
D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 1 of 106

Cloud Orchestration at the Level of Application

Project Acronym: COLA

Project Number: 731574

Programme: Information and Communication Technologies

Advanced Computing and Cloud Computing

Topic: ICT-06-2016 Cloud Computing

Call Identifier: H2020-ICT-2016-1

Funding Scheme: Innovation Action

Start date of project: 01/01/2017 Duration: 30 months

Deliverable:

D7.3 Design of application level security classification formats

and principles

Due date of deliverable: 30/06/2018 Actual submission date: 25/06/2018

WPL:

Dissemination Level: PU

Version: 1.3

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 2 of 106

Status and Change History

Table 1 Status Change History

Status: Name: Date: Signature:

Draft: A. Michalas and N. Paladi 10/06/2018 A.Michalas/N. Paladi

Reviewed: A. Marosi 18/06/2018 A. Marosi

Approved: T. Kiss 24/06/2018 T. Kiss

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 3 of 106

Table 2 Document Change History

Version Date Pages Author Modification

V0.1 02/02 7 Hai-Van Dang Document template

V0.2 02/02 13 Hai-Van Dang First draft of Chapter 2

V0.2 07/02 13

Antonis

Michalas Review and changes to Chapter 2

V0.3 09/2 41 Hai-Van Dang First draft of Chapter 3

V0.3 19/02 41

Antonis

Michalas Review and changes to Chapter 3

 27/02 11 Nicolae Paladi Create template for deliverable 7.3

V0.4 09/03 32 Hai-Van Dang

Changes to section 3.3 – Attack vectors

Add template Security Enabler Open

Specification defined by SICS in Chapter

4

V0.5.1 16/03 52 Hai-Van Dang

Integrate the template and open

specification for Image Verifier created

by Nicolae in the current document

V0.5.2 20/03 66 Nicolae Paladi

Add updated use case partner

requirements

V0.5.3 21/03 69 Nicolae Paladi

Add Open Specification for Crypto

Engine

V0.6 22/03 72 Nicolae Paladi

Finalize draft Open Specification for

Crypto Engine

V0.7 23/03 78

Antonis

Michalas

Hai-Van Dang

Finalize draft Open Specification for

Credential Manager and Credential Store

V0.8 26/3 82 Nicolae Paladi

Move references from SICS enablers to

end of document

V0.9 28/3 82 Hai-Van Dang Add introduction and conclusion

V1.0 2/5 82

Antonis

Michalas Change to all sections

V1.1 3/5 81 Nicolae Paladi Update 4.1.9 and 4.2.9

V1.2 7/5 105 Balint Kovacs Update 4.3, 4.6 and 4.7

V1.3 8/5 106 Hai-Van Dang

Update table 6, section 4.5.7, and

integrate all sections

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 4 of 106

Glossary

API Application Programming Interface

AWS Amazon Web Services

COLA Cloud Orchestration at the Level of Application

UML Unified Modelling Language

MiCADO
Microservice-based Cloud Application-level Dynamic

Orchestrator

CM Credential Manager

PM Policy Manager

CSP Cloud Service Provider

MAC Message Authentication Code

HMAC Hash-based Message Authentication Code

DoS Denial of Service Attack

PII Personally Identifiable Information

WN Worker node

MN Master node

HSTS HTTP Strict Transport Security

Table 3 Glossary

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 5 of 106

List of Figures and Tables

Figure 1 MiCADO Architecture [1] .. 12

Figure 2 Interaction of the participating entities .. 17

Figure 3 Man-in-the-middle attack .. 21

Figure 4 Man-in-the-middle attack countermeasure .. 21

Figure 5 Password guessing attack .. 22

Figure 6 Password guessing countermeasure .. 23

Figure 7 Password reset MiTM attack ... 25

Figure 8 Password reset MiTM attack countermeasure ... 26

Figure 9 Certificate spoofing attack ... 27

Figure 10 Certificate spoofing countermeasure ... 28

Figure 11 Resource exhaustion as a result of impersonation attack .. 29

Figure 12 Resource exhaustion countermeasure.. 30

Figure 13 TOSCA file modification attack .. 31

Figure 14 TOSCA file modification attack countermeasure ... 31

Figure 15 Resource exhaustion due to TOSCA modification attack 32

Figure 16 Application sensitive information breach .. 33

Figure 17 Application sensitive information breach countermeasure 33

Figure 18 Application data breach ... 34

Figure 19 Open ports exploitation ... 34

Figure 20 Open ports exploitation countermeasure ... 35

Figure 21 Component interaction for the image integrity verifier ... 39

Figure 22 Component interaction for the credential manager in the use case CM-1 67

Figure 23 Component interaction for the credential manager in the use case CM-2 67

Figure 24 Component interaction for the credential manager in the use case CM-3 68

Figure 25 Component interaction for the credential manager in the use case CM-4 68

Figure 26 Component interaction for the credential manager in the use case CM-5 68

Figure 27 Initialize Credential Store .. 79

Figure 28 Write sensitive information to Credential Store .. 79

Figure 29 Read sensitive information from Credential Store .. 79

Figure 30 Write sensitive information to swarm ... 80

Figure 31 Read docker secret from swarm .. 80

Tables

Table 1 Status Change History .. 2

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 6 of 106

Table 2 Document Change History .. 3

Table 3 Glossary .. 4

Table 4 Communication Vulnerabilities of MiCADO ... 15

Table 5 Terms and definitions for authentication [6][21] .. 63

Table 6 Use case CM-1: Authentication .. 64

Table 7 Use case CM-1: Add new identity .. 65

Table 8 Use case CM-3: Change authenticator.. 65

Table 9 Use case CM-4: Reset authenticator ... 66

Table 10 Use case CM-5: Use case CM-5: Delete identity ... 66

Table 11 Credential table ... 68

Table 12 AccessLog table .. 69

Table 13 Protocol for authentication with lock-out functionality .. 69

Table 14 AccessConfig table ... 70

Table 15 Credential Manager - Test items ... 72

Table 16 Credential Manager - Test features ... 72

Table 17 Credential Manager - Features not to be tested .. 73

Table 18 Credential Manager - Test approach ... 73

Table 19 Use case CS-1: Initialize Credential Store .. 76

Table 20 Use case CS-2: Read/ write/ remove sensitive information 77

Table 21 Use case DS-1: Read docker secret from swarm .. 77

Table 22 Use case DS-2: Write secret to swarm and grant access right 78

Table 23 Use case DS-3: Remove docker secret ... 78

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 7 of 106

Table of Contents

Status and Change History ... 2

Glossary ... 4

List of Figures and Tables.. 5

Table of Contents ... 7

1 Introduction .. 10

2 Core components of MiCADO and data security requirements 12

2.1 MiCADO submitter... 12

2.2 Cloud Orchestrator and Container Orchestrator ... 13

2.3 Policy Keeper .. 13

2.4 Monitoring System .. 14

2.5 External entities... 14

2.6 Summary ... 14

3 Threat models and Attack vectors .. 17

3.1 Threat surface .. 17

3.2 Identified threat models .. 18

3.3 Attack vectors ... 20

3.3.1 Threat model 1: User impersonation.. 20
3.3.2 Threat model 2: TOSCA file modification .. 30
3.3.3 Threat model 3: Data Breach ... 32
3.3.4 Threat model 4: Open ports exploitation ... 34

