration of custom metric exporters dynamic, allowing them to be identified
and scraped automatically by Prometheus.

For the code, please visit

https://github.com/micado-scale/ansible-micado/releases/tag/v0.7.1
For the manual, please visit

https://micado-scale.readthedocs.io/en/0.7.1

5
 http://kompose.io/

https://github.com/micado-scale/ansible-micado/releases/tag/v0.7.0
https://micado-scale.readthedocs.io/en/0.7.0/
https://github.com/micado-scale/ansible-micado/releases/tag/v0.7.1
https://micado-scale.readthedocs.io/en/0.7.1/
http://kompose.io/

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 35 of 54

8.5 MiCADO 0.7.2

The MiCADO v0.7.2 release continued the work, which began in v0.7.1 to extend and benefit
from a fuller set of features offered by Kubernetes. To this end, the Kompose tool within the
Kubernetes Adaptor, which supported a translation from TOSCA to Docker-Compose to
Kubernetes Manifest was removed. The translation method in the Kubernetes Adaptor was
re-written to support a direct translation from TOSCA to Kubernetes Manifest. This
immediately added support for other Kubernetes workloads such as DaemonSets and Jobs,
better configuration for exposing Pods through Kubernetes Services such as NodePort and
ClusterIP, and support for a range of volume storage options such as HostPath and NFS.

Not long after the release of v0.7.2, the Kubernetes version, which MiCADO was locked to,
became misconfigured during the Kubernetes release process. A hotfix was released as
MiCADO v0.7.2-rev1, which pointed to a fixed Kubernetes version and introduced a user-
option for setting Kubernetes versions in the future.

In this version, several new security components were also introduced like credential Store,
Security Policy Manager, Crypto Engine, and so on. Further details can be found in Section
8.9.

For the code, please visit

https://github.com/micado-scale/ansible-micado/releases/tag/v0.7.2
For the manual, please visit

https://micado-scale.readthedocs.io/en/0.7.2

8.6 MiCADO 0.7.3

The MiCADO v0.7.3 release completed the integration with Kubernetes by moving all of the
core MiCADO services from static Docker containers to Kubernetes Workloads. This meant
that core MiCADO services could now take advantage of Kubernetes scheduling, self-
healing and networking benefits. Core MiCADO services could also take advantage of the
Kubernetes service discovery feature of Prometheus in the same way user applications had
done since v0.7.2. This meant the removal of Consul (previously used for service discovery)
from the MiCADO core – one less component and significantly fewer exposed ports on the
Master node.

Also included in the v0.7.3 release was the support for multiple sets of worker nodes. This
gave users the option to define separate worker nodes in an ADT and lock specific
containers to specific worker nodes. Examples of this feature were added to the WordPress
and cQueue test demonstrator applications, with each hosting their backend and frontend
components on separate sets of worker nodes.

Starting in v0.7.3 it also became possible to build prepared images for the MiCADO Master
and Worker nodes. The build process would pull and install all of the dependencies, static
configurations and Docker images required for a MiCADO Master or Worker node. The drive
image, which had been built, could be saved to the drive library or image repository of the
user’s cloud account and then referenced later. Tags were added to the Ansible Playbook in
order to select the build or start operations, which would speed up the launch of a MiCADO
Master node. Prepared MiCADO Worker images, on the other hand, could be referenced
directly in an ADT to greatly increase the deployment and scale-up speed of that application.

The API and engine of the TOSCA Submitter were also a focus of development in MiCADO
v0.7.3. Error and log reporting in the Submitter were improved by making log verbosity more

https://micado-scale.readthedocs.io/en/0.7.2/

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 36 of 54

appropriate for end users, and by improving the overall uniformity and detail of error
messages. Validation was added to the engine to provide users with faster, more detailed
information about the validity of an ADT and dry-run methods were added to support
developers with the setup and functionality of adaptors.

For the code, please visit

https://github.com/micado-scale/ansible-micado/releases/tag/v0.7.3
For the manual, please visit

https://micado-scale.readthedocs.io/en/0.7.3

8.7 MiCADO 0.8.0

The major version shift to MiCADO v0.8.0 marked a significant change in scaling. On one
hand the Optimizer has been introduced to improve the quality and efficiency of scaling. This
Optimizer is described in details in Section 7. On the other hand, a new downscaling feature
arrived. From this version downscaling can be performed by selecting the virtual machine
(i.e. the node) to be downscaled or shutdown.

In this version logging facility operating on the MiCADO master node has been reorganized
to support log rotation in order to avoid logging information eating up the available disk
space.

With regards to the user-interface of MiCADO, v0.8.0 set out to simplify the ADT. This was
accomplished through abstraction in TOSCA. Specific parent types were created, which set
default parameters for some common deployments in MiCADO, for example a basic
Kubernetes deployment. When an ADT is being written, these parent types can be inherited
and the author need only overwrite the subset of parameters specific to their application.
These parent types can hide some of the complexity of TOSCA elements such as artifacts
and interfaces and reduce the overall length of an ADT. Finally, support has been added to
define a custom Kubernetes resource, in-line, in an ADT. These custom resources cannot be
supported by MiCADO features such as auto-scaling, optimization, application-level firewalls
or Prometheus service discovery, but do add the ability to support applications which are
deeply rooted within the Kubernetes ecosystem and require such custom resources.

Also within the ADT, work continues towards adding support for the full set of Kubernetes
resources. It is now possible to define multiple containers in a single Pod, as required by
applications deployed in the Sidecar pattern. Kubernetes ConfigMaps, which support the
definition and assignment of larger variable sets, can also now be defined in the ADT. To
decrease the Worker node resource footprint, metric collection has been disabled by default
in this version, and is now a user option to be set inside a TOSCA policy within the ADT.
When these collectors are deployed, their priority has been increased, protecting them
against eviction in the case of resource strain on a node.

