
D7.2 MiCADO security architecture specification 

Work Package WP7  Page 1 of 40 

 

 

Cloud Orchestration at the Level of Application 

Project Acronym: COLA 

Project Number: 731574 

Programme: Information and Communication Technologies 

Advanced Computing and Cloud Computing 
 

Topic: ICT-06-2016 Cloud Computing 

 

Call Identifier: H2020-ICT-2016-1 

Funding Scheme: Innovation Action 

 

Start date of project: 01/01/2017 Duration: 30 months 

 

Deliverable: 

D7.2 MiCADO security architecture specification 

Due date of deliverable: 31/10/2017                 Actual submission date: 31/10/2017 

WPL: SICS 

Dissemination Level: PU 

Version: 2.0  



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 2 of 40 

Status and Change History 

 

Table 1 Status Change History 

Status: Name: Date: Signature: 

Draft: N. Paladi and A. Michalas 07/10/2017 N. Paladi 

Reviewed: Jozsef Kovacs 26/10/2017 J. Kovacs 

Approved: Tamas Kiss 31/10/2017 T. Kiss 

 

Table 2 Document Change History 

Version Date Pages Author Modification 

V0.1.1 16/06 5 N. Paladi Document template 

V0.1.2 04/07 8 A. Michalas Notes on related work 

V0.1.3 07/08 10 N. Paladi First version with outline and introduction 

V.01.4 25/08 13 N. Paladi Defined objectives of the document 

V0.1.5 07/09 14 N. Paladi Add security landscape 

V0.2 08/09 15 A. Michalas 

Add an introduction for the Security 

Architecture 

V0.2 09/09 16 A. Michalas 

Add a description for the Crypto Engine 

component 

V0.3 11/09 18 A. Michalas 

Enhanced the Crypto Engine component 

by describing all the main functions 

supported by the component 

V0.4 14/09 19 A. Michalas 

Described the Credential Manager 

Component 

V0.5 16/09 19 A. Michalas Described the Image Verifier component 

V0.6 22/09 20 N. Paladi Add threat model and regulatory aspects 

V0.7 22/09 21 N. Paladi 

Add cloud orchestration security 

objectives 

V0.7 23/09 28 A. Michalas 

Completed the Security Architecture 

section 

V0.8 25/09 31 A. Michalas 

Created and added images for the Crypto 

Engine, Credential Manager and Image 

Verifier components 

V0.8 25/09 32 A. Michalas Add Summary and Conclusions Section 

V0.9 26/09 32 N. Paladi Review introduction to better match focus 

V0.91 03/10 32 N. Paladi Add section 5 

V1.0 04/10 32 N. Paladi Review complete document 

V1.1 18/10 33 N. Paladi 

Add section regarding architecture 

implementation 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 3 of 40 

V1.2 23/10 38 Balasys Update section 5 

V1.29 26/10 39 N. Paladi Address reviewer comments 

V 1.30 27/10 39 Balasys Address reviewer comments 

V1.31 30/10 41 N. Paladi 

Update description of Figure 4 and text 

related to Zorp, address other reviewer 

comments 

V2.0 31/10 39 N. Paladi Update formatting, ready for submission. 

V2.0 31/10 all T.Kiss Final check, minor corrections 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 4 of 40 

Acronyms 

 

Table 3 List of acronyms 

API Application Programming Interface 

AWS Amazon Web Services 

COLA Cloud Orchestration at the Level of Application 

UML Unified Modelling Language 

MiCADO 
Microservice-based Cloud Application-level Dynamic 

Orchestrator 

CM Credential Manager 

PM Policy Manager 

TTP Trusted Third Party 

SPEL Security Policy Enforcement Layer 

TPM Trusted Platform Module 

CSP Cloud Service Provider 

ADV Malicious Adversary 

MAC Message Authentication Code 

PRF Pseudorandom Function 

DoS Denial of Service Attack 

IaaS Infrastructure-as-a-Service 

PII Personally Identifiable Information 

TPM Trusted Platform Module 

SGX Software Guard Extensions 

IaaS Infrastructure-as-a-Service 

CM Credential Manager 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 5 of 40 

ABE Attribute-Based Encryption 

KP-ABE Key-Policy Attribute-Based Encryption 

PEL Policy Enforcement Layer 

TCP Transport Control Protocol 

IP Internet Protocol 

CS Credential Store 

CSP Cloud Service Provider 

CSC Central Security Component 

 

 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 6 of 40 

Definitions 

Attestation protocol: a cryptographic protocol involving a target, an attester, an appraiser, 

and possibly other principals serving as trust proxies. The purpose of an attestation protocol 

is to supply evidence that will be considered authoritative by the appraiser, while respecting 

privacy goals of the target (or its owner). 

Control plane: router architecture hardware and software components for handling packets 

destined to the device itself as well as building and sending packets originated locally on the 

device. 

 

Forwarding plane: router architecture hardware and software components responsible for 

receiving a packet on an incoming interface, performing a lookup to identify the packet's IP 

next hop and determine the best outgoing interface towards the destination, and forwarding 

the packet out through the appropriate outgoing interface. 

 

Integrity measurement records (also integrity measurements): a list of hashes recording 

some sequence of events, such as e.g. installation of sets of binaries or opening files for 

reading or writing. The list is expanded on each event and cannot be forged assuming that the 

underlying cryptographic primitives are secure. 

 

 

 

 

 

 

 

 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 7 of 40 

List of Figures and Tables 

Figure 1: Main Functions offered by the Crypto Engine Component ..................................... 21 

Figure 2: Main Functionality Offered by the Credential Manager .......................................... 25 

Figure 3: Image Verifier .......................................................................................................... 27 

Figure 4 MiCADO master node with security components ..................................................... 32 

Figure 5 Communication between master node and worker node with security components. 34 

Figure 6 Relations of the Security Policy Implementation with the components of the COLA 

architecture ............................................................................................................................... 36 

 

Tables 

Table 1 Status Change History .................................................................................................. 2 

Table 2 Document Change History ............................................................................................ 2 

Table 3 List of acronyms ........................................................................................................... 4 

Table 4 Mapping of Security Requirements, Architectural Objectives and Architectural 

Components ............................................................................................................................. 37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 8 of 40 

Table of Contents 

Status and Change History .......................................................................................................... 2 

Acronyms .................................................................................................................................... 4 

Definitions................................................................................................................................... 6 

List of Figures and Tables........................................................................................................... 7 

Table of Contents ........................................................................................................................ 8 

1 Introduction ....................................................................................................................... 10 

1.1 Scope ...................................................................................................................... 10 

1.2 Objectives............................................................................................................... 11 

1.3 Relation with other WPs and Deliverables ............................................................ 11 

1.4 Organization ........................................................................................................... 11 

2 Security Landscape of Cloud Orchestration ...................................................................... 12 

2.1 Emergence of dynamic cloud applications ............................................................ 12 

2.2 Orchestration Security............................................................................................ 12 

2.3 Threat Model .......................................................................................................... 13 

2.3.1 Threat Model Assumptions ................................................................................. 13 
2.3.2 Risks .................................................................................................................... 14 
2.3.3 High level attacks ................................................................................................ 14 

2.4 Regulatory Aspects ................................................................................................ 15 

2.4.1 ISO/IEC 27017.................................................................................................... 15 
2.4.2 ISO/IEC 27018.................................................................................................... 15 
2.4.3 COBIT 5.............................................................................................................. 15 
2.4.4 Federal Information Security Management Act (FISMA).................................. 15 
2.4.5 Health Insurance Portability and Accountability Act (HIPAA) ......................... 16 

3 MiCADO Security Architecture Principles and Considerations ....................................... 17 

3.1 Cloud Orchestration Security Problem Definition ................................................. 17 

3.2 Cloud Orchestration Security Objectives ............................................................... 17 

3.2.1 General ................................................................................................................ 17 
3.2.2 Security-relation to Legacy Systems .................................................................. 17 
3.2.3 Secure Virtualization .......................................................................................... 17 
3.2.4 Security Management ......................................................................................... 18 
3.2.5 New Business and Use-cases .............................................................................. 18 
3.2.6 Regulatory Aspects ............................................................................................. 18 

3.3 MiCADO architectural principles .......................................................................... 19 

4 COLA security architecture components .......................................................................... 20 

4.1 Crypto Engine ........................................................................................................ 20 

4.2 Credential Manager (CM) ...................................................................................... 24 

4.3 Trusted Third Party ................................................................................................ 25 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 9 of 40 

4.4 Image Integrity Verifier ......................................................................................... 26 

4.5 Policy Manager and Security Policy Enforcement Layer ...................................... 28 

5 Security Architecture Implementation ............................................................................... 29 

5.1 Security assets ........................................................................................................ 29 

5.2 Security enforcement points................................................................................... 30 

5.3 Component Implementation and Interactions ........................................................ 32 

5.4 Security Layers ...................................................................................................... 34 

5.5 Security policy management .................................................................................. 35 

6 Security Requirements Traceability .................................................................................. 37 

7 Summary and Conclusions ................................................................................................ 38 

8 References ......................................................................................................................... 39 

 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 10 of 40 

1 Introduction 

Throughout the two decades since the cloud-computing paradigm was introduced, cloud 

infrastructure deployments have grown in both absolute numbers and in their complexity.  

The increase in complexity was primarily induced by the growth in the number of inter-

communicating components, variety of supported application programming interfaces (APIs), 

and additional mechanisms that enable flexible scalability and computation efficiency. 

 

As a result of the increase in the complexity of cloud deployments, cloud orchestration has 

become increasingly important at all stages of the cloud infrastructure lifecycle. The role of 

cloud administrators has gradually shifted from manually deploying, configuring and 

monitoring the compute, storage and networking infrastructure to configuring the orchestrator 

systems. This includes writing either configuration policies that describe what the 

orchestrator should do to realize the cloud infrastructure, or expressing high-level imperative 

intents describing how the infrastructure should look like and leaving the implementation 

details to the orchestrator. 