4 Security Enablers Open Specification .. 36

4.1 Image Integrity Verifier Open specifications .. 36

4.1.1 Preface.. 36
4.1.2 Copyright ... 36
4.1.3 Legal notice .. 36
4.1.4 Terms and definitions .. 36
4.1.5 Overview .. 36
4.1.6 Basic concepts .. 37
4.1.7 Main interactions ... 37
4.1.8 Architectural drivers .. 39
4.1.9 Test plan ... 40
4.1.10 Re-utilised Technologies/Specifications .. 41

4.2 Crypto Engine: Open specifications ... 41

4.2.1 Preface.. 41
4.2.2 Copyright ... 42
4.2.3 Legal notice .. 42
4.2.4 Terms and definitions .. 42
4.2.5 Overview .. 42
4.2.6 Basic concepts .. 42

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 8 of 106

4.2.7 Main interactions ... 43
4.2.8 Architectural drivers .. 44
4.2.9 Test plan ... 46
4.2.10 Reused Technologies/Specifications ... 48

4.3 Security Policy Manager: Open specifications ... 48

4.3.1 Preface.. 48
4.3.2 Copyright ... 48
4.3.3 Legal notice .. 48
4.3.4 Terms and definitions .. 48
4.3.5 Overview .. 49
4.3.6 Basic concepts .. 49
4.3.7 Main interactions ... 49
4.3.8 Architectural drivers .. 56
4.3.9 Test plan ... 59
4.3.10 Re-utilised Technologies/Specifications .. 62

4.4 Credential Manager: Open specifications ... 62

4.4.1 Preface.. 62
4.4.2 Copyright ... 63
4.4.3 Legal notice .. 63
4.4.4 Terms and definitions .. 63
4.4.5 Overview .. 63
4.4.6 Basic concepts .. 63
4.4.7 Main interactions ... 64
4.4.8 Architectural drivers .. 71
4.4.9 Test plan ... 72
4.4.10 Re-utilised Technologies/Specifications .. 74

4.5 Crendential Store: Open specifications ... 74

4.5.1 Preface.. 74
4.5.2 Copyright ... 75
4.5.3 Legal notice .. 75
4.5.4 Terms and definitions .. 75
4.5.5 Overview .. 75
4.5.6 Basic concepts .. 76
4.5.7 Main interactions ... 76
4.5.8 Architectural drivers .. 81
4.5.9 Test plan ... 83
4.5.10 Re-utilised Technologies/Specifications .. 84

4.6 Zorp Firewall: Open specifications ... 85

4.6.1 Preface.. 85
4.6.2 Copyright ... 85
4.6.3 Legal notice .. 85
4.6.4 Terms and definitions .. 85
4.6.5 Overview .. 85
4.6.6 Basic concepts .. 86
4.6.7 Main interactions ... 86
4.6.8 Architectural drivers .. 89
4.6.9 Test plan ... 90

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 9 of 106

4.6.10 Re-utilised Technologies/Specifications .. 92

4.7 Zorp SSL: Open specifications ... 92

4.7.1 Preface.. 92
4.7.2 Copyright ... 92
4.7.3 Legal notice .. 93
4.7.4 Terms and definitions .. 93
4.7.5 Overview .. 93
4.7.6 Basic concepts .. 94
4.7.7 Main interactions ... 94
4.7.8 Architectural drivers .. 96
4.7.9 Test plan ... 97
4.7.10 Re-utilised Technologies/Specifications .. 99

5 Updated use case partner security requirements ... 100

5.1 Instrumentacion y Componentes S.A. (Inycom) Security Requirements 100

5.2 SAKER Security Requirements .. 101

5.3 Outlandish Security Requirements .. 101

6 Summary and Conclusions ... 103

7 References .. 105

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 10 of 106

1 Introduction

This document focuses on identifying security vulnerabilities and requirements, as well as

describing corresponding counter measures to mitigate such attacks. To achieve that, we follow

two approaches. First, we analyze the current MiCADO core architecture and secondly, we

collect and analyze the requirements that were defined by the use case partners.

The main objectives of this document are the following:

 Identify possible vulnerabilities of the current MiCADO core architecture;

 Describe possible attack vectors on MiCADO;

 Present a concrete list of counter measures against the specified attacks;

 Analyze the security requirements that were defined by the use case partner;

 Illustrate security enablers that can be used to provide counter measures to possible

attacks.

The security analysis is performed based on the current MiCADO core architecture enhanced

with the specific components that were described in D6.2. Apart from that, to enhance the

overall security of the infrastructure, counter measures may be implemented based on security

components that were presented in D7.2. Therefore, this deliverable must be read in

conjunction with D6.2 and D7.2:

1. D6.2 – “Prototype and documentation of the monitoring service” – contains the

detailed specification for core components of MiCADO architecture.

2. D7.2 – “MiCADO security architecture specification” – presents the security

architecture with a detailed description of all the security components.

The COLA Security Architecture will be used as input for D7.4 “Security policy formats

specification”, as well as subsequent deliverables in WP7.

The remaining of this deliverable is structured as follows:

 Chapter 2 – Core components of MiCADO and data security requirements

This chapter illustrates the core components of MiCADO architecture accompanied

with the relevant security requirements;

 Chapter 3 – Threat models and attack vectors

This chapter elaborates on the security of the infrastructure. More precisely, the

infrastructure threat surfaces are defined as well as a concrete list of threat models that

may be used to attack such systems. Furthermore, a list of possible attacks and their

counter measures are described;

 Chapter 4 - Security enablers open specifications

This chapter illustrates specifications for security enablers/ components which are

described in D7.2. These security enablers may be implemented to enhance protection

for the infrastructure against the attacks presented in Chapter 3;

 Chapter 5 - Use case partners security requirements

This chapter describes a concrete list of security requirements that were identified by

the use case partners based on the specific needs of their systems;

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 11 of 106

 Section 6 – Summary and conclusion

This chapter concludes this deliverable.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 12 of 106

2 Core components of MiCADO and data security requirements

In this section, we briefly describe the core components of MiCADO architecture. Furthermore,

we elaborate on the importance of protecting data operated inside the system. For a more

detailed description on MiCADO architecture, we refer to deliverable D6.2 [1].

Figure 1 MiCADO Architecture [1]

MiCADO consists of one master node and several worker nodes. The master node can be

deployed either locally or in the cloud while the worker nodes are created in the cloud and can

be used by the users to run experiments. The master node currently contains five main

components with different roles: MiCADO submitter, Cloud Orchestrator, Container

Orchestrator, Policy Keeper and Monitoring system. The Optimiser component is an extension

later.