For the code, please visit

https://github.com/micado-scale/ansible-micado/releases/tag/v0.8.0
For the manual, please visit

https://micado-scale.readthedocs.io/en/0.8.0

8.8 Terraform integration

8.8.1 Developing a Terraform Adaptor for MiCADO

https://github.com/micado-scale/ansible-micado/releases/tag/v0.7.3
https://micado-scale.readthedocs.io/en/0.7.3/
https://github.com/micado-scale/ansible-micado/releases/tag/v0.8.0
https://micado-scale.readthedocs.io/en/0.8.0

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 37 of 54

The original implementation of MiCADO incorporates Occopus as Cloud Orchestrator.
However, the modular design principles applied in MiCADO enable changing and replacing
any component with a different tool with reasonable effort. Therefore, to demonstrate this
feature of MiCADO in case of the Cloud Orchestrator component, a proof of concept
prototype has been implemented using Terraform. Besides proving the principles of
modularity, the new Terraform adaptor also offers several advantages and added features
when compared to the current Occopus based solution. Most importantly, Terraform
supports Microsoft Azure that is the desired cloud platform for one of the large scale
demonstrators developed by Saker Solutions. Additionally, the Terraform plug-in can also
better support multi-application features in future MiCADO releases. This section gives a
short overview of Terraform and describes how the Terraform adaptor was developed.

8.8.2 Short overview of Terraform

Terraform is an open-source Infrastructure as a Code (IaaC) software tool developed by
Hashicorp. It is written in GO language and is built on a plugin-based architecture. Because
of its pluggable architecture, Terraform can be easily extended to support a new cloud
provider, network or database. All the major cloud providers like AWS, Openstack, Google
cloud, Azure, Alibaba cloud, Oracle cloud, and VMware cloud are supported by Terraform. It
also supports configuration management tools (Docker, Kubernetes, Chef, Consul), network
providers (Akamai, Cisco, Cloudflare, HTTP, DNS), version control providers (GitHub),
monitoring and system management providers and database providers.

The main features of Terraform are:

 tool to build, change or version control infrastructure,

 it is cloud agnostic,

 talks to multiple cloud/infrastructure providers,

 ensures creation and consistency of infrastructure,

 can easily apply incremental changes,

 can preview the changes,

 scales easily,

 helps to destroy infrastructures when needed,

 has a state file for version control.

Code 3 A sample Terraform configuration file

There are several advantages in using Terraform. Since it uses Infrastructure as a Code we
can easily change, share and reuse the infrastructure. The features of Terraform like
Execution plans (dry run the configuration) and Resource graph (graph of all resources and
their dependencies) help to minimize the errors that can occur. Terraform is well
documented and is easily deployable as a container. Multiple applications are also
supported by Terraform.

 provider "aws" {

 region = "us-east-2"

 access_key = "x"

 secret_key = "y"

 }

 resource "aws_instance" "example" {

 ami = "ami-0d8f6eb4f641ef691"

 instance_type = "t2.micro"

 vpc_security_group_ids = ["sg-9182b4f1",]

 user_data = "${file("${path.module}/template.yaml")}"

 count = "1"

..}

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 38 of 54

Terraform uses a custom declarative language known as HCL. It can load configuration files
with .tf extension or .tf.json extension. A sample configuration file is given in Code 3.

The weak point of Terraform is that it is having only command-line interface. Moreover, it
requires a specially formatted configuration file, which is of .tf extension compared to the
TOSCA files used by MiCADO. To overcome this, the MiCADO Submitter component needs
to interpret the TOSCA ADT that the user submits and pass the necessary parameters
needed for Terraform to the terraform_adaptor. The adaptor helps to translate all the details
it receives from the submitter into the terraform configuration file, which is then executed in
the terraform container.

8.8.3 The Adaptor

Figure 13 demonstrates how Terraform as Cloud Orchestrator fits into the overall MiCADO
architecture. The task of Terraform is to create and orchestrate virtual machines. As such,
Terraform simply substitutes Occopus in the MiCADO architecture without significantly
influencing or requiring major changes from other components.

Figure 13 Overall MiCADO architecture and Terraform

When incorporating Terraform in MiCADO, the MiCADO Submitter component needed to be
extended with a new Terraform adaptor. The overall architecture of the MiCADO Submitter
and the place of the Terraform Adaptor in this architecture are illustrated in Figure 14.

Terraform

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 39 of 54

Figure 14 MiCADO Submitter with the new Terraform Adaptor

The newly developed Terraform adaptor helps us to make use of Terraform for cloud
orchestration in MiCADO. The infrastructure deployment is controlled conveniently via CLI.
Terraform is a single command-line application and Terraform adaptor helps to create a
terraform configuration file from all the details provided to it and pass this file to Terraform
container in MiCADO master for execution.

The Terraform adaptor inherits from the base_adaptor class. The __init__ method defines
the variables that we use during the conversion process. The adaptor is currently capable of
handling two types of cloud interfaces: EC2 and OpenStack Nova. Steps are taken to
provide support for Azure cloud also. The adaptor uses Kubernetes to execute the Terraform
container and run the terraform init, terraform apply as well as terraform destroy commands.
In terraform_adaptor class, there are five methods that we are redefining.

 translate() - the adaptor receives the application related information from the TOSCA

based ADT, the authentication details corresponding to the cloud provider and the

cloud_init config file. Figure 15 shows the data flow during the translation process.

The adaptor reads three input files (TOSCA ADT file, auth_data and cloud_init) and

then creates a configuration file for terraform in the .tf format. Each cloud provider

requires a separate function for writing out the corresponding configuration. These

files are stored under a preconfigured storage volume specified in the key_config

argument of the translate method.

Kubernetes

MiCADO Worker Node N

MiCADO Worker Node 2

k8s Adaptor

TOSCA

Application
Description

Template
(ADT)

Terraform
Adaptor

Security
Adaptor

Kubernetes

Terraform

Security Enforcer

Policy
Adaptor Policy Keeper

Adaptors

Submitter

API
MiCADO Worker Node 1

App
Container N

App
Container 2

App
Container 1

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 40 of 54

Figure 15 Translation done by Terraform_adaptor.py

 execute() - the adaptor executes the terraform init and terraform apply command

inside the Terraform container. Terraform init is used to initialize the module and

download all the required plugins. After the import succeeds, the adaptor executes

the terraform apply command inside the Terraform container to start the building

process of the MiCADO Worker infrastructure. Terraform builds the MiCADO Worker

infrastructure based on the configuration files in the module.

 undeploy() - the adaptor performs an infrastructure destroy operation using the

terraform destroy command. Terraform then performs a graceful removal of the all

the virtual machines (including pre allocated temporary cloud storage volumes)

implementing a MiCADO Worker.

 update() - the adaptor first generates a new configuration file as described in the

translate method. It compares the newly generated files with the ones currently

running under MiCADO. If there is any change in the configuration, the container

executes the new configuration using the terraform apply command. Terraform

decides whether to update the virtual machines without shutting down any of them or

to destroy and redeploy the virtual machines based on the changes to be made to

the infrastructure.

 clean_up() - the adaptor gets the APPLICATION ID from the Submitter engine and

removes the associated configuration files generated during the translate method.