Beyond the deployment stage, modern orchestrator systems also include monitoring, load 

balancing and continuous availability functionality throughout the lifecycle of the cloud 

infrastructure components. Such automated orchestrator functionality allows maintaining a 

stable, continuous, and highly available set of cloud services with minimal or no human 

interference – based solely on the defined configuration policies or formulated intents. 

 

However, while cloud orchestration systems have the potential to act as a leverage of 

operator capabilities, misconfigured or maliciously modified orchestrators can likewise act as 

a leverage of adversary capabilities. For example, adversaries can exploit orchestrator 

vulnerabilities in order to intercept or control the generation credentials provisioned to the 

virtual machine instances; insert backdoors in virtual machine images to automate the 

deployment of maliciously modified virtual machine instances; or take control over the 

placement policy of virtual resources, either to benefit a chosen service provider (in case of 

federated deployments) or deploy virtual components on hardware resources with 

compromised physical security. 

 

To address such risks, the COLA project aims to develop a secure and open cloud 

orchestration platform. The goal is to allow efficient and secure deployment of arbitrary 

applications as well as advanced security policy management and enforcement at the 

orchestration level. To achieved the proposed objectives, the COLA project has collected a 

set of use cases and defined the security requirements towards a cloud orchestration platform, 

based on the Microservices-based Cloud Application-level Dynamic Orchestrator 

(MiCADO) framework, which stands at the core of the COLA project. 

 

Based on earlier work within the project, this document describes a security architecture for a 

secure and open cloud orchestration platform. We expect that this security architecture will 

be applied to implement the security features of the MiCADO framework. 

1.1 Scope 

This document describes the MiCADO security architecture specification, the guiding 

document for the design of the structure, functionality and interactions of the security 

components in MiCADO.  

 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 11 of 40 

The purpose of the document is to specify the overall security design and functions supported 

in COLA. The purpose of the document does not include detailed specifications of the 

security components. Such detailed specifications will be done in deliverable D7.3 and will 

be based on the security architecture specifications described in the current document. At the 

end of the project, the final COLA security design choices will be evaluated against the 

requirements described in D7.2 and the security architecture specifications described this 

document. 

1.2 Objectives 

The primary objectives of this document are to: 

 Define and describe the security architecture rationale; 

 Describe the principles behind the design of the MiCADO security components; 

 Describe the architecture and interactions among the MiCADO security components; 

 List the state-of-the-art security techniques to be used in the MiCADO framework. 

1.3 Relation with other WPs and Deliverables 

The security architecture of the MiCADO framework is central for creating a secure and 

reliable orchestration platform and is developed with consideration to the overall MiCADO 

architecture. This deliverable must be read in conjunction with D5.1 and D6.2: 

1. D5.1 - “Analysis of existing application description approaches” - touches upon the 

management of resource scaling security policies. 

2. D6.1 – “Prototype and documentation of the cloud deployment orchestrator service” 

– contains the technical and user documentation of the MiCADO platform. 

The COLA Security Architecture will be used as input for D7.3 “MiCADO application 

security classification specification”, as well as subsequent deliverables in WP7. 

1.4 Organization 

This document begins with an introduction describing the current landscape for cloud 

deployments and motivates the need for advanced security features to be provided by COLA. 

Chapter 2 describes the principles and security considerations for the COLA security 

architecture. Chapter 3 describes the state of the art in the area of cloud orchestration 

security. Chapter 4 introduces the COLA security architecture and describes on a high level 

the security components of COLA. Chapter 5 introduces the approach to the implementation 

of the security architecture. Chapter 6 reviews the relation of the security requirements 

collected in D7.1 [11] with the security architecture presented in this document. Finally, 

Chapter 7 concludes the document. 

 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 12 of 40 

2 Security Landscape of Cloud Orchestration 

In complex systems, such as clouds and software-defined network environments, services are 

deployed dynamically using orchestrators - logically centralized entities that manage and 

coordinate the lifecycles of the components that make up the service. For services within one 

administrative domain, one orchestrator may be responsible for the end-to-end service setup. 

2.1 Emergence of dynamic cloud applications 

The importance of orchestration in cloud computing has been steadily increasing as 

monolithic legacy applications ported to cloud platforms have been replaced by 

microservice-based dynamic applications. Such legacy applications use fixed layering and 

inter-layer invocation through well-defined layer-specific interfaces. Likewise, they are tied 

to infrastructure resources, such that the same entity owns service features, functionality and 

physical resources. In contrast, dynamic applications are built from micro-services providing 

a small number of primitive features. They use recursion rather than layering, such that 

functionality is accessed using generic service interfaces that are the same at all layers of the 

stack. Furthermore, features are decoupled from resources – owners of the features and 

functionality may be different than the owners of the physical infrastructure.  

An orchestrator can decide at each step in the decomposition process whether to manage a 

component itself, or hand off responsibility for that component to a different orchestrator in a 

different domain, that may in turn use recursive decomposition to deploy that component on 

its own resources.  

2.2 Orchestration Security 

From a security point of view, the shift from legacy applications to dynamic applications 

(both deployed in the cloud) requires novel approaches to aspects that can affect system 

security. Such aspects include key provisioning, dynamic integrity verification of hosts and 

system components, as well as protecting the integrity (and potentially the confidentiality) of 

system configuration data. Furthermore, cloud tenants that own and operate the dynamic 

cloud applications require verifiable guarantees that systems have been orchestrated 

according to the specified templates or intents. 

A survey by Weerasiri et al. lists security as one of the cross-cutting concerns in cloud 

orchestration implementations, along with service level agreements and negotiations, 

portability, interoperability, standardization, resource demand profiling, resource pricing, 

profit maximizing and other runtime issues [3]. Weerasiri et al. found that such cross-cutting 

concerns are addressed both by research initiatives, and to a larger extent by enterprise-ready 

orchestration techniques, such as AWS OpsWorks
1
, AWS CloudFormation

2
, VMWare 

vSphere
3
, Heroku

4
, Puppet

5
, Juju

6
, Docker

7
 and CFEngine

8
. The authors attribute this to the 

fact that the utilization of orchestration techniques requires effectively addressing security 

concerns in orchestrated cloud environments – this provides a suitable opportunity to build up 

on the existing techniques with a more nuanced approach.  

                                                 
1
 OpsWorks product page: https://aws.amazon.com/opsworks/ 

2
 Cloudformation product page: https://aws.amazon.com/cloudformation/ 

3
 vSphere product page: https://www.vmware.com/ca/products/vsphere.html 

4
 Heroku product page: https://www.heroku.com/ 

5
 Puppet product page: https://puppet.com/ 

6
 Juju product page: https://www.ubuntu.com/cloud/juju 

7
 Docker product page: https://www.docker.com/ 

8
 CFEngine product page: https://cfengine.com/ 

https://aws.amazon.com/opsworks/
https://www.vmware.com/ca/products/vsphere.html


D7.2 MiCADO security architecture specification 

Work Package WP7  Page 13 of 40 

The current COLA security architecture specification builds on the security principles shared 

with the above enterprise-ready orchestration techniques. However, it is also extendable to 

make use of the recent evolution in the field of micro-services, trusted computing and 

lightweight virtualization. In particular, with regard to lightweight virtualization, the 

emerging Unikernels [4] may present a more secure alternative to container-based 

(hypervisor-free) approaches, as application developers have explicit control over core 

security areas. 

Finally, logical centralization of orchestrator systems is another important aspect at the 

crossroads between functional and security architectures: decentralized orchestration needs 

careful consideration with regard to discovery, synchronization, coordination and security 

aspects of cloud application agents. 

2.3 Threat Model 

The threat model of COLA aims to describe the threats towards a cloud orchestration system 

and aims to capture both the external and the internal threats towards an orchestrator. 

The goal of this description is to present a generic overview of the security landscape for 

cloud orchestration, without focusing on any specific attacks. The threat model will serve as 

input for the COLA security architecture specification described in this document and later 

on for the COLA security design specification to be delivered in D7.3. 

2.3.1 Threat Model Assumptions 

We base the threat model of the COLA orchestration platform on the threat model earlier 

defined in [6]. The remote Adversary can intercept, drop, inject or otherwise interfere with all 

network communication. We start by defining the assumptions on which we base the threat 

model for the COLA orchestration security module.  

 Hardware Integrity: Media revelations have raised the issue of hardware tampering 

en route to deployment sites. We assume that the cloud provider has taken necessary 

technical and non-technical measures to prevent such hardware tampering.  

 Physical Security:  We assume physical security of the data centres where the 

Infrastructure-as-a-Service (IaaS) resources are deployed. This assumption holds both 

when the IaaS provider owns and manages the data center and when the provider 

utilizes third party capacity, since physical security can be observed, enforced and 

verified through known best practices by audit organizations. This assumption is 

important to build higher-level hardware and software security guarantees for the 

components of the IaaS.  

 Low-Level Software Stack: we assume that at installation time, IaaS providers 

reliably record integrity measurements of the low-level software stack: the Core Root 

of Trust for measurement; BIOS and host extensions; host platform configuration; 

Option ROM code, configuration and data; Initial Platform Loader code and 

configuration; state transitions and wake events, and a minimal hypervisor. We 

assume the record is kept on protected storage with read-only access and the 

adversary cannot tamper with it.  

 Network Infrastructure: IaaS providers have physical and administrative control 

of the network. The Adversary is in full control of the network configuration, can 

overhear, create, replay and destroy all messages communicated between the Tenant 

and their resources (VMs, virtual routers, storage abstraction components) and may 

attempt to gain access to other domains or learn confidential information. 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 14 of 40 

 Cryptographic Security: we assume encryption schemes are semantically secure 

and the Adversary cannot obtain the plain text of encrypted messages. We also 

assume the signature scheme is unforgeable, i.e. the Adversary cannot forge the 

signature of the Tenant and that the MAC algorithm correctly verifies message 

integrity and authenticity. We assume that the Adversary, with a high probability, 

cannot predict the output of a pseudorandom function.  

 Availability: we explicitly exclude denial-of-service (DoS) attacks that aim to 

disrupt service availability of the infrastructure deployed by the orchestrator platform. 

This is because denial-of-service can be caused by a wide variety of approaches and is 

especially difficult to prevent in distributed environments that rely on components in 

different administrative and trust domains.  