2.1 MiCADO submitter

MiCADO submitter is an entry point where users1 can input a TOSCA file describing the

application topology and the relevant policies into MiCADO. The topology illustrates all the

components of the application as well as their Docker images along with their relationship. In

addition to that, the virtual machine configuration for worker nodes on which Docker images

will be deployed is described. Meanwhile, policies are the set of rules which are used

throughout the lifecycle of the application, such as scaling policies and security policies. For

more information about the generated TOSCA file, please refer to deliverable D5.4 [2].

Although it is not necessary to keep confidentiality for information such as the configuration

of a virtual machine or the public Docker images, such information still needs to be protected

by making sure that it will not be tampered in transit. For instance, an adversary can try to

change the user’s Docker image into their own Docker image, such as a coin miner, and/or

upgrade virtual machine configuration to take advantage of the existing cloud resources for

their own benefit by avoid paying any cost. In addition, it is quite common that user needs to

manage sensitive information which their applications need to use during the runtime (e.g.

1 In the scope of this section, users mean entities who can deploy applications into

MiCADO.

Node/container
monitor

Node/container
monitor

MICADO
WORKER
NODE

Info on
nodes/containers

Container create/destroy/scale
up/down, node evacuation, etc.

Container
Orchestrator

Worker node create/destroy/scale up hor/verCloud
Orchestrator

Monitoring
System

MiCADO
Submitter

Policy Keeper

Register
policies

Scale/update
worker
nodes

Scale/update containers

description on
infrastructure
and policies

Create
Worker
nodes

MICADO
MASTER
NODE

container

container

container

Optimiser

Advice
Parameters

MICADO
WORKER
NODE

Container
Executor

Create
container
infra

Container
Executor

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 13 of 106

usernames and passwords, name of database, etc.) but they do not store inside Docker image

files. Consequently, protecting TOSCA file’s confidentiality in transit from the user to

MiCADO is of paramount importance.

2.2 Cloud Orchestrator and Container Orchestrator

The two main components for scaling are the Cloud Orchestrator and the Container

Orchestrator. Cloud Orchestrator, aims to scale up or down virtual machines (VM) while the

Container Orchestrator does the same for Docker containers.

To deploy new VMs or delete unused VMs, Cloud Orchestrator sends requests to the Cloud

Service Provider (CSP) where the user has been registered with. The user needs to expose their

CSP account to Cloud Orchestrator inside MiCADO so that CSP accept requests from the

Cloud Orchestrator. Information such as CSP user account is considered as sensitive and it

must be kept private and protected from any potential unauthorized access. Cloud Orchestrator

uses user account to prove its identity to the CSP and sends user’s VM configuration for worker

nodes demanded to the CSP. Then, the CSP launches a new VM based on the configuration

required by the user.

Currently, the Cloud Orchestrator component is deployed using Occopus while the Container

Orchestrator is implemented by using Docker Swarm on swarm mode [2]. Within the swarm

mode, there are two roles for VM hosting Docker containers: Swarm Manager and Swarm

Workers. A concrete set of such VMs forms a cluster which is called swarm. In MiCADO, the

Master Node plays the role of Swarm Manager and the Worker Nodes act as Swarm Workers.

As soon as the Cloud Orchestrator (i.e. Occopus), launches a new VM, that new VM uses the

swarm worker token – a secret which is generated by the Swarm Manager and allows a VM to

join an existing swarm. Therefore, the swarm worker token needs to be sent from the Master

Node to the Worker Node and be protected in transit. Meanwhile, swarm manager token, that

can be used by any machine to make itself become a Swarm Manager, must be kept

confidentially inside the Swarm Manager.

In addition to that, in certain applications which are structured as a set of different components

(i.e. different Docker containers), communication among them could be required. Container

communication can be classified in three types: (1) Internal, which means communication

between different containers inside a VM, (2) Across-VMs, which means communication

between two containers that are running in different VMs, and (3) External, which means

communication between a container and an external entity such as an external database. The

data that are exchanged between containers in Across-VMs and External communication

should be protected in transit.

2.3 Policy Keeper

The core component which is responsible for the auto-scaling feature of MiCADO is the Policy

Keeper. Scaling policies are defined by users in TOSCA files that are injected into MiCADO

through the MiCADO Submitter. After that, they are extracted and parsed from the TOSCA

files and are sent to the Policy Keeper.

Policy Keeper receives monitoring information on worker nodes and containers from the

Monitoring System and makes decisions regarding scaling up or down VMs and/or containers

based on the defined scaling policies. Currently, this component is implemented using the

Prometheus Executor.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 14 of 106

2.4 Monitoring System

The consumption of resources while running an application in MiCACO infrastructure is

collected by various entities in the Worker Node. This information is then transmitted to the

Master Node. The Monitoring System in Master Node is implemented by Prometheus which

actively requests data from the existing monitoring agents in WNs. Meanwhile, in Worker

Node, Consul is a node discovery agent responsible for sending machine health check

information to the Master Node. In addition to that, the Node Exporter collects monitoring data

from virtual machines such as CPU, diskstats, etc. while Cadvisor monitors microservices and

Docker containers. Although such monitoring information is not confidential, it should still be

protected to prevent possible side channel attacks.

2.5 External entities

In addition to core components of MiCADO, there are a few external entities that have or might

have connections with MiCADO.

Users: In this document, when we refer to users we refer to any entity that can deploy

applications in MiCADO. This entity should be authenticated to MiCADO before being able

to start the deployment.

Cloud Service Provider (CSP): This entity is selected by users and provides infrastructure as

a service for users’ application deployment. It is assumed that one MiCADO infrastructure is

deployed using resources from only one CSP.

External repositories: Some application can store its data files, configuration or the databases

in external repositories located outside of MiCADO. In such case, the application itself is

deployed in MiCADO and it connects to external repositories during runtime.

Administrator: This entity is responsible for launching the MiCADO infrastructure.

Application users: This entity uses the application and is not related to MiCADO deployment.

Therefore, we will not provide any analysis for the application users.