8.8.4 Future work

The Terraform adaptor and its integration with MiCADO is a proof of concept at the time of
writing this report. However, it is now part of the official MiCADO development roadmap and
it is planned to be fully incorporated in a release (anticipated for October/November 2019).

In order to achieve this full integration, the following tasks need to be completed. First, the
Azure connection will need to be implemented enabling MiCADO to directly utilise MS Azure
resources via Terraform. As it was mentioned before, this connection is required by one of
the COLA demonstrators, SAKER. Secondly, the developed Terraform Adaptor will be fully
integrated with the MiCADO Architecture.

This integration is planned in a way that the current Occopus-based cloud orchestration in
MiCADO can still be selected at deployment time. The system administrator can decide

App.yaml Auth_data.yaml Cloud_init.yaml

Terraform_adaptor.py

App.tf

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 41 of 54

which cloud orchestrator is to be deployed before deployment happens. This decision can be
made based on the targeted clouds for the application. For example, if CloudSigma or
CloudBroker are required as target clouds then Occopus is needed. However, if the target
cloud is Azure then the recommended cloud orchestrator will be Terraform.

8.9 Security related functionalities

There are 7 user-visible security functions implemented by WP7 within the scope of the
MiCADO framework to enhance the overall security of the product. These provide services
to the end user and developers that implement industry-standard best practices, while
minimizing the need of user-supplied configuration. The security user experience is crucial in
terms of the actual security level of MiCADO deployments, as end users will only use
functions, that are easily enabled and configured.

Besides the features that provide direct user value, there are also 3 support functions that
aid to implement internal security and maintainability of the MiCADO platform. It is a design
decision in the COLA project to build every aspect of the software in a pluggable
architecture. By the nature of security enables, they tightly integrate with the actual
implementations of the various MiCADO functions. The high-level support functions have
been implemented in a standalone component, that is responsible for executing security
workflows while hiding the actual implementation from other MiCADO components. This way
the security enablers may be changed or replaced without touching other pieces of the
framework relying on implementation details.

The deliverables “D7.2 MiCADO security architecture specification”, “D7.3 Design of
application level security classification formats and principles” and “D7.4 Security policy
formats specification” describe the designed security enablers in detail, also providing an
open specification for implementing the various security functions.

Out of the identified and designed security features, the enablers that provide the most
efficient security functions – based on feedback from WP8 use-case partners – have been
selected for implementation.

The following user-visible functions have been implemented within the scope of the COLA
project:

 Verifying OS images that are running the application containers

 Storing cloud credentials in an encrypted way

 Packet filtering firewall for the MiCADO master node

 Encryption, authentication and authorization on web access to the MiCADO master
node

 Secure communication between MiCADO master and worker nodes

 Application-level firewalling for MiCADO applications

 Application-related secret handling and distribution

The above functions are addressing security problems, that are present in all current
infrastructure, container and application orchestration solutions and have not been solved in
any of the mainstream cloud solutions. While some cloud providers supply tools for
workarounds, these all present an administrative overhead and are often neglected by cloud
administrators.

8.9.1 Verifying OS images that are running the application

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 42 of 54

containers

This security enabler (see A1 of Appendix 1) aims to provide means for administrators to
verify if their deployed operating system image has been modified by 3rd parties. As
administrators are handing off responsibility to cloud providers for running their images,
MiCADO would like to provide a way to enhance this trust by implementing detective
controls. The current implementation is included in version 0.7.2 but needs to be simplified to
be of use to end-users.

8.9.2 Storing cloud credentials in an encrypted way

This security enabler (see A2 of Appendix 1) aims to provide a means for administrators to
store sensitive cloud credential information an encrypted way and audit access to the
credentials. While the information to access the credentials needs to be available for
MiCADO to drive automatic workflow execution, “data-at-rest” encryption and audit logging
increase the security of credentials storage and provide detective controls for unauthorized
access. The current implementation is based on the industry-standard open source
credential store Hashicorp Vault and included in version 0.7.4. Integration with other
MiCADO component needs to be improved.

8.9.3 Packet filtering firewall for the MiCADO master node

This security enabler (see A3 of Appendix 1) aims to provide a means for administrators to
restrict network-level access to the MiCADO master node in a cloud-agnostic way. This area
is painfully neglected in most mainstream cloud solutions and while there are proprietary
tools on each cloud platform, they cannot be maintained in a uniform way. This enabler
provides both preventive and detective controls by implementing network access control and
audit logging for incoming connections. The current implementation is based on Netfilter and
included in version 0.6.0.

8.9.4 Encryption, authentication and authorization on web
access to the MiCADO master node

This security enabler (see A4 of Appendix 1) aims to provide a means for administrators to
ensure that all web management connections to the master node are properly encrypted in
transit and make sure that only authorized users have access to MiCADO resources, while
providing easy access for machine accounts to perform automated tasks. This enabler is
implemented as proprietary tools in the portfolio of some cloud providers, sometimes also
dubbed as “Identity-aware proxy”, but no cloud-agnostic solution is included in mainstream
cloud solutions. The current implementation is based on Balasys Zorp and included in
version 0.6.0.

8.9.5 Secure communication between MiCADO master and
worker nodes

This security enabler (see A5 of Appendix 1) aims to provide a means for administrators to
ensure that all network traffic between the master and worker nodes is encrypted in-transit
and access to sensitive master node resources is restricted. This enabler makes it possible
to separate management and production functions into separate runtime environments,
while providing the same level of security for transit connections as if they were running in an
environment controlled entirely by the end user. This removes the need of trusting the cloud
provider not to listen in on internal connections. The current implementation is based in the
StrongSWAN IPSEC daemon and included in version 0.7.2.