2.3.2 Risks 

The Adversary can use information intercepted from network communication to: 

 Impersonate the Tenant: deploy arbitrary components; start, stop, migrate and 

otherwise interact with deployed components; and obtain remote access to the 

infrastructure operated by the Tenant.  

 Impersonate the Cloud Service Provider in the communication with the Tenant; 

2.3.3 High level attacks 

This subsection describes a set of high-level attacks that the Adversary can launch by 

exploiting vulnerabilities in the cloud orchestration platform.  The following set of high-level 

attacks is based both on earlier research [6] as well as several reviews of the state of the start 

in cloud security [3, 12]. 

2.3.3.1 VM Substitution Attack  

In a VM substitution attack, the Adversary induces the orchestrator to launch a maliciously 

modified VM instance that contains hidden vulnerabilities, instead of a virtual machine 

instantiated from the VM image selected by the Tenant. In case of a successful attack, the 

Adversary can extract sensitive information from the virtual machine instance or monitor the 

activity of the Tenant on the virtual machine instance. 

2.3.3.2 Host Substitution Attack 

In a host substitution attack, the Adversary induces the orchestrator to ignore placement 

policies with regard to host selection in order to instantiate the virtual machine on a 

compromised or otherwise vulnerable virtualization host. In case of a successful attack, the 

Adversary can extract sensitive information from the virtual machine instance or monitor the 

activity of the Tenant on the virtual machine instance. 

2.3.3.3 Storage Host Substitution Attack 

In a storage host substitution Attack, the Adversary induces the orchestrator to ignore 

placement policies with regard to storage selection in order to attach data storage with 

exploitable vulnerabilities. In case of a successful attack, the Adversary can extract sensitive 

information from the stored data. 

2.3.3.4 Resource Parasite Attack 

In a resource parasite attack, the Adversary induces the orchestrator to modify the 

configuration of the infrastructure requested by the Tenant. In case of a successful attack, the 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 15 of 40 

Adversary can execute hidden parasite processes (such as e.g. crypto currency mining) on the 

Tenant infrastructure. 

2.3.3.5 Placement Bias Attack 

In a placement bias attack, the Adversary induces the orchestrator to ignore placement 

policies in federated cloud deployments and to favour a certain deployment target. In case of 

a successful attack, the Adversary can increase the utilization – and implicitly the profit – of a 

chosen infrastructure service provider. 

 

2.4 Regulatory Aspects 

A growing number of audit, certification and regulatory frameworks address cloud 

computing. The COLA security architecture specification does not aim to enforce compliance 

to any specific framework. However, it does aim to be generic and extensible to be used by 

an orchestration platform compliant to such frameworks. Several cloud certification and 

compliance frameworks are described below, based on [13, 14]. See [13] for a more 

extensive description. 

2.4.1 ISO/IEC 27017  

Cloud Security clarifies the division of responsibilities for protecting data in the cloud 

environment between the cloud service provider and cloud users; it describes controls 

regarding sharing information security roles, management of customer assets in case of 

service termination, isolation of virtual computing and network environments, monitoring, 

etc.  

2.4.2 ISO/IEC 27018  

Cloud Privacy contains controls for protection of Personally Identifiable Information (PII) in 

cloud environments, aimed towards customer control over PII, transparency with regard to 

data collection, PII transfer to third parties and data breach disclosure procedures.  

2.4.3 COBIT 5  

COBIT, originally ‘Control Objectives for Information and related Technology’ but used in 

acronym only since 2009, was first released in 1996 by ISACA. The current version, COBIT 

5, was published in 2012. COBIT 5 helps enterprises create optimal value from information 

and related technology (IT) for their stakeholders by maintaining a balance between realizing 

benefits and optimizing risk levels and resource use. The framework addresses both business 

and IT functional areas across an enterprise and considers the IT-related interests of internal 

and external stakeholders. Enterprises of all sizes, whether commercial, not-for- profit or in 

the public sector, can benefit from COBIT 5.  

2.4.4 Federal Information Security Management Act (FISMA)  

FISMA was passed as Title III of the E-Government Act (Public Law 107-347) in the United 

States in 2002
 
and sets high-level security requirements. FISMA requires each US federal 

agency to develop, document, and implement an agency-wide program to provide 

information security for the information systems that support the operations and assets of the 

agency, including those provided or managed by another agency, contractor, or other source. 

Federal Information Processing Standards (FIPS) are developed by NIST and approved by 

the US Secretary of Commerce. FIPS standards are also used by other organizations around 

the world, as a best practice for security requirements, especially in regulated industry sectors 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 16 of 40 

(such as financial and health-care institutions) that process Sensitive But Unclassified (SBU) 

information. FIPS does not apply to national security systems (as defined in Title III, 

Information Security, of FISMA).  

Federal agencies must adhere to FIPS 200, which “specifies minimum security requirements 

for federal information and information systems and a risk-based process for selecting the 

security controls necessary to satisfy the minimum requirements.” In essence, the high-level 

security requirements mandated by FISMA are further specialized through FIPS and other 

more detailed standards, such as NIST SCAP. The interested reader can find a description of 

the FIPS framework in the appendix. 

2.4.5 Health Insurance Portability and Accountability Act (HIPAA)  

The USA’s Health Insurance Portability and Accountability Act of 1996 (HIPAA), Public 

Law 104-191, mandates the US Dept. of Health and Human Services (HHS) to adopt and 

enforce national standards for electronic health care transactions, health identifiers, security 

and privacy (Part 164).  

The HIPAA evaluation standard (§ 164.308(a)(8)) also requires covered entities to perform a 

periodic (technical and non-technical) evaluation to assess if security policies and procedures 

meet the security requirements. This evaluation can be performed internally or by a third-

party auditor.  

 

 

 

 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 17 of 40 

3 MiCADO Security Architecture Principles and Considerations 

Orchestration heavily relies on automation tools and “rules”. While orchestration and 

automation platforms have the potential to streamline cloud operations, they can introduce 

security risks if misused. Such security risks include malicious commands, service disruption 

and file/system/app modification and are caused by both gaps in the security features of the 

orchestration tools and by the insufficient risk awareness of the orchestrator administrators. 

However, if managed well, orchestrator systems can improve security. 

3.1 Cloud Orchestration Security Problem Definition 

Here we aim to capture the core essence of cloud orchestration security as problem 

statement, summarizing the security landscape and its threat situation as described above. 

This leads us to the following problem statement:  

Create a highly scalable, flexible and efficient security infrastructure and security protocol 

design that fulfils the security needs of a cloud orchestration platform. Such needs include the 

traditional cloud service stakeholders such as cloud service providers and operators, tenants, 

regulators, as well as the needs of emerging new stakeholder such as cloud brokers and 

telecom-cloud infrastructure providers. Allow this multitude of cloud orchestration user 

categories to securely share federated cloud platforms.  

In the next section, we break down this problem definition into finer-grained security 

objectives.  

3.2 Cloud Orchestration Security Objectives 

The derived cloud orchestration security objectives fall into the following categories: 

3.2.1 General 

O1.1 Where possible, cloud orchestration security should be decoupled from specific 

physical deployments, focusing on defence-in-depth, in particular self-protection of assets, 

limiting dependency on protection at network, site, or node perimeter. 

O1.2 In a logical or physical part of the cloud deployment, governed by a specific security 

policy, further fine-grained security policy enforcement should be possible based on 

mechanism such as e.g. virtualization and domain segmentation.  

3.2.2 Security-relation to Legacy Systems  
O2.1 Cloud orchestration must provide a security level higher or at least equal to the security 

and privacy level of individual system components.  

O2.2 Cloud orchestration security should not be negatively affected by the security of legacy 

systems with which it interworks.  

O2.3 Cloud orchestration must enable seamless interworking of different cloud resources 

without exposing the security level of each of these resources to new threats.  

3.2.3 Secure Virtualization  

O3.1 Cloud orchestration must enable a secure, reliable, and traceable sharing of cloud 

resources (i.e., compute, storage and network) between the various tenants having vastly 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 18 of 40 

different requirements.  

O3.2 Cloud orchestration platforms must be dynamically scalable in order to easily and 

securely enable the changes required to ensure any new use cases, new trust models and new 

service delivery approaches.  

O3.3 Cloud orchestration platforms should support necessary root-of-trust functionality. 

O3.4 Cloud orchestration platforms must support strong isolation of (virtual) resources 

allocated to different tenants. 

O3.5 Slices must support configurable security and be able to provide tenant-unique security 

services as required by specific services and applications and specified by tenant policies. 

3.2.4 Security Management  

O4.1 Cloud orchestration platforms must support security monitoring capable of detecting 

advanced cyber security threats and support coordinated monitoring between different cloud 

service providers.  

O4.2 Cloud orchestration platforms must support strong mutual authentication and 

authorization. 

O4.3 Cloud orchestration platforms must provide functionality to mutually assess the 

trustworthiness before, and during interactions. 

O4.4 Cloud orchestration platforms’ interactions must be auditable and produce evidence of 

liabilities. 

3.2.5 New Business and Use-cases  

O5.1 Cloud orchestration platforms must be able to deliver and maintain SLA to tenants in 

terms of: availability, security, latency, bandwidth, and access control from an end-to-end 

perspective.  

O5.2 Cloud orchestration platforms systems must allow secure federation of cloud resources, 

e.g. resources provided by multiple tenants or external cloud service providers. 

3.2.6 Regulatory Aspects  

O6.1 Cloud orchestration platforms must be extensible to comply with regulatory aspects.  

O6.2 If required by regulation, the cloud orchestrator operator must have means to 

demonstrate their provided level of security.  

 

Note that the COLA security architecture specification does not aim to address all of the 

above outlined security objectives for cloud orchestration systems. Rather, only the security 

architecture will only address the objectives that are aligned with the security requirements 

described in D7.1 [11]. See Section 6 for a mapping between the security requirements, 

security objectives and the architectural domains. 