2.6 Summary

Based on the above description of MiCADO’s core components and external entities, in Table

4 we summarize the data that is transmitted between MiCADO and any involved external

entity, as well as between nodes (VMs) in MiCADO. Additionally, Table 4 also presents a

description of all possible vulnerabilities that we found during this analysis. Furthermore, we

classify data into the following three protection levels:

 Level 1: Information is considered public;

 Level 2: Information is not public, but disclosing this information would not cause any

harm. However, tampering this information could cause risks;

 Level 3: Information is sensitive.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 15 of 106

Table 4 Communication Vulnerabilities of MiCADO

2

Example:

 - wget --retry-connrefused -qO /tmp/swarm_join
{{variables.master_host_ip}}:2375/v1.26/swarm
 - export TOKEN=$(grep -Eo 'SWMTKN-[[:alnum:]]*-[[:alnum:]]*-[[:alnum:]]*'
/tmp/swarm_join | head -1)

Communication

direction

Message content Vulnerabilities Protection

level

1 Administrator 

CSP
Init configuration

file to launch the

MiCADO

infrastructure

1. Tampering the file, for e.g. virtual

machine identity, number of

maximum worker nodes, installation

command to install new services into

the master nod

2. Accessing confidential

information, i.e. cloud user password

3

2 User  MiCADO TOSCA file to

describe user’s

application

1. Tampering the file, for e.g.

repository of application Docker

images or VM configuration for

worker nodes

2. Accessing confidential

information, i.e. application’s

sensitive information if described

2 or 3 (2 if

TOSCA file

does not

contain any

sensitive

information;

3 otherwise)

3 User  MiCADO MiCADO login

credential

1. Accessing login credential for

impersonation attacks

3

4 MiCADO  User New template for

security policies
section in TOSCA

file

1. Tampering the file, for e.g.

deleting some security policies

1

5 Master node 

Worker node

Swarm worker token2

Scaling containers

request

1. Accessing the swarm worker

token

2. Changing the request

3

6 Worker node 

Master node

Monitoring

information including

heath check, cpu,

diskstats,

microservices and

containers info, etc.

Changing the monitoring

information

2

7 Worker node 

External repository,

if needed

Experimental data

and results

Accessing data and results 3

8 Worker node 

Worker node

Application data Accessing application data 3

9 MiCADO  CSP Scaling VMs request 1. Changing VMs scaling request

2. Impersonating MiCADO to send

requests to the CSP

3

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 16 of 106

From Table 4 it can be observed that it is essential to protect communications of MiCADO.

Currently, not all communications in MiCADO are protected. More precisely, only the

communication between container nodes in a swarm are secured by using Transport Security

Layer (TLS) [4]. Other components, such as Prometheus, do not support any form of secure

communication [17]. Meanwhile, security of communication between Occopus and CSP

depends on the support provided by the CSP. The lack of security mechanisms for protecting

the communication between MiCADO and any available external entity and/or between VM

nodes in MiCADO makes the system vulnerable against common attacks like eavesdropping,

data modification and man-in-the-middle [9].

In addition, access control to MiCADO as well as to the CSP are password-based. As a result,

the system is susceptible to password-based attacks where an attacker that has access to a valid

account can gain complete control of the system.

 - docker swarm join --token $TOKEN {{variables.master_host_ip}}:2377
 in cloud_init_worker.yaml file
 Example of swarm worker node token: SWMTKN-1-49nj1cmql0jkz5s954yi3oex3nedyz0fb0xx14ie39trti4wxv-

8vxv8rssmk743ojnwacrr2e7c

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 17 of 106

3 Threat models and Attack vectors

In the previous section, we described the internal components of MiCADO and the external

entities that will participate in our scenarios. Furthermore, we elaborated on the exchanged data

inside MiCADO as well as between MiCADO and external entities, then we classified them

into three protection levels. Continuing in the same direction, in this section, we identify threat

surfaces of MiCADO which can attract several attacks. Based on the identified threat surfaces

we describe a list of adversarial models that we need to consider. This concrete list of malicious

behaviours, allowed us to describe several possible attack vectors and propose countermeasures

by designing new protocols that will enhance the overall security of MiCADO.

3.1 Threat surface

To highlight MiCADO’s main threat surfaces, we describe two basic scenarios that link

MiCADO with the described external entities.

Scenario 1: Launch MiCADO infrastructure.

1. Administrator launches MiCADO Master Node in local host or in the cloud using an

init configuration file. This file contains services and components installation for

Master Node and cloud user credentials which will be later used by the Cloud

Orchestrator. If MN is deployed in the cloud, the file also contains the underlying

machine configuration.

2. Master Node might launch the default minimum number of Worker Nodes.

Scenario 2: Deploy an application in the launched MiCADO infrastructure.

1. User composes a TOSCA file that describes both the application and the WN

configuration.

2. User sends the generated TOSCA file to MiCADO.

3. MiCADO deploys the user defined application in the Worker Node, autoscale the

number of VMs and containers based on user defined scaling policies.

4. In case the user uses an external storage/database for application data/results,

application containers in WNs connect to the external entity to send/request data.

Between the two scenarios, the second one occurs more often. Therefore, this is the scenario

we consider to define the threat surfaces of MiCADO. In addition to that, we also assume that

the Master Node is deployed in cloud.

Figure 2 Interaction of the participating entities

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 18 of 106

Surface 1: [User ] MiCADO

Possible attacks towards this surface include buffer overflow [7].

Surface 2: [MiCADO ] User

Possible attacks towards this surface include SSL spoofing and attacks on the browsers cache

[7].

Surface 3: [MiCADO ] Cloud

Possible attacks towards this surface include resource exhaustion and denial-of-service [7],

[10-12].

Surface 4: [Cloud ] MiCADO

Possible attacks towards this surface include privacy breaches [13-17] and data tampering [7].

Surface 5: [User ] Cloud

Possible attacks towards this surface include impersonation.

Surface 6: [Cloud ] User

Possible attacks towards this surface include triggering unnecessary usage of cloud services

and wrong bill delivering [7].

Surface 7: [MiCADO ] External storage

Possible attacks towards this surface include impersonation and data breach [18].

Surface 8: [External storage ] MiCADO

Possible attacks towards this surface include data tampering.

Among the aforementioned attack surfaces, we will be concentrating on surfaces 1, 2, 3, 7, 8.

Surfaces 5 and 6 are out of scope because they involve a direct connection between the users

and the cloud without any interaction with MiCADO. Furthermore, we skip surface 4 because

we have assumed a trusted CSP.

3.2 Identified threat models

Based on the attack surfaces described above and transmitted data described in Chapter 2, we

define the following threat models:

Threat Model 1: User impersonation

There are several vulnerabilities that allow a malicious adversary to successfully perform an

impersonation attack. The following are considered as the most common ones:

- Provide no authentication or access control;

- User chooses a weak password;

- Provide no protection for the communication channel between users and MiCADO.

Countermeasures:

- Provide strong authentication;

- Force user to choose a strong password;

- Protect communication channels through SSL/TLS.

Related Threat Surfaces: 1, 2

Threat Model 2: TOSCA file Modification

TOSCA file is sent by users to MiCADO’s Master Node. If the file is not properly protected,

a malicious adversary can access or modify the information contained in the file.

Possible modification to the file includes the following:

- Change VM configuration for WN from a low-cost to a high-cost, or increase disk

allocation of the underlying VM;

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 19 of 106

- Add malicious applications/services into the WN;

- Open certain ports in WN;

- Disable security features;

- Change the configuration of the application.

Countermeasures:

Communication between the user and MiCADO should be done over SSL/TLS. Additionally,

a firewall must be used to prevent an attacker from opening certain ports.