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 43 of 54

8.9.6 Application-level firewalling for MiCADO applications

This security enabler (see A6 of Appendix 1) aims to provide a means for administrators to
provide application-level filtering and enforcement capabilities for exposed MiCADO
applications based on the NetworkSecurityPolicy descriptions in the ADT. This enabler
brings in the networking and network security aspects of the application integrated into the
same application descriptor while providing a cloud-agnostic implementation. The current
implementation is based on Balasys Zorp and the Kubernetes Ingress Controller framework
and is included in version 0.8.0.

8.9.7 Application-related secret handling and distribution

This security enabler (see A7 of Appendix 1) aims to provide a means for administrators to
ensure that all application-related sensitive information is stored and transmitted in a secure
way when being distributed within the MiCADO framework. Current mainstream solutions do
not use encryption by default. By implementing encryption not only application-related
information, but also systems secrets are protected against eavesdropping and modification.
The current implementation is based on etcd and included in version 0.7.4.

As stated before, several support functions have also been implemented to facilitate
pluggability and overall systems security:

 Security workflow director and common interface to security components (B1 of
Appendix 1)

 Safely store and verify user accounts for accessing the MiCADO framework (B2 of
Appendix 1)

 Providing cryptographic functions to other components within MiCADO (B3 of
Appendix 1)

These functions are highly technical, and their specification can be found in deliverable
“D7.3 Design of application level security classification formats and principles”.

The current status and technical information of the enablers is described in Appendix 1.

8.10 Integration with CloudBroker

To ensure the sustainability of MiCADO, the project integrated it with CloudBroker Platform
(CBP).

Having analyzed the demand coming from the use-cases and experiments of the COLA
project, at the beginning of 2019 CloudBroker introduced Infrastructure Visual Screen (IVS)
that allows a user to manage and launch infrastructures of different complexities, assemble
components and connections between them. The IVS is described in detail in D4.4. The core
idea was to allow a user to benefit from both UX-friendly setup of components of IVS and
performance optimization mechanics of MiCADO by making IVS components MiCADO-
driven. This integration was a cooperation involving SZTAKI, CB, and UoW teams. The
overall integration concept is presented on Figure 16.

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 44 of 54

Figure 16 Concept of CBP and MiCADO integration

It was agreed that a separate deployment with the latest MiCADO version would be created
on CBP. Another action was an update of the application description file to make it
compatible with the CB infrastructures description (i.e. a corresponding field for infrastructure
component ID was added). Based on these steps, infrastructure created with IVS could be
run on MiCADO. When a user starts the infrastructure, two actions are initiated. First, CB
starts an instance and installs MiCADO on it to launch a MiCADO master node. Second, CB
generates a TOSCA description file and submits it to the MiCADO master node, which
launches worker nodes for the specified infrastructure’s instances.

By M31 the basic integration has been completed. As a result, it is possible to launch
infrastructure created with CB IVS tools on MiCADO. This option is presented on Figure 17
below.

Figure 17 Running the infrastructure on MiCADO scale using CB IVS

In the latest stage of integration, CB and UoW teams provided a functionality to add/edit
master nodes on the fly in order to avoid any interruptions in the performance of the
infrastructures.

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 45 of 54

By the end of the project it is expected to provide advanced policies to manage
infrastructure’s behavior (e.g. to define preconditions for instance scaling) and to develop a
functionality to launch infrastructure with instances based on Docker images.

An Ansible playbook for MiCADO installation causes a need to start a new instance with
MiCADO deployment for every launch, which affects the deployment time. Optimization of
this process is scheduled for the future versions, together with automating MiCADO’s
deployment update whenever a new version is released.

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 46 of 54

9. Current status and conclusion

The main goal of this deliverable was to report on the achievements in task T6.4 in WP6 of
the COLA project. The task defined the prototype and documentation of the
price/performance optimization.

The results related to the Optimization service has been described in Section 7. The
Optimizer has been designed, a prototype has been developed and integrated to MiCADO.
Finally, a detailed documentation has been provided in this report.

Beyond the Optimizer service, numerous developments have been performed by the WP6
team, where the results (with one exception) have been released during the period of T6.4.
The developments focused on improvements of MiCADO both on the area of functionality
and user experience therefore they are considered as important steps ahead in the life of
MiCADO.

With Task 6.4, WP6 finishes as well as the project. By the end of the project, MiCADO
became a fully functional scaling framework with pluggable architecture. During the project
we demonstrated the pluggable architecture by releasing MiCADO with Kubernetes instead
of Swarm, and by implementing a version (released soon) with Terraform replacing
Occopus.

During the developments, the communication of the team was realized with Slack at micado-
scale.slack.com, for the source code management GitHub was used at github.com/micado-
scale, and documentation was hosted and maintained at micado-scale.readthedocs.io.

The latest released version of MiCADO at the end of the project is MiCADO 0.8.0. However,
there are plans for continuing the maintenance and development of MiCADO after the
project.

https://github.com/micado-scale
https://github.com/micado-scale
http://micado-scale.readthedocs.io/

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 47 of 54

10. References

[1] Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2015). Migrating to Cloud-Native Architectures
Using Microservices: An Experience Report

[2] CloudBroker GmbH. “CloudBroker Platform”. [Online]. Available: http://cloudbroker.com/platform/.
[Accessed: 7 Mar 2017]

[3] József Kovács and Péter Kacsuk. 2018. Occopus: a Multi-Cloud Orchestrator to Deploy and
Manage Complex Scientific Infrastructures. J. Grid Comput. 16, 1 (March 2018), 19-37. DOI:
https://doi.org/10.1007/s10723-017-9421-3

[4] Occopus website, http://occopus.lpds.sztaki.hu
[5] Docker, http://www.docker.com
[6] Kubernetes, https://kubernetes.io/
[7] Prometheus website, https://prometheus.io/docs/introduction/overview/
[8] Node exporter website, https://github.com/prometheus/node_exporter
[9] Cadvisor website, https://github.com/google/cadvisor
[10] T. Lorido-botr, “Auto-scaling Techniques for Elastic Applications in Cloud Environments,” pp. 1–

44, 2012.
[11] T. L. J. Miguel-alonso and J. A. Lozano, “A Review of Auto-scaling Techniques for Elastic

Applications in Cloud Environments,” pp. 559–592, 2014.
[12] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Rivierre, I. Truck, Using reinforcement

learning for autonomic resource allocation in clouds: Towards a fully automated workflow, in:
ICAS 2011, Venice, Italy, 2011, pp. 67–74.