 

 

 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 19 of 40 

3.3 MiCADO architectural principles 

 

The cloud orchestrator system developed in the COLA project builds on the existing 

knowledge and best practices. The architectural principles presented below are based on the 

security requirements outlined in D7.1 [11] and aim to lay the foundation of a secure, reliable 

and scalable cloud orchestration platform. The security architecture of MiCADO is based on 

the following principles: 

 

 Authenticated access to cloud APIs; 

 Verification of computing resource properties (cloud platform attestation); 

 Verification and enforcement of data encryption policies and properties; 

 Verification of access control properties.  

We next describe each of the principles in more detail. 

 

Authenticated access to cloud APIs aims to exclusively allow only authorized access to the 

cloud resources, as well as to information about the utilization of cloud resources by a tenant 

(so-called metadata). This principle is in line with the current cloud security best practices 

[5]. The MiCADO security architecture adopts a modular approach to support both current 

and upcoming authentication mechanisms. 

 

Verification of computing resource properties (cloud platform attestation) aims to ensure 

that the software and configuration that is part of the trusted computing base of the cloud host 

providing a specific cloud resource matches the software and configuration expected by the 

cloud tenant. This approach is based on earlier work such as [7], where discrete security 

hardware was used to provide cloud user security guarantees and [8], where hardware-

enabled execution isolation features were used to protect cloud network infrastructure. 

The MiCADO security architecture builds on the rich experience of using hardware-based 

integrity verification and execution isolation mechanism in order to provide security 

guarantees for the cloud tenants. 

 

Verification and enforcement of data encryption policies and properties aims to ensure on 

the application level that production data, configuration data as well as metadata are never 

stored in plain text. Rather, such data are stored encrypted, are processed in isolated secure 

execution environments or even processed and queried encrypted when appropriate. The 

MiCADO security architecture builds on earlier experience in cloud data protection [7], [8] to 

ensure the confidentiality and integrity of data used by and produced by the cloud 

orchestration software. 

 

Verification of access control policies and properties aims to ensure that orchestration-

related data is only accessible by authorized users, according to access control policies 

defined by the cloud tenant. This aspect of the MiCADO security architecture also aims to 

ensure the compartmentalization and strong isolation of data. This includes tenant 

authentication data, configuration data and policies defining the operation of the cloud 

orchestration software, as well as data produced by the cloud orchestration software (such as 

logs and other metadata). The MiCADO security architecture builds upon earlier work on 

data access control in cloud infrastructure [9] and data isolation in cloud network 

infrastructure [10]. 

 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 20 of 40 

4 COLA security architecture components 

In this section, we describe the main security-related abstract components
9
 that will be 

incorporated into the MiCADO architecture and will be deployed as micro-services.  

While we share the components described in D7.1 [11], we further extend this description by 

describing in detail the functionality of each abstract component and by introducing new 

abstract components that play a key role in the overall security of MiCADO. Finally, we 

describe the relations between the security components and we provide several details 

regarding the protocols that each component will be responsible to run.  

This description is of paramount importance for the project as it will be used as a guide 

during the development of the security-related components. Before describing each of the 

security components, we need to provide some initial assumptions that are vital for the proper 

function of the components. At this point we note that the assumptions are based on standard 

procedures described in the literature and are considered realistic. 

 

AS1. Each security component generates a unique public/private key pair of sufficient length. 

The private key (𝑠𝑘) will remain private while the public key will be shared with the 

rest of the components.  

AS2. The communication channel between all the security components is considered as 

secure. More precisely, we assume that all the communication is taking place over a 

TLS-enabled channel.  

AS3. While we can assume that a component can be corrupted, none of the components will 

be able to impersonate another, legitimate component. This is a valid assumption since 

we have assumed cryptographic security. In other words, by knowing the public key of 

an entity it is impossible to extract any valuable information about the corresponding 

key. Hence, an impersonation attack will be impossible.  

AS4. All the messages exchanged between two or more parties are using proper mechanisms 

to ensure the freshness of the messages. More precisely, we assume that the 

corresponding function from the Crypto Engine component for generating unique 

tokens will be always used before sending a new message. Thus, a malicious adversary 

will be unable to successfully launch a replay attack.   

 

4.1 Crypto Engine 

Crypto Engine, an abstract component, is one of the key-components for the security of 

MiCADO and is implemented as a collection of cryptographic algorithms. More precisely, 

this component is responsible for generating certain cryptographic keys used by several 

entities to securely interact with other entities or components within the MiCADO 

framework. Furthermore, Crypto Engine is responsible for issuing new credentials based on a 

typical challenge-response protocol between the requestor and the issuer. Crypto Engine will 

contain an explicit list of cryptographic functions that will be available to users who wish to 

perform certain cryptographic operations (such as encryption, decryption, hashing etc). 

Crypto Engine will be available as a separate microservice and will be considered as one of 

the standard microservices offered by COLA. The Crypto Engine will support the following 

list of functions (also see Figure 1).  

 

                                                 
9
 Abstract components do not refer to a specific implementation; rather, they are a collection of algorithms or 

protocols that fulfill a certain specific feature set and can be implemented by third-party vendors. 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 21 of 40 

1. Key Generation Orchestration: This function will be responsible for generating 

several cryptographic keys (both symmetric and asymmetric). The key generation 

Orchestration is a probabilistic algorithm that takes as input a security parameter λ, 

which will define the length of the key, and an identifier for the type of key that needs 

to be generated (i.e. 𝑠𝑦𝑚 for symmetric and 𝑎𝑠𝑦𝑚 for asymmetric) and outputs either 

a symmetric secret key 𝐾 or a public/private key pair 𝑝𝑘 𝑠𝑘⁄ . 

 

 

Figure 1: Main Functions offered by the Crypto Engine Component 

 

2. Symmetric Ciphers Suite: This is as a library where several symmetric encryption 

algorithms can be used. This list will contain by default the most popular symmetric 

ciphers such as Advanced Encryption Standard (AES), Data Encryption Standard 

Crypto Engine

Key Generation
Encryption 

Ciphers
Digital 

Signatures

Hash Functions Token Generator

Responsible for generating 

both symmetric and 

asymmetric keys with

 sufficient length 

Supports symmetric 

and asymmetric encryption 

schemes as well as a

revocable ABE scheme

Allows a user to digitally 

sign a file and ti verify 

a digitally signed message

Supports a wide variety of hash functions 

that can be used mainly for verifying the

integrity of a file

Generates unique random numbers that can 

be used to prove the freshness of a message 

as well as to prevent replay attacks



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 22 of 40 

(DES) and Triple DES. While the use of DES and TripleDES is widely discouraged 

from use, we consider it is important to maintain compatibility considering their 

widespread deployment in legacy applications. All the aforementioned algorithms will 

be offered in all possible versions (i.e. different key size). A legitimate 

user/microservice will be able to interact with Crypto Engine and use any of the 

supported symmetric ciphers. In general, a symmetric encryption cipher will follow 

the following specifications: 

 
Def i ni t i on 1 ( Pr i vat e- Key  Encr ypt i on) :  For  an ar bi t r ar y  message 

𝑚 ∈ {0,1} ,  we denot ed by  𝑐 = 𝐸𝑛𝑐(𝐾,𝑚) a symmet r i c  encr ypt i on of   𝑚 

us i ng a symmet r i c  secr et  key  𝐾 ∈ 𝐾,  wher e K i s  t he avai l abl e message 
space.  The cor r espondi ng symmet r i c  decr ypt i on oper at i on i s  denot ed by  

𝑚 = 𝐷𝑒𝑐(𝐾, 𝑐).  
 

3. Asymmetric Ciphers Suite: similar to the Symmetric Ciphers suite, this is a library 

that contains all the necessary functions to properly run a typical asymmetric 

encryption scheme. More precisely, the default scheme that will be supported from 

this suite is the Rivest-Shamir-Adleman scheme which is also known as RSA. 

However, a user with specific access rights, will be able to enhance the Asymmetric 

Ciphers Suite by adding several other ciphers.  

 

Def i ni t i on 2 ( Publ i c - Key  Encr ypt i on) :  We denot e by 𝑝𝑘 𝑠𝑘⁄  a 
publ i c / pr i vat e key  pai r  f or  an asymmet r i c  encr ypt i on scheme.  

Encr ypt i on of  a message 𝑚 under  t he publ i c  key  𝑝𝑘 i s  denot ed by  

𝑐 ← 𝐸𝑝𝑘(𝑚) whi l e t he cor r espondi ng decr ypt i on oper at i on i s  denot ed by  

𝑚 = 𝐷𝑒𝑐𝑠𝑘(𝑐).  

 

Apart from the traditional asymmetric encryption schemes that will be offered to the 

users, the Asymmetric Ciphers Suite will also support a revocable Attribute-Based 

Encryption (ABE) scheme. This will allow users to create ciphertexts that will be 

protected by certain policies. In addition to that, this kind of encryption will allow 

users to share encrypted files without having to share a unique secret key for the 

decryption. The ABE scheme that will be supported by default is the so-called 

revocable Key-Policy Attribute-Based Encryption (KP-ABE) scheme described in 

[15] and further used in other works [16]. We proceed by defining the main steps of a 

KP-ABE scheme.  

 
Def i ni t i on 3 ( Revocabl e Key- Pol i cy  ABE) :  A revocable KP- ABE scheme i s  a 
t upl e of  t he f ol l owi ng f i ve al gor i t hms:  

1. 𝑆𝑒𝑡𝑢𝑝 is a probabilistic algorithm that takes as input a security parameter λ and 

outputs a public key 𝑝𝑘 and a master key 𝑀𝑆𝐾. We denote this by (𝑝𝑘,𝑀𝑆𝐾 ←

𝑆𝑒𝑡𝑢𝑝(1𝜆). 

2. 𝐺𝑒𝑛 i s  a pr obabi l i s t i c  al gor i t hm t hat  t akes  as  i nput  a mas t er  

key,  a pol i cy  𝑃 ∈ 𝑃 and t he uni que i dent i f i er  of  a 
user / ent i t y  and out put s  a secr et  key  whi ch i s  bi nd bot h t o  t he 
cor r espondi ng pol i cy  and t h e  cor r espondi ng uni que i dent i f i er .  