Related Threat Surfaces: 1, 2

Threat Model 3: Data Breach

Sensitive information that can be exposed consist of the following:

- Cloud user credentials that are needed for the Cloud Orchestrator to send requests to

the CSP;

- Sensitive information that may be accessed by an application during runtime (e.g.

database user account and API token);

- Swarm manager token;

- Swarm worker token;

- Application experimental data and results;

- User’s MiCADO credential.

Countermeasures:

Sensitive information could be stored in a central component which is called Credential Store.

This information does not include the Swarm manager token and the worker tokens which are

managed by the Swarm itself.

- Cloud user credentials are sent over TLS/SSL and stored in an encrypted form in the

Credential Store;

- Application’s sensitive information is stored in Docker Swarm or Credential Store

instead of the Docker image or the source code of the underlying application;

- Swarm manager token is protected by the Swarm;

- Swarm worker token is sent over TLS/SSL;

- Application experimental data and results are sent over TLS/SSL;

- User login credentials are sent over TLS/SSL and managed by the Credential Manager.

Related Threat Surface: 1, 2, 3, 7, 8

Threat Model 4: Open ports exploitation

Attackers can execute a port scanning to identify open ports in both the MN and WNs. Then

they can take advantage of the identified open ports and try to inject malicious code.

Countermeasures:

Only necessary ports should be open for public access. Other ports should be closed to prevent

possible vulnerabilities. In addition to that, all communication towards MN and WNs should

be protected.

Related Threat Surface: 1, 4, 8

Threat Model 5: Virtual Container Alternation

This includes:

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 20 of 106

- Change VM image which does not comply with the predefined security policies. This

can be done by administrators with specific access rights;

- Modify, remove or replace the container image which may contain malicious software.

Countermeasures:

Integrity verification could be done frequently. This includes the following functions:

- VM image integrity verification;

- Container image integrity verification.

Related Threat Surfaces: 1, 4

Threat Model 6: Cloud-init Config file Modification

Modification could be the following:

- Add malicious Docker containers/services;

- Open ports in Master Node.

Countermeasures:

Communication between the administrator and the CSP could be done over SSL/TLS.

However, this depends on the functionality offered by the underlying CSP.

Related Threat Surface: This attack is related to threat surface from administrator to CSP as

described in the first scenario.

Combining Threat Models: An attacker can combine all the above attacking techniques in

order to perform more sophisticated and possible powerful attacks.

3.3 Attack vectors

We assume that the CSP is running in a trusted state and it is SSL/TLS-enabled. Furthermore,

we assume that the Docker image registry that is provided by the user is also trusted. As a

result, we are not getting into details on Threat model 5 – Virtual Container Alternation and

Threat model 6 – Cloud-init Config file Modification. However, for the remaining threat

models, we provide a concrete list of attack vectors as well as a set of countermeasures. The

proposed countermeasures are satisfied by designing new protocols that can increase the

overall security of MiCADO.

3.3.1 Threat model 1: User impersonation

There are several cases that can lead to impersonation attacks. In the following paragraphs,

we describe the most common ones.

Man-in-the-middle attack: Man-in-the-middle attack is a very common attack against http

communication. The attacker acts as a proxy and intercepts the communication between the

user and the server to read or even modify data. Error! Reference source not found.

llustrates such an attack in which the attacker tries to access user’s account.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 21 of 106

Figure 3 Man-in-the-middle attack

1. A user sends a request to MiCADO infrastructure;

2. An attacker forwards it to MiCADO;

3. Upon receiving the request, MiCADO sends its response with a form asking for user

name and password;

4. The attacker forwards the response to the user;

5. The user enters user name and password to send back MiCADO;

6. The attacker overhears the communication between the user and MiCADO and gets

access to the credential sent by the user. From now on, the attacker can impersonate

user.

Countermeasure:

In order to prevent such man-in-the-middle attack, MiCADO shall support HTTPS

communication instead of HTTP.

Figure 4 Man-in-the-middle attack countermeasure

1. A user sends a request to MiCADO infrastructure;

2. MiCADO redirects the user to HTTPS page for entering user name and password.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 22 of 106

Brute Force attack or password guessing attack: Many systems rely on password-based

authentication. The main reason for this is due to the ease of use as well as for providing users

with a user-friendly authentication system. MiCADO would also be based on such

authentication protocol which requires users to input their user name and password to log into

the system. However, security of accounts is always a big concern due to possible

vulnerabilities caused by developers’ implementation and users’ weak passwords [19]. Among

the most popular password attacks, password guessing is considered as the most common. In

such an attack, the attacker tries to guess users’ password manually or automatically. This

attack can be performed either offline or online [20]. Figure 5 demonstrates a very basic online

guessing attack.

Figure 5 Password guessing attack

1. An attacker sends a request to MiCADO;

2. MiCADO replies by sending back a form that user needs to fill in here username and

password;

3. The attacker inputs a random username and password and sends it to MiCADO;

4. MiCADO checks if the received credential match one of the records stored in the

database;

5. Assuming that the credential does not match any records in the database, MiCADO

sends a response “Invalid user name or password”;

6. The attacker tries with another pair of random username and password until he succeeds

to log in.

Countermeasure

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 23 of 106

Multiple countermeasures may be implemented to prevent password guessing attack. Figure 6

describes only a few of them.

Figure 6 Password guessing countermeasure

1. An attacker sends a request to MiCADO;

2. MiCADO sends back HTTP response with a form for filling username and password;

3. The attacker completes the form by providing a random username and password;

4. MiCADO checks if the received credential matches one of the database records. If not,

MiCADO sends a general response: “Invalid username or password”;

5. The attacker continues trying with random usernames and passwords;

6. After a fixed number of failed log-in attempts, MiCADO requests user to solve a

captcha challenge;

7. Assuming that the attacker can pass the captcha challenge;

8. MiCADO replied by resending a fresh log-in form;

9. The attacker continues trying with random usernames and passwords;

10. After a fixed number of failed log-in attempts with a fixed number of captcha testing,

the IP-address of the attacker will be blacklisted for a certain period of time (e.g. h

hours). Therefore, for the next h hours the attacker will not be able to access the website

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 24 of 106

again (unless she changes IP). In addition, in case the attacker failed to log in using the

same existed username, the corresponding account will be also blocked for a certain

period.

As mentioned earlier, other countermeasures may be implemented to achieve further protection

on MiCADO against password guessing attacks. Such countermeasures include the following:

 Setting constraints on password selection, covering both passwords chosen by users

and default passwords generated by systems. For instance, following standards defined

by NIST [21], secrets shall be at least 8 characters long if chosen by users, and at least

6 characters long if chosen randomly by the system;

 Comparing the prospective passwords against a list of possibly weak ones such as

dictionary words, previously breached passwords which can be found from the internet,

etc.;

 Using approved encryption and a protected channel to transmit account information;

 Using a suitable key derivation function such as Password-based Key Derivation

Function 2 (PBKDF2) [5], that is based on Hash-based Message Authentication Code

(HMAC) [3], to add salt and hash passwords;

 Storing passwords in a salted, hashed form;

 Provide two-factor authentication.