[13] R. Bahati, M. Bauer, Towards adaptive policy-based management, in: NOMS 2010, Osaka,
Japan, 2010, pp. 511–518.

[14] M. Wajahat, A. Gandhi, A. Karve, and A. Kochut, “Using machine learning for black-box
autoscaling,” 2016 7th Int. Green Sustain. Comput. Conf. IGSC 2016, 2017.

[15] M. Wajahat, A. Karve, A. Kochut, and A. Gandhi, “MLscale: A machine learning based
application-agnostic autoscaler,” Sustain. Comput. Informatics Syst., 2017.

[16] Flask – A Python Micro Framework. http://flask.pocoo.org/
[17] SCIKIT-learn. https://scikit-learn.org/stable/
[18] Pandas, https://pandas.pydata.org/
[19] NumPy, https://numpy.org/
[20] MiCADO documentation site, https://micado-scale.readthedocs.io/en/latest/
[21] Apache JMeter, https://jmeter.apache.org/

https://kubernetes.io/
http://flask.pocoo.org/
https://scikit-learn.org/stable/
https://pandas.pydata.org/
https://numpy.org/
https://micado-scale.readthedocs.io/en/latest/
https://jmeter.apache.org/

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 48 of 54

Appendix 1: MiCADO Security Enablers Implementation
Reference Guide

A. User-visible Features

A1. Verifying OS images that are running the application
containers

◦ Technical name: Image Integrity Verifier
◦ Rationale: ensure that the image running in the cloud infrastructure has not been

modified by 3rd parties
◦ Current status: integrated and running in MiCADO, but no mechanism to call the

verification method, only works on Intel CPUs
◦ Initial availability: v0.7.2
◦ 3rd Party: no
◦ Improvement plans:

 provide an automated mechanism for image or file verification of the
underlying operating system (WP6 assistance needed)

 simplify verification

 make implementation CPU-agnostic

 research whether cloud providers expose a way of retrieving image hashes,
VM orchestrator should provide this function to the IIVR

 integrate the verifier with the VM orchestrator

 provide CLI tool (micadoctl) to add new hashes to the image database
◦ GitHub repository: https://github.com/micado-scale/component-iivr
◦ Docker Hub repository: https://hub.docker.com/r/micado/iivr/
◦ Docker Hub autobuild: yes
◦ Travis: no
◦ Configuration: none
◦ Relation to other components:

 Deployment via ansible-micado, affected files:
 https://github.com/micado-scale/ansible-micado/blob/master/roles/build-

micado-master/tasks/pull-docker-images.yml
 https://github.com/micado-scale/ansible-micado/blob/master/roles/start-

micado-master/templates/micado/micado-manifest.yml.j2

 CLI configuration via security-policy-manager:
 https://github.com/micado-scale/component-security-policy-

manager/blob/master/bin/micadoctl

A2. Storing cloud credentials in an encrypted way

◦ Technical name: Credential Store
◦ Rationale: ensure that cloud credentials are not accessible in plain text when ‘at

rest’ and access to the credentials are audited
◦ Current status: integrated and running in MiCADO, but cloud orchestrator still

uses plain text to cache the credentials
◦ Initial availability: v0.7.2, reimplemented in v0.7.4
◦ 3rd Party: yes, Hashicorp Vault
◦ Improvement plans:

 extend VM orchestrator to retrieve the credentials on a per-use bases and
discard safely after use (WP6 assistance needed)

https://github.com/micado-scale/component-iivr
https://hub.docker.com/r/micado/iivr/
https://github.com/micado-scale/ansible-micado/blob/master/roles/build-micado-master/tasks/pull-docker-images.yml
https://github.com/micado-scale/ansible-micado/blob/master/roles/build-micado-master/tasks/pull-docker-images.yml
https://github.com/micado-scale/ansible-micado/blob/master/roles/start-micado-master/templates/micado/micado-manifest.yml.j2
https://github.com/micado-scale/ansible-micado/blob/master/roles/start-micado-master/templates/micado/micado-manifest.yml.j2
https://github.com/micado-scale/component-security-policy-manager/blob/master/bin/micadoctl
https://github.com/micado-scale/component-security-policy-manager/blob/master/bin/micadoctl

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 49 of 54

 provide CLI tool to change credentials after deployment
◦ GitHub repository: https://github.com/hashicorp/vault
◦ Docker Hub repository: https://hub.docker.com/_/vault
◦ Docker Hub autobuild: yes
◦ Travis: CircleCI
◦ Configuration: https://github.com/micado-scale/ansible-

micado/blob/master/roles/build-micado-master/files/vault/vault.hcl
◦ Relation to other components:

 Deployment via ansible-micado, affected files:
 https://github.com/micado-scale/ansible-micado/blob/master/roles/build-

micado-master/tasks/pull-docker-images.yml
 https://github.com/micado-scale/ansible-micado/blob/master/roles/start-

micado-master/templates/micado/micado-manifest.yml.j2

 The API functions are called by the Security Policy Manager component that
hides the actual implementation of storing the cloud credentials, details in
https://github.com/micado-scale/component-security-policy-
manager/blob/master/app/secrets.py

A3. Packet filtering firewall for the MiCADO master node

◦ Technical name: iptables
◦ Rationale: ensure that only those services are exposed to the outside world that

are needed for the operation of MiCADO
◦ Current status: integrated and running
◦ Initial availability: v0.6.0
◦ 3rd Party: yes, iptables
◦ Improvement plans:

 limit the accessibility of MiCADO management ports to a set of pre-defined IP
addresses / subnets

◦ GitHub repository: https://github.com/micado-scale/ansible-micado
◦ Docker Hub repository: N/A
◦ Docker Hub autobuild: N/A
◦ Travis: N/A
◦ Configuration:

 https://github.com/micado-scale/ansible-micado/blob/master/micado-
master.yml#L98

 SystemD service files: https://github.com/micado-scale/ansible-
micado/tree/master/roles/build-micado-master/files/iptables

 config templates: https://github.com/micado-scale/ansible-
micado/tree/master/roles/start-micado-master/templates/iptables