We denot e t hi s  by  (𝑠𝑘𝑃,𝐼𝐷 , 𝐼𝐷) ← 𝐺𝑒𝑛(𝑀𝑆𝐾, 𝑃, 𝐼𝐷).  

3. 𝐸𝑛𝑐 i s  a pr obabi l i s t i c  al gor i t hm t hat  t akes  as  i nput  a publ i c  
key,  a message m,  a set  of  at t r i but es  Ω and a t i mes t amp t .  

Af t er  a pr oper  r un,  t he al gor i t hm out put s  a c i pher t ex t  𝑐𝑠,𝑡 
whi ch i s  bi nd bot h t o t he set  of  at t r i but es  and t he t i me.  We 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 23 of 40 

denot e t hi s   by   𝑐𝑆,𝑡 ← 𝐸𝑛𝑐(𝑝𝑘,𝑚, 𝑆, 𝑡).  

4. 𝐾𝑒𝑦𝑈𝑝𝑑𝑎𝑡𝑒 i s  a pr obabi l i s t i c  al gor i t hm t hat  t akes  as  i nput  a 
mas t er  key,  a r evocat i on l i s t  r l  and a t i mes t amp t  and out put s  
a key  updat e i nf or mat i on f or  t i me t .  We denot e t hi s  by 

(𝐾𝑡) ← 𝐾𝑒𝑦𝑈𝑝𝑑𝑎𝑡𝑒(𝑀𝑆𝐾, 𝑟𝑙, 𝑡).  

5. 𝐷𝑒𝑐 i s  a det er mi ni s t i c  al gor i t hm t hat  t akes   as   i nput  a 

secr et  key ,  a key  updat e 𝐾𝑡′  and a c i pher t ex t  and out put s  t he 

or i gi nal  message 𝑚 i f f  t he set  of  at t r i but es  t hat  ar e bi nd t o 

t he c i pher t ex t  sat i s f y  t he pol i cy  𝑃, 𝑡′ ≥ 𝑡 and t he I D of  t he 

cor r espondi ng user  was  not  r evoked at  t i me 𝑡.  We denot e t hi s  

by  𝐷𝑒𝑐(𝑠𝑘𝑃,𝐼𝐷, 𝐾𝑡′ , 𝑐𝑆,𝑡) → 𝑚.  

 

4. Digital Signature: A digital signature is an asymmetric encryption algorithm that will 

be used in order to verify the integrity of a message as well as the actual identity of 

the sender. A digital signature over a message 𝑚 is denoted by 𝜎 = 𝑆𝑖𝑔𝑛𝑠𝑘(𝑚), 
where 𝑠𝑘 is the private key of the signer (as described in the asymmetric encryption 

scheme earlier). Apart from the signing algorithm, there is also a signature 

verification scheme that allows anyone who has access to the public key of the 

signer to verify the validity of the signature. The verification algorithm is denoted 

by 𝑏 = 𝑉𝑒𝑟𝑖𝑓𝑦𝑝𝑘(𝑚, 𝜎), where 𝑝𝑘 is the corresponding public key, 𝑚 is the 

message that has been signed and 𝜎 is the actual signature over 𝑚. Finally, the 

output of 𝑉𝑒𝑟𝑖𝑓𝑦 is a single bit 𝑏 = 1 if the signature is valid and 𝑏 = 0 otherwise.  

 

5. Cryptographic Hash Functions: This will be a list of available cryptographic hash 

functions that will be supported by COLA. A hash cryptographic function is a special 

class of hash function that have certain properties that makes it suitable for use in 

specific communication protocols. More precisely, a cryptographic hash function is 

easy to compute but it should be impossible to invert. In addition to that, 

cryptographic hash functions can be also seen as one-way compression functions 

since they reduce the size of any message to a standard length. Furthermore, for the 

needs of our project the following cryptographic hash functions will be supported by 

default:  

 SHA1, for legacy applications only;  

 SHA2;  

 SHA3.  

 

While users will have the option to add more hash functions to the Crypto Engine, 

there should be specific mechanisms that will prevent the addition of specific hash 

functions that are considered as insecure (e.g. MD5, SHA1, except for legacy 

applications). A hash function over a message 𝑚 is denoted by ℎ𝑚 = 𝐻(𝑚). Finally, 

cryptographic hash functions will be used to successfully and efficiently complete 

many phases of our operations (e.g. calculate and easily verify a signature will 

require from the user to first hash the message that wishes to sign).  

 

6. Message Authentication Code (MAC): A MAC is a special case of a hash function 

that uses a symmetric secret key 𝐾 and is used over a message 𝑚 to calculate a 

unique fingerprint that can be used to exchange messages that are integrity 

protected. The MAC of a message 𝑚 with a secrete key 𝐾 is denoted by 𝜇 =
𝑀𝐴𝐶(𝐾,𝑚).  



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 24 of 40 

 

7. Token Generator: A token generator is a function that is responsible for generating 

random numbers that can be used to prove and verify the freshness of a message. We 

denote by 𝜏 = 𝑅𝐴𝑁𝐷(𝑛) a random binary sequence of length 𝑛 where 𝑅𝐴𝑁𝐷(𝑛) 
represents a random function that takes as input a binary length argument 𝑛 and 

outputs a a random sequence of the same length. 

 

4.2 Credential Manager (CM) 

The Credential manager, an abstract component, is responsible for securely storing the 

credentials of entities that can access the MiCADO service. Credential manager can receive 

requests from any entity and is responsible for realizing the corresponding credential in a 

secure and privacy-preserving way. In addition to that, all credentials that are managed by the 

CM should be stored in such a way that the CM would be unable to reveal any valuable 

information about the content of the credential except the fact that there are valid. Hence, CM 

is not considered as a trusted entity. However, we explicitly assume that it will follow 

protocol specifications correctly. In addition to that, CM needs to communicate with the 

Crypto Engine micro-service to reveal the identity of a misbehaving user. Figure 2 shows a 

high-level overview with the main functions supported by the credential manager. We 

proceed by giving a formal description of the protocols that can be run by the CM.  

 
Def i ni t i on 4 ( COLA. CM) :  The f unc t i onal i t y  suppor t ed by  t he c r edent i al  
manager  i n COLA,  i s  de f i n ed  by  a t upl e of  t he f ol l owi ng t hr ee al gor i t hms:  

1. 𝐶𝑀. 𝐶𝑟𝑒𝑑𝑅𝑒𝑐𝑒𝑖𝑣𝑒 is a protocol that takes place between an entity that wishes to login or 

to store a fresh credential that owns at a local database hosted by the CM. This algorithm 

takes as input a credential 𝑐𝑟𝑒𝑑,  t he publ i c  key  𝑝𝑘 of  t he sender ,  t he 

publ i c  key  𝑝𝑘𝐶𝑀 of  t he CM as  wel l  as  a s i gnat ur e of  (𝑐𝑟𝑒𝑑 ∨ 𝑝𝑘) wi t h 

𝑠𝑘. The generated message is encrypted with 𝑝𝑘𝐶𝑀 and it is sent to CM. We denote this 

by 𝐶𝑟𝑒𝑑𝑅𝑒𝑐𝑒𝑖𝑣𝑒 = 𝑐𝑟𝑒𝑑, 𝑝𝑘, 𝜎 >.   

2. 𝐶𝑀. 𝐶𝑟𝑒𝑑𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 is the process through which CM verifies the validity of the 

credential received in the previous step. It takes as input 𝐶𝑟𝑒𝑑𝑅𝑒𝑐𝑒𝑖𝑣𝑒, which is the 

output of 𝐶𝑀. 𝐶𝑟𝑒𝑑𝑅𝑒𝑐𝑒𝑖𝑣𝑒 and outputs a bit b=1 if the credential is valid and b=0 

otherwise. The verification process includes the following steps:  

1. Upon reception of 𝐶𝑟𝑒𝑑𝑅𝑒𝑐𝑒𝑖𝑣𝑒,  CM uses 𝑝𝑘𝐶𝑀 to decrypt the message.  

2. Calculates the hash of the message and verifies the received signature.  
3. Verifies that the credential is valid (i.e. has not expired, revoked, etc.) and gives or 

refuses access to the requestor.   

3. 𝐶𝑀.𝑅𝑒𝑣𝑜𝑘𝑒 is the process through which CM revokes access to a credential. The 

algorithm, takes as input a credential 𝑐𝑟𝑒𝑑, a revocation list 𝑟𝑙 and outputs a single bit 

b=1 if the process has been completed successfully and b=0 otherwise.  

 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 25 of 40 

 

Figure 2: Main Functionality Offered by the Credential Manager 

 

4.3 Trusted Third Party 

COLA uses a “trusted third party”, an abstract component, with a key role in the overall 

framework and is trusted by the rest of the components. The role of TTP is of paramount 

importance for the security of COLA since it will be responsible for generating certain 

security guarantees about the trustworthiness of the cloud infrastructure that will be 

connected to MiCADO through the cloud access API. We rely on the commonly supported 

proposition that a large code base normally contains a proportionally large number of 

vulnerabilities. To reduce the code base, it is important that the TTP only supports the 

minimal necessary functionality. A TTP can communicate with components deployed on 

compute hosts to exchange integrity attestation information, authentication tokens and 

cryptographic keys. In addition to that, the TTP can verify the integrity of a pre-defined set of 

security-sensitive code and data executing or stored on the compute hosts. This can be done 

over an attestation protocol assuming that the hosts are equipped with common, commodity 

hardware-based isolation components or features – such as a Trusted Platform Module, or 

Credential 
Manager

Applica' on	Domain
Manager

Credential

Performs a credential 
verification

Revokes the 
credential

Verifies the issuer, the 
freshness of the file 

as well as the access 
policy

The credential is added to a 
revocation list if the owner is 
considered as corrupted or if 

the credential has expired etc. 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 26 of 40 

Software Guard Extensions. In addition to that, the TTP can seal data to the correct 

configuration of a compute host, such that the data is only available if certain pre-defined 

code and data on the host have not been modified. For the needs of COLA, TTP will be 

communicating with Security Policy Enforcement Layer in order to provide certain 

information that is needed for the successful verification of a cloud resource. Moreover, TTP 

can verify the authenticity of a client as well as perform necessary cryptographic operations.  