Details for such normative instructions can be found in Digital Identity Guidelines of NIST

[21].

Password reset man-in-the-middle attack (PRMiTM) [8]: While choosing strong passwords

increases security, it has one side effect. It has been observed that users tend to forget

complicated passwords. Hence, password reset is an essential function that systems shall

provide. A few common ways to facilitate password reset includes:

- Security questions;

- Code that is sent to users’ mobile phones;

- Code that is sent to users’ email;

- Reset link that is sent to users’ email.

Figure 7 demonstrates an attack on the password reset protocol that is based on security

questions.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 25 of 106

Figure 7 Password reset MiTM attack

Assuming that MiCADO supports recovering password provided that user can answer security

questions.

1. A MiCADO user signs up on an attacker’s website for downloading a freeware, using

email;

2. An attacker uses the user’s registered email, i.e. to log into MiCADO and selects the

”Forgot password” function;

3. MiCADO displays the user’s security questions and wait for answers;

4. The attacker forwards the same security questions to the user and asks her to provide

the relevant answers;

5. The user may think that it is required to download a free software. Hence, the user fills

in all answers;

6. The attacker uses the user’s answers to fill in MiCADO page;

7. Upon checking the given answers, MiCADO allows the attacker to choose a new

password.

Countermeasure:

There is a variant of countermeasures for protecting against such attacks. Figure 8 describes

one among them.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 26 of 106

Figure 8 Password reset MiTM attack countermeasure

1. A user signs up on an attacker’s website for downloading a freeware, using email her

e-mail;

2. The attacker uses the user’s registered email to log into MiCADO and selects the

”Forgot password” function.

3. MiCADO sends the reset password link to the user’s email . Without access to the user’s

email, the attacker cannot get the reset link. In addition to that, the user can be notified

that someone is trying to reset her password.

Other countermeasures as described in the work of Nethanel G. et al. [8], are:

- Including necessary information such as sending website, explanation in password-

reset message;

- Notifying users about password reset request;

- Limiting valid time for password reset code or link;

- Avoid relying on security questions.

Certificate spoofing man-in-the-middle (MiTM) attack: A common way to encounter man-

in-the-middle attacks is relying on TLS/SSL communication. However, even applying

TLS/SSL, it does not always guarantee secure communication. More precisely, attackers can

exploit carelessness of standard users or bad habits of experienced users to deploy attacks such

as certificate spoofing. Users usually do not check if https protocol is enabled when they access

online services. Even experienced users who may care about certificates, they do not always

check to make sure that certificates are signed by trusted entities or just self-signed. Such lack

of security awareness, allows an attacker to successfully launch spoofing attacks. Figure 9

illustrates a basic certificate spoofing attack.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 27 of 106

Figure 9 Certificate spoofing attack

Assuming that MiCADO supports both HTTP and HTTPS protocols. Whenever users prompt

to http domain name, MiCADO redirects the user to https page.

1. A user sends HTTP request to MiCADO;

2. An attacker catches the request, and forwards it to MiCADO;

3. MiCADO redirects user to the corresponding HTTPS page;

4. The attacker drops the response from MiCADO and sends a modified HTTP response

to the user;

5. The user, by trusting that the response comes from MiCADO, enters username and

password and sends them back;

6. The attacker catches the sent information and uses it to communicate with MiCADO

without the user’s recognition.

For details about certificate spoofing attacks, we refer the reader to [22] and [23].

Countermeasure:

HSTS protocol, i.e. HTTP Strict Transport Security [24], defines a new http header containing

a web-server-defined policy for users’ browsers about how to handle future connections. For

instance, the policy may include:

- Indicating if HSTS policy applies to all subdomains or only the main domain;

- Preventing users from accepting self-signed certificates;

- Indicating that the user should stay in https link even when an http link is clicked.

Figure 10 describes how we may apply HSTS protocol.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 28 of 106

Figure 10 Certificate spoofing countermeasure

Assuming that the first time a user visits MiCADO, there’s no attack yet.

1. A user sends a request to MiCADO for the first time;

2. MiCADO redirects the user to HTTPS page with HSTS (HTTP Strict Transport

Security) header;

3. Later, the user re-visits MiCADO;

4. MiCADO redirects the user to an HTTPS page;

5. An attacker drops the response from MiCADO, and sends a modified http response to

the user;

6. Due to the HSTS header, the user’s browser does not allow http response.

Further countermeasures such as secure cookies can be found in OWASP Session Management

Cheat Sheet [25].

Resource exhaustion as a result of impersonation attack: MiCADO provides dynamic

orchestration for applications. It scales up or down cloud compute nodes to satisfy various

needs of the applications. Users can benefit a lot from such functionality. For example, such

models can prove cost effective since they tend to save money by utilizing only the needed

cloud resources. However, as attackers can impersonate users in MiCADO, they can get control

on which applications to be deployed as well as the configuration of the worker nodes. This

can escalate user’s bill on consuming cloud resources. Figure 11 illustrates such an attack.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 29 of 106

Figure 11 Resource exhaustion as a result of impersonation attack

1. An attacker accesses MiCADO;

2. MiCADO sends back a form to fill in user name and password;

3. Knowing a user’s account, the attacker uses it to access MiCADO;

4. The attacker submits a TOSCA file containing their applications and configuration for

the worker nodes;

5. The attacker’s applications run into MiCADO infrastructures and can use as much

cloud resources as possible.

Countermeasure:

Figure 12 illustrates heuristics to detect prospective large-scale consumption of cloud

resources and notify users.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 30 of 106

Figure 12 Resource exhaustion countermeasure

1. An attacker sends an access request to MiCADO;

2. MiCADO replies by sending back a form to fill in username and password;

3. Knowing a user’s account, the attacker uses it to access MiCADO;

4. The attacker submits their TOSCA file containing their applications and configuration

for worker nodes;

5. The attacker’s applications would run into MiCADO’s underlying infrastructures and

it would use as much cloud resources as possible;

6. However, prior to deploying the applications, MiCADO compares VM configuration

with historical data, which is a list of used VM configurations previously used by users,

and computes the estimated number of needed VMs.

7. If the current VM has a more powerful configuration (memory, cpu, disk size) than the

ones used in the past, or the estimated number of needed VMs (if computable) is larger

than some defined threshold, MiCADO requests two factor authentication and/or sends

a notification to the user’s email.

3.3.2 Threat model 2: TOSCA file modification

TOSCA file modification attack due to lack of protected communication: TOSCA file is

given as input by users as a way to describe the applications they wish to deploy in MiCADO’s

infrastructure. Apart from that, this TOSCA file also contains the configuration of the virtual

machines for the worker nodes that will be launched. If users send such a TOSCA file through

unprotected communication, attackers can tamper with the file as shown in Figure 13.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 31 of 106

Figure 13 TOSCA file modification attack

1. A user sends an http request to MiCADO;

2. An attacker acts as a proxy and forwards it to MiCADO;

3. MiCADO sends back an http response;

4. The user submits the TOSCA file to MiCADO;

5. The attacker drops the file and sends a fake/malicious file to MiCADO.

Countermeasure:

Protecting communication between users and MiCADO with TLS/SSL channel can prevent

such attacks.