◦ Relation to other components:

 Deployment via ansible-micado, see above

 The set of rules needs to be re-evaluated every time a component is
upgraded or replaced in MiCADO to ensure that their operation is not affected
by firewalling

A4. Encryption, authentication and authorization on web
access to the MiCADO master node

◦ Technical name: Zorp Master Node

https://github.com/hashicorp/vault
https://hub.docker.com/_/vault
https://github.com/micado-scale/ansible-micado/blob/master/roles/build-micado-master/files/vault/vault.hcl
https://github.com/micado-scale/ansible-micado/blob/master/roles/build-micado-master/files/vault/vault.hcl
https://github.com/micado-scale/ansible-micado/blob/master/roles/build-micado-master/tasks/pull-docker-images.yml
https://github.com/micado-scale/ansible-micado/blob/master/roles/build-micado-master/tasks/pull-docker-images.yml
https://github.com/micado-scale/ansible-micado/blob/master/roles/start-micado-master/templates/micado/micado-manifest.yml.j2
https://github.com/micado-scale/ansible-micado/blob/master/roles/start-micado-master/templates/micado/micado-manifest.yml.j2
https://github.com/micado-scale/component-security-policy-manager/blob/master/app/secrets.py
https://github.com/micado-scale/component-security-policy-manager/blob/master/app/secrets.py
https://github.com/micado-scale/ansible-micado
https://github.com/micado-scale/ansible-micado/blob/master/micado-master.yml#L98
https://github.com/micado-scale/ansible-micado/blob/master/micado-master.yml#L98
https://github.com/micado-scale/ansible-micado/tree/master/roles/build-micado-master/files/iptables
https://github.com/micado-scale/ansible-micado/tree/master/roles/build-micado-master/files/iptables
https://github.com/micado-scale/ansible-micado/tree/master/roles/start-micado-master/templates/iptables
https://github.com/micado-scale/ansible-micado/tree/master/roles/start-micado-master/templates/iptables

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 50 of 54

◦ Rationale: ensure that all web management connections to the master node are
properly encrypted in transit and make sure that only authorized users have
access to MiCADO resources. Supports form-based authentication for users and
HTTP Basic authentication for machine accounts.

◦ Current status: integrated and running in MiCADO
◦ Initial availability: v0.6.0
◦ 3rd Party: yes, Zorp GPL
◦ Improvement plans:

 Certificate generation via letsencrypt
◦ GitHub repository: https://github.com/Balasys/zorp
◦ Docker Hub repository: https://hub.docker.com/r/micado/zorpgpl
◦ Docker Hub autobuild: no
◦ Travis: https://travis-ci.org/Balasys/zorp
◦ Configuration:

 Web listening port configuration:
 https://github.com/micado-scale/ansible-micado/blob/develop/micado-

master.yml#L73
 https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-

micado-master/templates/micado/micado-manifest.yml.j2#L923

 Certificate generation:
 https://github.com/micado-scale/ansible-micado/blob/master/sample-

credentials-micado.yml
 https://github.com/micado-scale/ansible-micado/blob/master/roles/build-

micado-master/files/zorp/zorp-entrypoint.sh

 Authentication web form:
 https://github.com/micado-scale/ansible-micado/blob/master/roles/build-

micado-master/files/zorp/authform.html

 Policy template:
 https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-

micado-master/templates/zorp/policy.py.j2
◦ Relation to other components:

 Deployment via ansible-micado, affected files:
 https://github.com/micado-scale/ansible-micado/blob/master/roles/build-

micado-master/tasks/pull-docker-images.yml
 https://github.com/micado-scale/ansible-micado/blob/master/roles/start-

micado-master/templates/micado/micado-manifest.yml.j2

 Performs authorization by checking users against the Credential Manager
and fetches group membership as well

A5. Secure communication between MiCADO master and
worker nodes

◦ Technical name: IPSEC
◦ Rationale: ensure that all network traffic between the MiCADO master and worker

are encrypted authenticated.
◦ Current status: integrated and running in MiCADO
◦ Initial availability: 0.7.2
◦ 3rd Party: yes, StrongSwan
◦ Improvement plans:

 Encrypted overlay network to protect worker-worker communication
◦ GitHub repository: https://git.strongswan.org/?p=strongswan.git;a=summary
◦ Docker Hub repository: N/A

https://travis-ci.org/Balasys/zorp
https://github.com/micado-scale/ansible-micado/blob/develop/micado-master.yml#L73
https://github.com/micado-scale/ansible-micado/blob/develop/micado-master.yml#L73
https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-micado-master/templates/micado/micado-manifest.yml.j2#L923
https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-micado-master/templates/micado/micado-manifest.yml.j2#L923
https://github.com/micado-scale/ansible-micado/blob/master/sample-credentials-micado.yml
https://github.com/micado-scale/ansible-micado/blob/master/sample-credentials-micado.yml
https://github.com/micado-scale/ansible-micado/blob/master/roles/build-micado-master/files/zorp/zorp-entrypoint.sh
https://github.com/micado-scale/ansible-micado/blob/master/roles/build-micado-master/files/zorp/zorp-entrypoint.sh
https://github.com/micado-scale/ansible-micado/blob/master/roles/build-micado-master/files/zorp/authform.html
https://github.com/micado-scale/ansible-micado/blob/master/roles/build-micado-master/files/zorp/authform.html
https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-micado-master/templates/zorp/policy.py.j2
https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-micado-master/templates/zorp/policy.py.j2
https://github.com/micado-scale/ansible-micado/blob/master/roles/build-micado-master/tasks/pull-docker-images.yml
https://github.com/micado-scale/ansible-micado/blob/master/roles/build-micado-master/tasks/pull-docker-images.yml
https://github.com/micado-scale/ansible-micado/blob/master/roles/start-micado-master/templates/micado/micado-manifest.yml.j2
https://github.com/micado-scale/ansible-micado/blob/master/roles/start-micado-master/templates/micado/micado-manifest.yml.j2
https://git.strongswan.org/?p=strongswan.git;a=summary

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 51 of 54

◦ Docker Hub autobuild: N/A
◦ Travis: https://travis-ci.org/strongswan/strongswan/
◦ Configuration:

 Master node certificate generation:
 https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-

micado-master/tasks/micado-start.yml

 Master node configuration:
 https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-

micado-master/templates/ipsec/ipsec.conf

 Installation on master node:
 https://github.com/micado-scale/ansible-micado/blob/develop/roles/build-

micado-master/tasks/other-install.yml

 Worker node certificate generation:
 https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-

micado-master/templates/worker_node/cloud_init_worker.yaml.j2#L69

 Worker node configuration:
 https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-

micado-master/templates/worker_node/cloud_init_worker.yaml.j2#L45

 Installation on worker node:
 https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-

micado-master/templates/worker_node/cloud_init_worker.yaml.j2#L117
◦ Relation to other components:

 Deployment via ansible-micado, see above

 Certificate generation is done via the Security Policy Manager

 If not operational, worker node cannot join the k8s cluster and/or provide
metrics to Prometheus

A6. Application-level firewalling for MiCADO applications

◦ Technical name: Zorp Ingress Director
◦ Rationale: provide application-level filtering and enforcement capabilities for

exposed MiCADO applications based on the NetworkSecurityPolicy descriptions
in the ADT

◦ Current status: under development
◦ Initial availability: v0.7.4 / v0.7.5
◦ 3rd Party: yes, Zorp Ingress Director
◦ GitHub repository: https://github.com/Balasys/zorp-ingress-controller
◦ Docker Hub repository: https://hub.docker.com/r/balasys/zorp-ingress
◦ Docker Hub autobuild: via Travis
◦ Travis: https://travis-ci.org/Balasys/zorp-ingress-controller
◦ Configuration:

 Worker node configuration:
 https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-

micado-master/templates/worker_node/cloud_init_worker.yaml.j2#L45

 TOSCA Submitter adaptor:
 https://github.com/micado-

scale/component_submitter/pull/186/commits/55a2505737d7b53525af9b5
0e55901de9b6afcac#diff-716a6c6ec30ef95b7f0423a09c495c88

◦ Relation to other components:

 Part of the TOSCA Submitter as a Security Enforcer Adaptor

 Part of the TOSCA Submitter as part of the K8s Adaptor

 Applies configuration through the K8s API

https://travis-ci.org/strongswan/strongswan/
https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-micado-master/tasks/micado-start.yml
https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-micado-master/tasks/micado-start.yml
https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-micado-master/templates/ipsec/ipsec.conf
https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-micado-master/templates/ipsec/ipsec.conf
https://github.com/micado-scale/ansible-micado/blob/develop/roles/build-micado-master/tasks/other-install.yml
https://github.com/micado-scale/ansible-micado/blob/develop/roles/build-micado-master/tasks/other-install.yml
https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-micado-master/templates/worker_node/cloud_init_worker.yaml.j2#L69
https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-micado-master/templates/worker_node/cloud_init_worker.yaml.j2#L69
https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-micado-master/templates/worker_node/cloud_init_worker.yaml.j2#L45
https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-micado-master/templates/worker_node/cloud_init_worker.yaml.j2#L45
https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-micado-master/templates/worker_node/cloud_init_worker.yaml.j2#L117
https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-micado-master/templates/worker_node/cloud_init_worker.yaml.j2#L117
https://github.com/Balasys/zorp-ingress-controller
https://hub.docker.com/r/balasys/zorp-ingress
https://travis-ci.org/Balasys/zorp-ingress-controller
https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-micado-master/templates/worker_node/cloud_init_worker.yaml.j2#L45
https://github.com/micado-scale/ansible-micado/blob/develop/roles/start-micado-master/templates/worker_node/cloud_init_worker.yaml.j2#L45
https://github.com/micado-scale/component_submitter/pull/186/commits/55a2505737d7b53525af9b50e55901de9b6afcac#diff-716a6c6ec30ef95b7f0423a09c495c88
https://github.com/micado-scale/component_submitter/pull/186/commits/55a2505737d7b53525af9b50e55901de9b6afcac#diff-716a6c6ec30ef95b7f0423a09c495c88
https://github.com/micado-scale/component_submitter/pull/186/commits/55a2505737d7b53525af9b50e55901de9b6afcac#diff-716a6c6ec30ef95b7f0423a09c495c88

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 52 of 54

 Reads configuration from the K8s API

 Configuration is generated based on the TOSCA descriptor available at:
https://github.com/micado-scale/tosca/

A7. Application-related secret handling and distribution

◦ Technical name: K8s Secret
◦ Rationale: provide a way for TOSCA users to distribute secrets in a secure way to

only affected application containers
◦ Current status: integrated and running in MiCADO, no mechanism is provided to

read the secrets on the application container side
◦ Initial availability: v0.7.4
◦ 3rd Party: yes, k8s Secret API
◦ Improvement plans:

 provide a mechanism to read the secrets on the application container side
(WP6 assistance required)

 avoid storing the secret in plain text in the ADT (symmetric encryption?)
◦ GitHub repository:
◦ Docker Hub repository:
◦ Docker Hub autobuild:
◦ Travis:
◦ Configuration:

 TOSCA Submitter adaptor:
 https://github.com/micado-

scale/component_submitter/pull/186/commits/55a2505737d7b53525af9b5
0e55901de9b6afcac#diff-716a6c6ec30ef95b7f0423a09c495c88

◦ Relation to other components:

 Part of the TOSCA Submitter as a Security Enforcer Adaptor

 Stores secrets within the K8s Secret API

 Configuration is generated based on the TOSCA descriptor available at:
https://github.com/micado-scale/tosca/

https://github.com/micado-scale/tosca/
https://github.com/micado-scale/component_submitter/pull/186/commits/55a2505737d7b53525af9b50e55901de9b6afcac#diff-716a6c6ec30ef95b7f0423a09c495c88
https://github.com/micado-scale/component_submitter/pull/186/commits/55a2505737d7b53525af9b50e55901de9b6afcac#diff-716a6c6ec30ef95b7f0423a09c495c88
https://github.com/micado-scale/component_submitter/pull/186/commits/55a2505737d7b53525af9b50e55901de9b6afcac#diff-716a6c6ec30ef95b7f0423a09c495c88
https://github.com/micado-scale/tosca/