 

The main operation that TTP can perform is what we call a remote attestation. This process 

will prove that a cloud host is running under a trusted state. While this protocol is quite 

complex, it is a work that has been already designed and implemented in the past by members 

from the consortium of the project. To this end, the remote attestation protocol will be solely 

based on the work presented in [6, 9].  

 

4.4 Image Integrity Verifier 

 

This abstract component is responsible for determining whether one or more of image files 

are corrupted. Many attacks are focused on modification of critical files or configuration 

parameters. Especially, corrupted image files are considered as a substantial threat for cloud 

environment since a corrupted image can result in being unable to perform operations on a 

virtual machine/container. These operations include powering it on, taking a snapshot, and 

even modifying the virtual disks.  

 

 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 27 of 40 

             

Figure 3: Image Verifier 

The image verifier will rely on a protocol where the integrity of the image will be verified. 

Figure 3 shows a high-level overview of the two main functions supported by the image 

verifier component. For the proper execution of the protocol, certain functions from the 

Crypto Engine will be used by the image integrity component. We now proceed by giving a 

formal description of the underlying protocol.  

 
Def i ni t i on 5 ( COLA. I mageI nt egr i t y ) :  The i mage i nt egr i t y  pr ot ocol ,  i s  
de f i n ed  by  t he f ol l owi ng t wo al gor i t hms :  

1. 𝐼𝑚𝑎𝑔𝑒𝐼𝑛𝑡𝑒𝑔𝑖𝑟𝑦. 𝑆𝑡𝑜𝑟𝑒 takes as input a credential an image file 𝑖𝑚𝑔 and t he publ i c  

key  𝑝𝑘 of  t he user / ent i t y  t hat  i s  i ni t i at i ng t he pr ocess . The output of 

this algorithm is a hash value of the current state of the image along with a token and a 
hash of the public key of the user who stores the image file. We denote this by                

𝐼𝑖𝑚𝑔 = ℎ𝑖𝑚𝑎𝑔𝑒 , ℎ𝑝𝑘 , 𝜏 >.   

2. 𝐼𝑚𝑎𝑔𝑒𝐼𝑛𝑡𝑒𝑔𝑖𝑟𝑦. 𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 is the process through which the integrity of an image is 

verified. It takes as input 𝐼𝑖𝑚𝑔 as  wel l  as  t he ac t ual  i mage 𝑖𝑚𝑔 t hat  we need 

t o ver i f y  i t s  i nt egr i t y  and out put s  a bit b=1 if the image is not corrupted and 

vald and b=0 otherwise. We denote this by 𝑏 = 𝐼𝑚𝑔𝑉𝑒𝑟𝑖𝑓𝑦(𝐼𝑖𝑚𝑔, 𝑖𝑚𝑔).  The 

ver i f i cat i on i s  a s i mpl e pr ocess  wher e t he i mage i nt egr i t y  ver i f i er  

cal cul at es  t he hash of  𝑖𝑚𝑔 and t hen compar es  t he gener at ed hash wi t h 

t he one cont ai ned i n 𝐼𝑖𝑚𝑔.  I f  t he t wo hashes  ar e i dent i cal ,  t hen t he 

f r eshness  of  t he f i l e i s  checked by  ver i f y i ng t hat  𝜏 i s  not  a t oken 
t hat  has  been used i n t he pas t .  Thi s  pr ocess ,  ensur es  t hat  t he 
i nt egr i t y  of  t he cor r espondi ng i mage has  not  been cor r upt ed.  However ,  

Verifies the integrity of the 
image by comparing the stored 
hash with the fresh hash that 

calculates upon request

Image Integrity 

Verifier

Image File

Images Database

Generates the hash of the 
image and stores both the 

hash and the actual file



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 28 of 40 

t hi s  pr ocess  does  not  check  i f  t he i mage i s  f ol l owi ng a spec i f i c  
secur i t y  pr of i l e.  Thi s  i s  done by  ot her  component s  as  wel l  as  f r om 
t he at t es t at i on pr ocess  t hat  i s  suppor t ed by  t he TTP.   

 

In the next deliverables we plan to evaluate whether file integrity monitoring tools can run on 

the orchestration management platform. This will allow us not only to provide a wide variety 

of image integrity functionality but also to compare several approaches regarding both their 

efficiency and their robustness. We hope that this work will give valuable insights to protocol 

designers who wish to conduct further research in this emerging problem as well as to many 

companies who are building certain cloud-based services.  

4.5 Policy Manager and Security Policy Enforcement Layer  

 

Policy manager (PM) is an abstract component that provides a scalable way to manage the 

security of numerous applications and orchestration functions. More precisely, PM can define 

and distribute security policies, allow the installation of certain software to local or remote 

systems and monitor the activities of all systems in the COLA framework to ensure 

compliance with corporate policies and centralized control. Having a centralized policy 

management helps users to use same access policies in multiple applications and CSPs. PM is 

communicating directly with the application domain manager. Hence, through certain 

monitoring processes it is easy to verify that the entire domain is protected as well as to 

modify the security settings when necessary. In addition to that, policy manager is 

responsible for creating policies that will be used to allow certain users and microservices to 

decrypt and use image files. More precisely, this will be done using the revocable ABE 

scheme described earlier and is offered by the Crypto Engine. Every time that a new image is 

created, PM will be generating a set of attributes that will be given as input to the ABE 

scheme. This will generate an encrypted instance of the image that will be bind to the 

attributes generated earlier by PM. The policy enforcement layer will later use these attributes 

to make sure that only users with certain access rights can access/decrypt the encrypted 

images.  

 

The policy enforcements layer is responsible for ensuring that certain policies will be 

followed. Moreover, this layer will be responsible for giving access to certain image files 

only to users that have certain access rights. More precisely, every time that a user wishes to 

access an image will have to first decrypt it. The decryption will be based on the ABE 

scheme we defined earlier. Each user will have to communicate with the Crypto Engine to 

generate an ABE public/private key pair. This process will also include the cooperation of the 

policy manager who will be responsible for creating a set of policies that will be added to 

these keys. Then, every time when a user wishes to decrypt an image, will have to use the 

generated key private key that owns. The decryption process will be successful if and only if 

the attributes that are bind to the corresponding image satisfies the policy that is connected to 

the user’s private key. With this way, we make sure that a policy will be always enforced, 

otherwise, the user will not be able to decrypt the image file. Hence, only users with certain 

permissions will be allowed to use and/or make changes to the stored image files. In addition 

to that, the security policy enforcement layer in the MiCADO architecture is responsible for 

the verification of both external and internal cloud resources for the application domain. Such 

verifications typically require interaction with external verification resources (in our case this 

will be the trusted third party described earlier). For clarity, such connections are omitted sin 

the overall architecture picture. 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 29 of 40 

5 Security Architecture Implementation 

This section introduces the implementation approaches to address the COLA security 

objectives outlined in Section 3.2 and the COLA security requirements described in 

Deliverable D7.1 COLA security requirements.  

This approach closely follows the MiCADO architectural principles described in Section 3.3. 

It explicitly implements several of the security components described in Section 4. Its 

modular structure allows to further extend it to implement additional security components as 

necessary. 

 

The Security Policy Enforcement Layer implementation aims to be cloud provider agnostic in 

order to provide a uniform security level and usage experience regardless of the platform 

used. In practice, this means application of provider specific security functions SHOULD be 

minimized to provide meaningful defaults (that can be considered as part of the specific cloud 

provider's integration); dynamic configuration updates of provider specific security functions 

based on user configuration MUST NOT take place. 

 

The Security Policy Enforcement layer follows a matrix model to mitigate network related 

threats ranging from low level network layers to specific application protocols across the 

different assets of the platform. 

5.1 Security assets 

 

The assets that need to be protected are as follows: 

 

Master Node: The Virtual Machine that hosts most of MiCADO's Internal Service 

Components. 

 

Worker Node: An instance of a Virtual Machine that is created on demand to host an 

application. 

 

Internal Service Components: Components that provide the internal services required to 

operate MiCADO. Most of these are hosted on the Master Node, but some are present on the 

Worker Node typically acting as an agent to one of the central internal services hosted on the 

master node, in order to supervise the worker node or to provide some Cloud Provider 

agnostic service on the Worker Node (such as dockerd to run application containers). 

 

Application Service Components: Components that run user applications, deployed as (a set 

of) Docker containers on worker nodes. 

 

Internal Communication Traffic among Internal Service Components: Communication 

flows that take place inside a Master / Worker Node among the Internal Service Components. 

Depending on the level of trust placed in the Cloud Service Provider such traffic can be 

considered to happen on a trusted network and as such do not require a secured channel of 

communication to mitigate the risk of an Adversary eavesdropping on it. Best practices still 

dictate that these channels SHOULD be encrypted unless a specific, noteworthy benefit (for 

e.g. in performance of a highly saturated interface) comes from using unencrypted channels. 

Such communication MUST still be authenticated. 

 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 30 of 40 

External Communication Traffic among Internal Service Components: Communication 

flows that flow over among the Internal Service Components over untrusted networks, 

typically among Nodes. Such traffic MUST always be encrypted and authenticated. 

 

Management Communication Traffic: Communication that flows from MiCADO's 

administrative user to an Internal Service Component 

 

Internal Application Communication Traffic: Communication that flows among an 

Application's Service Components, either inside a Worker Node or among worker nodes if 

the Application has components on multiple nodes. 

 

External Application Communication Traffic: Communication that flows to (such as user 

requests) or from (such as communication towards external backend systems) of an 

Application Service Component. External dependencies might limit the available security 

controls that can be applied to such traffic. 

 

Authentication Credentials: Credentials that are needed inside the system, they MUST be 

protected both in transit and when at rest. 

 

5.2 Security enforcement points 

 

Enforcement of security policies happen at several places, listed below: 

 

Cloud Service Provider (CSP): Cloud services have various means to provide security 

measures. While MiCADO's security Policy Enforcement Layer aims to be provider agnostic 

and thus limits to a minimum the usage of such interfaces (in some cases it may explicitly 

open them to avoid interference with its enforcement points), certain limitations can only be 

applied on such. 