Figure 14 TOSCA file modification attack countermeasure

Resource exhaustion as a result of TOSCA file modification attack: A successful TOSCA

file modification attack can lead to resource exhaustion attack in which the attacker leverages

cloud resources as much as possible for their own benefit (i.e. to run their own applications).

A resource exhaustion attack is shown in Figure 15.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 32 of 106

Figure 15 Resource exhaustion due to TOSCA modification attack

1. A user submits a TOSCA file to MiCADO;

2. An attacker drops the file and modifies it by adding description of their own

applications or services and/or change machine configuration for worker nodes to more

powerful ones;

3. Upon receiving the file, MiCADO runs all applications described in the file including

the user and the attacker’s applications.

Countermeasure: See Figure 12 Resource exhaustion .

3.3.3 Threat model 3: Data Breach

Application sensitive information breach: It is common that applications require some

sensitive information to properly run (e.g. database credential, certificate, API token, etc.). A

common way to store such information is either by injecting it into the application’s source

code or into the Docker image by defining them in the Docker file. However, such ways do not

provide any form of protection since it cannot restrict who can access the information. More

precisely, anyone who can access the source code (in case of hard-coding the sensitive

information) or who can access the image (in the case of injecting sensitive information in the

image file) can retrieve it. In addition to that, whenever developers want to perform an update

of this sensitive parts, they need to re-build and re-deploy the applications. Hence, apart from

weak security, this technique is also considered as inefficient. An application sensitive

information breach is shown in Figure 16.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 33 of 106

Figure 16 Application sensitive information breach

1. A user (developer) builds a Docker image for an application. This image also contains

sensitive information that is required for the proper run of the application.

2. User uploads the image to the Docker hub;

3. An attacker pulls the image from the Docker hub;

4. The attacker can access the sensitive information contained in the image.

Countermeasure:

Figure 17 Application sensitive information breach countermeasure

1. A user (developer) builds a Docker image for an application without any sensitive

information inside the image or the source code, and uploads it to the Docker hub;

2. The user uploads a TOSCA file, that contains application’s sensitive information that

is required to run the application inside MiCADO;

3. MiCADO securely stores the received sensitive information inside the infrastructure

where application containers can access during run time.

Application data breach: It may happen that not all components of an application would be

deployed in MiCADO’s infrastructure. An application can invoke APIs from external entities

(i.e. entities that stay outside of MiCADO – such as an external storage). It is vital to define

whether the application containers inside MiCADO communicate via secure or insecure APIs

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 34 of 106

with the external entities. In the latter case, an attacker can take advantage of such an

unprotected communication and intercept the transmitted data as shown in Figure 18.

Figure 18 Application data breach

Countermeasure:

This attack depends on application developers, and it is out of MiCADO’s control. The

application developers shall ensure that their applications do not invoke any unprotected API.

In the other way, if MiCADO provides users with REST API, for instance to submit TOSCA

files, it shall ensure that REST services only provide HTTPS endpoints. Other security

requirement for REST API can be found in OWASP REST Security Cheat Sheet [26].

3.3.4 Threat model 4: Open ports exploitation

Attackers can take advantage of open ports in MiCADO’s infrastructure, including both the

master node and/or the worker nodes, to deploy certain attacks.

Figure 19 Open ports exploitation

Countermeasure:

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 35 of 106

To reduce potential vulnerabilities from open ports, it is important to control ports so that only

the necessary ones are open. This can be done by utilizing firewalls for both the master node

and the worker nodes. Components in the master node are not expected to be changed a lot;

therefore, an administrator can decide which ports to open during MiCADO’s infrastructure

launch. In contrast, components in worker nodes may vary based on the deployed applications.

As a result, identifying the ports that are essential in worker nodes may not be decided until the

deployment of an application. In that case, the user may define the necessary ports directly in

the corresponding TOSCA file.

Figure 20 Open ports exploitation countermeasure

1. The administrator launches MiCADO’s infrastructure and defines the open ports in the

master node;

2. MiCADO opens the specified ports in master node by configuring the underlying

firewall;

3. During the deployment phase, user sends a TOSCA file containing a list of open ports

for worker nodes that are required for a proper run of the application;

4. MiCADO opens the specified ports in worker nodes by configuring the underlying

firewall.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 36 of 106

4 Security Enablers Open Specification

4.1 Image Integrity Verifier Open specifications

4.1.1 Preface

Execution environments based on lightweight virtualization – commonly known as containers

– are widely used in modern cloud infrastructure deployments. They gained extensive

popularity due to the low execution overhead, rapid instantiation, flexible management and

process isolation that is sufficient for a vast majority of computation tasks outsourced to cloud

infrastructure.

Container images are commonly stored in registries that contain multiple versions of images

and additional ‘layers’ that allow to further customize the codebase. The continuous reuse of

container images for instantiation in cloud infrastructure makes such registries an attractive

target for malicious adversaries. A successful attack on the integrity of the container images

can allow the adversary to inject malicious software (such as trojans, viruses, crypto-currency

mining scripts, backdoors, etc.)

By verifying the integrity of image immediately prior to instantiation, the Image Integrity

Verifier (IIV) enabler aims to reduce the risk to the integrity of the containers deployed by the

COLA orchestration framework. Image integrity verification also allows to ensure reduce the

security risks to the integrity and confidentiality of the workloads processed in the containers.

4.1.1.1 Status

An enabler prototype is under development. This is a preliminary specification and is subject

to changes.

4.1.2 Copyright

The enabler is developed by RISE SICS.

Copyright © 2017-2019 by COLA Project Consortium (http://www.cola-project.eu/)

4.1.3 Legal notice

N/A

4.1.4 Terms and definitions

4.1.5 Overview

The IIV is used to verify the integrity of container images against an expected integrity value.

While the integrity verification component can be designed as a generic solution, this open

specification assumes an implementation based on Docker registry.

Docker Implementation of a lightweight virtualization framework

SDK Software Development Kit

API Application Programming Interface

IIV Image Integrity Verifier

TEE Trusted Execution Environment

TCB Trusted Computing Base

TLS Transport Layer Security

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 37 of 106

The functionality of the IIV revolves around determining whether one or more of image files

are corrupted. Many attacks are focused on modification of critical files or configuration

parameters. Especially, corrupted image files are considered as a substantial threat for cloud

environment since a corrupted image can result in being unable to perform operations on a

virtual machine/container. These operations include powering it on, taking a snapshot, and even

modifying the virtual disks.

The enabler aims to be implementation-agnostic and one should be able to implement the

principles of the enabler using different technologies. However, for the sake of clarity, the

specification uses – where needed – concrete technologies and software applications.

Finally, it must be noted that the current API specification is likely to change both as the enabler

itself matures, and as new features are added.