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 53 of 54

B. Support functions

B1. Providing cryptographic functions to other
components within MiCADO

◦ Technical name: Crypto Engine
◦ Rationale: provide abstraction for crypto functions so that the underlying

implementation can be changed easily
◦ Current status: integrated and running in MiCADO, but no other components use

it
◦ Initial availability: v0.7.2
◦ 3rd Party: no
◦ Improvement plans:

 convert the component into a python library instead of the current REST-
based application

 identify MiCADO components that should use the CryptoEngine for
cryptography, currently none identified

◦ GitHub repository: https://github.com/micado-scale/component-crypto-engine
◦ Docker Hub repository: https://hub.docker.com/r/micado/crypto-engine
◦ Docker Hub autobuild: no
◦ Travis: no
◦ Configuration: none
◦ Relation to other components:

 Deployment via ansible-micado, affected files:
 https://github.com/micado-scale/ansible-micado/blob/master/roles/build-

micado-master/tasks/pull-docker-images.yml
 https://github.com/micado-scale/ansible-micado/blob/master/roles/start-

micado-master/templates/micado/micado-manifest.yml.j2

B2. Security workflow director and common interface to
security components

◦ Technical name: Security Policy Manager
◦ Rationale: provide a common interface to all MiCADO components to access

security-related components and functions and run security-related workflows
◦ Current status: integrated and running in MiCADO, used for several

infrastructure-related functions
◦ Initial availability: v0.7.2
◦ 3rd Party: no
◦ Improvement plans:

 upgrade library for interacting with Hashicorp Vault
(https://github.com/hvac/hvac) a version that is compatible with the latest
Vault API

 provide and interface to Credential Manager
◦ GitHub repository: https://github.com/micado-scale/component-security-policy-

manager
◦ Docker Hub repository: https://hub.docker.com/r/micado/security-policy-manager
◦ Docker Hub autobuild: yes
◦ Travis: https://travis-ci.org/micado-scale/component-security-policy-manager
◦ Configuration: N/A
◦ Relation to other components:

https://github.com/micado-scale/component-crypto-engine
https://hub.docker.com/r/micado/crypto-engine
https://github.com/micado-scale/ansible-micado/blob/master/roles/build-micado-master/tasks/pull-docker-images.yml
https://github.com/micado-scale/ansible-micado/blob/master/roles/build-micado-master/tasks/pull-docker-images.yml
https://github.com/micado-scale/ansible-micado/blob/master/roles/start-micado-master/templates/micado/micado-manifest.yml.j2
https://github.com/micado-scale/ansible-micado/blob/master/roles/start-micado-master/templates/micado/micado-manifest.yml.j2
https://github.com/micado-scale/component-security-policy-manager
https://github.com/micado-scale/component-security-policy-manager
https://hub.docker.com/r/micado/security-policy-manager
https://travis-ci.org/micado-scale/component-security-policy-manager

 D6.4 Prototype and documentation of the price/performance optimization service

Work Package: WP6 Page 54 of 54

 Deployment via ansible-micado, affected files:
 https://github.com/micado-scale/ansible-micado/blob/master/roles/build-

micado-master/tasks/pull-docker-images.yml
 https://github.com/micado-scale/ansible-micado/blob/master/roles/start-

micado-master/templates/micado/micado-manifest.yml.j2

 Provides implementation for storing cloud credentials

 Provides implementation for storing application secrets

 Provides a PKI to be used by worker-master secure communication

 Provides an interface to CryptoEngine

 Provides an interface to Image Integrity Verifier

B3. Safely store and verify user accounts for accessing the
MiCADO framework

◦ Technical name: Credential Manager
◦ Rationale: provide a lightweight REST-based interface for storing and verifying

user accounts to use with the MiCADO web interface
◦ Current status: integrated and running in MiCADO, used by Zorp
◦ Initial availability: v0.6.0
◦ 3rd Party: no
◦ Improvement plans:

 incorporate the flask-users library for simplification of the implementation

 support multiple roles besides the currently supported user/admin distinction

 avoid using plain-text credentials for initial provisioning (use an API call from
the ansible playbook to add credentials via the API without saving them to file)

 run automated tests on Travis
◦ GitHub repository: https://github.com/micado-scale/component-credential-

manager
◦ Docker Hub repository: https://hub.docker.com/r/micado/credential-manager
◦ Docker Hub autobuild: yes
◦ Travis: no
◦ Configuration: https://github.com/micado-scale/ansible-

micado/blob/master/sample-credentials-micado.yml
◦ Relation to other components:

 Deployment via ansible-micado, affected files:
 https://github.com/micado-scale/ansible-micado/blob/master/roles/build-

micado-master/tasks/pull-docker-images.yml
 https://github.com/micado-scale/ansible-micado/blob/master/roles/start-

micado-master/templates/micado/micado-manifest.yml.j2

 The Security Policy Manager contains the micadoctl CLI tool, that can change
users and passwords in Credential Manager

 The Zorp component uses Credential Manager directly to authenticate and
authorize web access to MiCADO. A direct connection is used to avoid DoS
attacks on the Security Policy Manager

https://github.com/micado-scale/ansible-micado/blob/master/roles/build-micado-master/tasks/pull-docker-images.yml
https://github.com/micado-scale/ansible-micado/blob/master/roles/build-micado-master/tasks/pull-docker-images.yml
https://github.com/micado-scale/ansible-micado/blob/master/roles/start-micado-master/templates/micado/micado-manifest.yml.j2
https://github.com/micado-scale/ansible-micado/blob/master/roles/start-micado-master/templates/micado/micado-manifest.yml.j2
https://github.com/micado-scale/component-credential-manager
https://github.com/micado-scale/component-credential-manager
https://hub.docker.com/r/micado/credential-manager
https://github.com/micado-scale/ansible-micado/blob/master/sample-credentials-micado.yml
https://github.com/micado-scale/ansible-micado/blob/master/sample-credentials-micado.yml
https://github.com/micado-scale/ansible-micado/blob/master/roles/build-micado-master/tasks/pull-docker-images.yml
https://github.com/micado-scale/ansible-micado/blob/master/roles/build-micado-master/tasks/pull-docker-images.yml
https://github.com/micado-scale/ansible-micado/blob/master/roles/start-micado-master/templates/micado/micado-manifest.yml.j2
https://github.com/micado-scale/ansible-micado/blob/master/roles/start-micado-master/templates/micado/micado-manifest.yml.j2