 

Docker network driver: Docker
10

 and Docker swarm
11

 use an overlay network that emulates 

VLANs and provide routing external traffic to them. This can be used for Network 

Segregation. It is possible to encapsulate node external traffic in IPSEC which can be used to 

secure node external traffic. 

 

Zorp: In order to demonstrate the utilization of such security services, MiCADO will be 

extended by supporting a policy management software component, Zorp. Zorp
12

 is a GPL 

licensed firewall solution that can act both as a simple Network Level access control tool and 

as an Application Protocol enforcer for certain protocols (TLS/SSL, HTTP, FTP, SMTP, 

POP3, etc.). It can also provide authentication for those protocols prior to letting traffic 

through. These features combined into a single software stack make it feasible to be applied 

with smaller impact on architectural complexity than deploying distinct software for these 

features. It can be deployed directly both as a firewall on Virtual Machines (Master and 

Worker nodes) as well as a Docker container. 

 

                                                 
10

 Docker product page: https://www.docker.com/ 
11

 Docker Swarm documentation page: https://docs.docker.com/engine/swarm/ 
12

 https://github.com/Balasys/zorp 

https://github.com/Balasys/zorp


D7.2 MiCADO security architecture specification 

Work Package WP7  Page 31 of 40 

The analysis of the alternative approaches to policy management is out of the scope of this 

document. However, given the modular architecture of MiCADO, Zorp may be replaced by 
other alternative policy management components. Within the framework of the COLA 

project, Zorp was prioritized over other proprietary or open source solutions available on the 

market considering that Zorp is a product of COLA project partner Balabit. Therefore, the 

necessary expertise regarding the possible tailoring of Zorp to MiCADO is readily available 

among project partners. Note that Zorp is a specific instance of a software component 

necessary to demonstrate that an external security solution can be integrated with MiCADO.  
 

Credential Store (CS): An abstract software component that acts as a central storage of 

Authentication Credentials that is used to securely handle passwords, keys, tokens, other 

secrets in the system. It stores and serves credentials for other components in a secure 

manner. 

 

Application code and configuration: Business logic in each application should ensure it is 

protected against threats. Their configuration should also limit attack surfaces by narrowing 

access, for example by binding only to localhost or to a local network when applicable. 

 

The following table summarizes enforcement points: 

 

 

 

Network 

segregation 

Network level 

access control and 

security 

Application 

protocol 

enforcement 

Access 

authentication 

and 

authorization 

Master Node CSP Zorp@Master N/A N/A 

Worker Node CSP Zorp@Worker N/A N/A 

Internal Service 

Components 
App, docker Zorp@Node Zorp@Node 

Zorp@Node / 

App, CS 

Application Service 

Components 
App, docker 

Zorp@Container / 

docker 
Zorp@Container 

Zorp@Container 

/ App 

Internal 

Communication 

Traffic among 

Internal Service 

Components 

App, docker App, docker Zorp@Node App, CS 

External 

Communication 

Traffic among 

Internal Service 

Components 

App, docker, 

Zorp@Nodes 
Zorp@Node, docker Zorp@Node App, CS 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 32 of 40 

Management 

Communication 

Traffic 

CSP Zorp@Node Zorp@Node 
Zorp@Node / 

App / CS 

Internal Application 

Communication 

Traffic 

docker 
Zorp@Container / 

docker 
Zorp@Container 

Zorp@Container 

/ App / CS 

External Application 

Communication 

Traffic 

docker 
Zorp@Container, 

docker 
Zorp@Container 

Zorp@Container 

/ App / CS 

Authentication 

Credentials 
N/A Zorp N/A Zorp 

 

 

5.3 Component Implementation and Interactions 

 

This section describes the implementation and interactions of components described in 

Section 4 with the components of the MiCADO architecture. In particular, Figure 4 illustrates 

the communication between the security components and MiCADO components. This high-

level overview identifies the main operations of the security components. For clarity, all 

security components are drawn in red colour. For details regarding the MiCADO architecture, 

its components and functionalities please refer to COLA deliverable D.6.2 [17].  

 

Figure 4 MiCADO master node with security components 

The main communication between MiCADO and the designed security components are 

between the TOSCA submitter, Prometheus alerting and Policy enforcement layer (PEL). 

PEL is a gateway to protect the MiCADO system from insecure command execution. All 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 33 of 40 

commands that consist of creating, scaling and updating workers or containers should be 

verified in order to guarantee its security prior execution. As a consequence, the TOSCA 

submitter and Prometheus alerting need to send configuration data to PEL and only after 

receiving enforcement results from PEL, they can transmit execution commands to 

Occopus/Swarm. 

 

Furthermore, the PEL needs to be aware of the security policies to be enforced. Security 

policies are given as input to MiCADO by utilizing a TOSCA description. Security policies 

are transmitted to the TOSCA submitter along with other operation policies, credentials and 

configuration data. Next, the TOSCA submitter extracts security policies with credentials, 

and transfers them to Policy Manager (PM). The PM is in charge of storing and distributing 

policies and credentials to PEL. In addition to that, all credentials are transformed before 

being sent to the Credential Manager (CM) to enable the CM to reveal any valuable 

information about the private data contained in a credential. Apart from that, there is a 

reverse communication from the PM to the TOSCA description which is used when the PM 

generates new policies or updates the existing ones. 

 

Additionally, the PEL sends requests to cryptographic components such as the Crypto 

Engine, Trusted Third Party (TTP), Image Verifier to execute cryptographic operations and 

protocols such as revocable ABE encryption, host attestation, image verification, etc. The 

communication between CM, TTP, Image Verifier and Crypto Engine (CE) is required in 

order to use functions provided by CE. For clarity, we omit such communication in Figure 4.  

 

Finally, in order to provide an additional layer of security, a firewall will be installed to 

prevent possible malicious or suspicious access both to the master node and the worker 

nodes. Furthermore, all underlying communication between the different instances will be 

protected using TLS. This includes the communication between Occopus and worker node, 

Swarm and Docker CE, Prometheus and Node or Container monitor. The implementation of 

this functionality will be based on Zorp firewall and Zorp SSL, described in Section 5.5. 

These components are controlled by PEL that is also responsible for generating and sending 

the corresponding configuration files. On each worker node, there is a PEL with reduced 

functionality, to control the Zorp firewall and SSL. This entity is also managed by the PEL in 

the master node as shown in Figure 5. Finally, the master node’s PEL is responsible for 

generating and sending configuration files and retrieving and processing collected data from 

the worker nodes’ PEL. Communication between the PEL on the different nodes must be 

done in secure manner and privacy-preserving way. 

 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 34 of 40 

 

Figure 5 Communication between master node and worker node with security components 

 

5.4 Security Layers 

 

This subsection describes the layers where protection is applied, with their most relevant 

functions: 

 

Network segregation: Security domains – such as a given application hosted on the platform 

or services that belong together on the Master Node – MUST be separated on the level of the 

Network Interface Layer of the TCP/IP model (the quasi-physical network), in order to avoid 

eavesdropping and to force all security related decision onto the upper layers where 

enforcement points are more conveniently applied through routing. 

 

Network level access control: Network traffic SHOULD also be filtered on the Host-to-Host 

Transport Layer. The main goal of such filtering is to reduce the attack surface by: 

- denying traffic from known unwanted sources 

- denying traffic to non-existent destinations 

- detecting malicious sources by analysing network behaviour 

- allowing access to certain services only from trusted network sources 

Such actions narrow the surface that has to be protected by Application protocol enforcement. 

 

Application protocol enforcement: Network traffic passing to/from hosted application code 

SHOULD also be protected by denying protocol non-compliant elements and traffic with 

malicious intentions. While such enforcement SHOULD happen in the application itself for 

well-defined protocols, it is also possible to enforce rules by application level firewalling. 

This adds several benefits by providing an extra layer of application enforcement, making 

sure malicious traffic never reaches application code and reducing the load on application 

services. 

 

Access authentication and authorization: By general rule, any agent sending or receiving 

sensitive data MUST authenticate the other party in the communication and make sure it has 

authorization to given data. Therefore, client access to services MUST be authenticated and 

authorized except for services explicitly published to the general public. In cases where 

relevant information is flowing from the client – typically in traffic among Internal Service 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 35 of 40 

Components – services should also be authenticated. Bi-directional channels thus MUST be 

mutually authenticated. Authentication credentials MUST be securely handled: 

- Machine to machine communication SHOULD use certificate based authentication 

whenever possible. Every service SHOULD have its own individual set of 

credentials. Access to private keys must be limited to the using application. 

Private keys SHOULD be protected by a pass-phrase provided application 

initialization.  

- When other password based solutions are needed credentials MUST be stored 

securely in the CS and retrieved upon need. Access to the CS must be individually 

authenticated for each user of the credential by their own. 

- Passwords used internally for authentication SHOULD NOT be persistently stored 

in a retrievable manner (plain-text or symmetric encryption), instead 

cryptographically proper hash functions of the password should be stored. 

Authentication MAY be supplemented by User Behaviour Analysis for further securing the 

system. 

 

Session Audit: Privileged access MAY be recorded for audit purposes. 

 

5.5 Security policy management 

 

The MiCADO security architecture will enable and support the utilization of various security 

solutions/products based on user defined policies. Security policies are applied through 

several channels: 

- Static configuration is built into the default configuration of each component. 

- Dynamic configuration is based 

o mainly on infrastructure description through user input by TOSCA 

o any dynamic polices from Policy Keeper 

o administrative configuration through the Dashboard might be necessary in the 

future 

- Dynamic configuration is maintained by the Central Security Component (CSC). 

The CSC will 

o receive TOSCA updates through MICADO submitter 

o may receive policy keeper updates 

o gather actual infrastructure details from Docker Swarm 

o calculate and maintain dynamic security policies 

o distribute these policies as configuration to the enforcement points 

 
Figure 6 illustrates the envisioned integration of Zorp with the other software components of 

the COLA architecture. In particular, Zorp will be deployed on both the master node as well 

as the MiCADO worker nodes. Zorp will enforce the security policy implementation – 

including security of the communication between MiCADO nodes and components – 

according to the description of infrastructure and policies in the TOSCA format. 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 36 of 40 

 

Figure 6 Relations of the Security Policy Implementation with the components of the COLA 
architecture 

 

Beyond this high-level description, further details regarding the integration of Zorp with the 

MiCADO components, as well as detailed description of the communication protocols 

employed in the communication among the Zorp agents are out of the scope of this document 

and will be described in deliverable D7.3 MiCADO application security classification 

specification. 

 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 37 of 40 

6 Security Requirements Traceability 

 

This section describes the vertical relationship between the documents, namely between 

requirements, architectural objectives and security enforcement components.  

 

The architectural objectives outlined in section 3.2 are based on a selection of the security 

requirements outlined in deliverable D7.1 COLA security requirements. The selected 

requirements were addressed by the architectural objectives and subsequently reflected in the 

architectural components described in section 4. We have chosen such requirements on an 

analysis of the current state-of-the-art with regards to cloud orchestration security as well as 

their applicability to the MiCADO cloud orchestration platform. 

 

Table 4 contains a three-party mapping between the security requirements enumerated in 

D7.1, the architectural objectives described in section 3.2 and the architectural components 

described in section 4. This mapping is necessary in order to ensure the traceability of 

requirements throughout the project, from requirements elicitation to final prototype. 

 

In several cases, security requirements are relevant to more than one objective and are 

addressed by a combination of several architectural components. It is important to note that 

we assume the architectural components to interact as a unified system in order to effectively 

address the relevant architectural objectives. 

 

This mapping will be complemented and expanded in the upcoming deliverables, in order to 

continue the traceability of requirements, objectives and components. We expect that such 

traceability will communicate the rationale behind the security architecture and will help 

developers take better design decisions. 

 

 

 

Table 4 Mapping of Security Requirements, Architectural Objectives and Architectural 
Components 

Requirement(s) Objective(s) Architectural Component(s) 

SR01, SR02, SR04, SR08, CNSR-3 O1.1, O3.3, 

O4.3 

Trusted Third Party 

SR05, SR06, SR07, SR09, SR10, CCSR-

1, CNSR-2, CNSR-6, CSSR-1 

O1.2, O3.5, 

O4.4, O5.1 

Policy Manager 

SR06, SR09, SR10, CCSR-2, CNSR-5, 

CNSR-6, CNSR-7 

O2.1, O2.2, 

O2.3, O3.2,  

Security Enforcement Layer 

SR03, SR11, CNSR-3, CNSR-8 O4.3 Credential Manager 

SR12, SR13, CNSR-3, CNSR-9, CSSR-1 O3.1, O5.2,  Crypto Engine 

CNSR-2, CNSR-6 O4.1, O4.4, 

O6.2 

Image Integrity Verifier 

 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 38 of 40 

7 Summary and Conclusions  

The scope of this deliverable was to twofold. First, we provided a detailed analysis of the 

security landscape of cloud orchestration. This work is something that is currently missing 

from the existing literature and it can give valuable insights to organizations as well as 

researchers who are using services based on the cloud orchestration principles. During this 

study, we extensively analysed the security of current orchestration approaches and we 

provided a concrete list of possible risks that need to be considered while one builds cloud 

orchestration-based services. Furthermore, by analysing existing security issues and 

identifying possible risks, we managed to define an adversarial model that fits squarely to the 

specific requirements of an orchestration platform. The defined threat model is based on a set 

of realistic assumptions regarding the capabilities of the attacker. These assumptions 

combined with the security issues we identified by analysing the existing literature, resulted 

in a concrete threat model that targets cloud orchestration environments. To the best of our 

knowledge, this is something that is currently missing from the existing works in the area. 

Hence, it is considered as an important contribution of this work. Furthermore, defining the 

exact capabilities of the attacker, we managed to describe the actual attacking surface. This, 

helped us to proceed with the actual design of relevant security and/or privacy-preserving 

mechanisms.  

 

The second main contribution of this work, is the design of the actual security architecture 

that will enhance MiCADO. This architecture is based on the design of several security-

related components that aim to satisfy the different types of requirements that have been 

formulated during the requirements analysis and the definition of the adversarial model. More 

precisely, D7.1 [11] highlighted specific functional and security requirements based on a 

concrete list of considered use-cases. The overall goal was to identify all stakeholders and as 

many as possible functionalities that would be required towards the formulation of a secure 

orchestration platform. As a result, all these parameters were taken into consideration in this 

deliverable while building the necessary security components.  

 

During the design of the security architecture, we defined in a concrete way all the underlying 

security components that cover the functional aspects of the requirements. More precisely, we 

extended the high-level description of the security components that was described in D1.1 by 

properly describing all the functions that each component supports. In addition to that, we 

further elaborated on each component by providing a usage walkthrough. Even though the 

described architecture is considered as “reference”, since it can be subjected to multiple 

“instantiations”, it provides a solid overview of how the security components are orchestrated 

in order to support the MiCADO framework.  

 

Finally, we provided a detailed discussion regarding current regulatory aspects related to 

cloud computing. While the COLA security architecture specification does not aim to enforce 

compliance to any specific framework, it does aim to be generic and extensible to be used by 

an orchestration platform compliant to such frameworks. To this end, several cloud 

certification and compliance frameworks were described. 

 

 

 



D7.2 MiCADO security architecture specification 

Work Package WP7  Page 39 of 40 

8 References 

 

[1] A. Michalas and K. Y. Yigzaw, "LocLess: Do you Really Care Where Your Cloud 

Files Are?". 2016 IEEE International Conference on Cloud Computing Technology 

and Science (CloudCom), Luxembourg City, 2016, pp. 515-520, 12-15 Dec, 2016. 

[2] A. Michalas, "Sharing in the rain: Secure and efficient data sharing for the Cloud," 

2016 11th International Conference for Internet Technology and Secured 

Transactions (ICITST), pp. 182-187, 5-7 Dec, Barcelona, Spain, 2016. 

[3] Denis Weerasiri, Moshe Chai Barukh, Boualem Benatallah, Quan Z. Sheng, and Rajiv 

Ranjan. 2017. A Taxonomy and Survey of Cloud Resource Orchestration Techniques. 

ACM Comput. Surv. 50, 2, Article 26 (May 2017), 41 pages. DOI: 

https://doi.org/10.1145/3054177 

[4] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj 

Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. 2013. 

Unikernels: library operating systems for the cloud. In Proceedings of the eighteenth 

international conference on Architectural support for programming languages and 

operating systems (ASPLOS '13). ACM, New York, NY, USA, 461-472. 

DOI=http://dx.doi.org/10.1145/2451116.2451167 

[5] Badger, Lee, et al. "Draft cloud computing synopsis and recommendations." NIST 

special publication 800 (2011): 146. 

[6] N. Paladi, C. Gehrmann and A. Michalas, "Providing User Security Guarantees in 

Public Infrastructure Clouds," in IEEE Transactions on Cloud Computing, vol. 5, no. 

3, pp. 405-419, July-Sept. 1 2017. 

doi: 10.1109/TCC.2016.2525991 

[7] Nicolae Paladi and Linus Karlsson. 2017. Safeguarding VNF Credentials with Intel 

SGX. In Proceedings of the SIGCOMM Posters and Demos (SIGCOMM Posters and 

Demos '17). ACM, New York, NY, USA, 144-146. DOI: 

https://doi.org/10.1145/3123878.3132016 

[8] Dowsley, Rafael, et al. “A survey on design and implementation of protected 

searchable data in the cloud.” Computer Science Review (2017). 

[9] Paladi, Nicolae, Antonis Michalas, and Christian Gehrmann. "Domain based storage 

protection with secure access control for the cloud." Proceedings of the 2nd 

international workshop on Security in cloud computing. ACM, 2014. 

[10] Paladi, Nicolae, and Christian Gehrmann. "TruSDN: Bootstrapping Trust in Cloud 

Network Infrastructure." International Conference on Security and Privacy in 

Communication Systems. Springer, Cham, 2016. 

[11] A. Michalas, N. Paladi and C. Gehrmann, ”D7.1 COLA Security Requirements”, in    

COLA – Cloud Orchestration at the Level of Applications, (2017) 

[12] Claudio A. Ardagna, Rasool Asal, Ernesto Damiani, and Quang Hieu Vu. 2015. From 

Security to Assurance in the Cloud: A Survey. ACM Comput. Surv. 48, 1, Article 2 

(July 2015), 50 pages. DOI: https://doi.org/10.1145/2767005 

[13] M. Dekker, C. Karsberg, M. Lakka, and D. Liveri, “Auditing Security Measures, An 

Overview of schemes for auditing security measures,” Tech. Rep. TP-03-13-551-EN-

N, European Union Agency for Network and Information Security, September 2013.  

[14] Nicolae Paladi. 2017. Trust but Verify: Trust Establishment Mechanisms in 

Infrastructure Clouds. Ph.D. Dissertation. Lund University. 

[15] A. Sahai and H. Seyalioglu, “Dynamic credentials and ciphertext delegation 

https://doi.org/10.1145/3054177


D7.2 MiCADO security architecture specification 

Work Package WP7  Page 40 of 40 

for attribute-based encryption,” In Proceedings of the 32nd Annual International 

Cryptology Conference: Advances in Cryptology (CRYPTO2012), pp. 199–217, 

Springer, 2012. 

[16] Antonis Michalas and Noam Weingarten. “HealthShare: Using Attribute-Based 

Encryption for Secure Data Sharing Between Multiple Clouds”. Proceedings of the 

30th IEEE International Symposium on Computer-Based Medical Systems (CBMS’17), 

Thessaloniki, Greece, 2017. 

[17] Botond Rakoczi, Jozsef Kovacs, Tamas Kiss, Peter Kacsuk, Gabor Terstyanszky: 

“D6.2 Prototype and documentation of the monitoring service”, in    COLA – Cloud 

Orchestration at the Level of Applications, (2017) 