4.1.6 Basic concepts

Trusted Execution Environments (TEEs) guarantee isolated execution in the given adversary

model, assuming correct implementation of the trusted computing base (TCB), e.g. the CPU

and executed code. The TEE can be located on the same platform or on other platforms within

the deployment.

Attested code and data in TEEs: Integrity of the code and data deployed in the TEEs is attested

before any keys or key material is provisioned to the respective TEE. An appraiser under the

control of the tenant performs the attestation of the TEE [28].

Trusted virtual images: an appraiser attests the integrity of the container images, including the

software libraries in the images. Only verified container images are installed on the

deployment. Authentication keys and other confidentiality and integrity sensitive

cryptographic material is only stored in a verified image and never leaves its security perimeter

[30].

Secure Communication Channels: The enabler protects communication channels container

instances, as well as communication channels between container instances and external entities,

when feasible. Communication security is ensured by verifying the image configuration against

a baseline secure configuration, such that authentication credentials are correctly configured

and are used to protect external communication [31], [32].

4.1.7 Main interactions

4.1.7.1 Use cases

In this section we describe two typical use cases for the Integrity Verifier enabler. Use cases

are described in the “fully-dressed” format [29].

ID IV-1

Title Attest integrity of a container image prior to deployment

Description Administrator obtains a quote of the container image TCB, verifies its

authenticity and verifies that it matches the expected values.

Primary Actor Administrator

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 38 of 106

Preconditions The TCB of the container image is measured in a chain of trust

originating in a hardware root of trust and reliably stored in an enclave,

i.e. an isolated execution environment.

Post-condition Administrator has obtained a statement of whether the container image

TCB measurements match the expected values

Main success

scenario

1. Administrator requests a quote of the container image TCB

2. Integrity verification component platform produces the quote

3. Integrity verification compoennt signs the quote and returns to

the administrator.

4. Administrator verifies quote signature against the known public

key of the Integrity Verification Component

5. Administrator matches quote against expected values for

intended container image.

Extensions 4a1. The signature verification step shows that the quote signature is

invalid.

4a2. Administrator either retries operation or excludes the container

image from the list of container images in the registry.

Frequency of

Use

At each deployment of the container image or as required for audit

purposes.

Status Design phase

Owner RISE SICS

4.1.7.2 Components and interaction overview

Figure 21 displays the interactions of the IIV with the other components in the COLA

architecture, in particular in relation with the Docker registry component3.

According to the architecture of the Docker registry, the registry instance processes the requests

for image instantiation, identifies the requested image in the repository and submits it for

instantiation.

In the vanilla configuration, the submit request is sent to a broadcaster component, which

instantiates the container image on one or more worker nodes.

To add integrity guarantees to the deployment, the image integrity verifier interacts with the

broadcaster prior to the container images being submitted to the worker nodes. In particular, if

the deployment request contains the integrity verification bit set, the broadcaster submits the

container images to the IIV for verification. The IIV produces an integrity measurement of the

image and verifies it against an expected value. In case the instance integrity value and the

expected value math, the signed result of the verification, along with the signed image are

returned to the broadcaster. Otherwise, the IIV returns only the signed result of the verification

and not the corrupt image. This is done to prevent both accidental instantiation and delays in

response time in the case when the image is corrupt. Finally, the broadcaster verifies the

signature and submits the image for instantiation to the worker nodes according to the same

flow as the vanilla configuration.

3 Docker Registry: https://docs.docker.com/registry/

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 39 of 106

Figure 21 Component interaction for the image integrity verifier

4.1.7.3 Security requirements traceability

The IIV addresses the following requirements outlined in D7.1 COLA security requirements:

CNSR-2, CNSR-6

4.1.7.4 Architecture objectives traceability

The IIV addresses the following security architecture objectives outlined in D7.2 MiCADO

security architecture specification: O4.1, O4.4, O6.2

4.1.8 Architectural drivers

4.1.8.1 High-Level functional requirements

Authentication All communication between the orchestrator and integrity verifier must the

authenticated; a secure signature verification mechanism must be in place.

Component integrity: Integrity of container images must be verified prior to deployment; the

cryptographic material required for their deployment access must be protected strong

encryption.

Confidentiality protection of domain secrets: Network domain secrets – such as VPN session

keys – should not be revealed in plaintext even if the adversary succeeds in compromising the

software stack on the host.

Confidentiality and integrity of network communication: All network communication in the

tenant domain must be confidentiality and integrity protected.

4.1.8.2 Technical constraints

Designed for Docker container image verification.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 40 of 106

4.1.8.3 Business constraints

No business constraints have been found at this point.

4.1.8.4 API specifications

1. Attest container image integrity

a. Input

i. Tuple list <Image identity, Integrity Quote>

b. Output

i. Tuple list < Image identity, Attestation Result>

c. Comment

Attestation allows to verify whether the code and data executing in the enclave

has not been modified and its fingerprint is identical to the expected values. This

is a simple matching operation with a binary answer – the fingerprint either

matches or does not. If the fingerprint matches, the container image is executing

the expected code and data (assuming trust in the implementation of the

platform). If the fingerprint does not match, nothing can be stated about the

container image integrity.

4.1.9 Test plan

1. Test Items

Item to Test Test Description

1 Image Integrity verifier Test the functionality of measuring and verifying integrity

values for container images.

2. Test features

Function to Test Test Description

1 Fingerprint image Test whether the function correctly generates a fingerprint
of the container image.

2 Evaluate image

integrity

Evaluate whether a given image matches the expected
fingerprint.

3. Features not to be tested

Some features are not tested at this phase because they will be delayed for developing later or

they belong to another test phase.

Feature not to be

tested

Test Description

1 Image delta verification Test whether two updates to a base container image are

identical.

2 Encrypted image delta

verification

Test whether two encrypted updates to a base container

image are identical.

4. Approach

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 41 of 106

Function to

Test

Test data description Metrics to be

collected

Pass/Fail criteria

1 Generate 256-

bit image

fingerprint

Data involves: input

command, container

image.

Correct/ Incorrect

“Correct” means

function produces a

uniformly

distributed 256-bit
hash of the
container image
using the sha-256
algorithm; Incorrect

otherwise

Precision = # of

incorrect/ # of test

runs

Pass if precision = 1

Fail if precision<1

2 Evaluate image

integrity

Data involves: input

command, input

container image, input

expected fingerprint,

input mismatching

fingerprint.

Correct/ Incorrect

“Correct” means

the function

produces the

equivalence of the

input container

image and the

expected fingerprint

and produces an

error in the case of

the mismatching

fingerprint;

Incorrect otherwise

As above

4.1.10 Re-utilised Technologies/Specifications

Re-utilized technologies are presented in the table below:

Component Role Availability

Docker Registry Verified Image Store Open Source

OpenSSL Cryptographic library Open Source

The utilized components are modified where necessary for the purposes of the enabler.

4.2 Crypto Engine: Open specifications

4.2.1 Preface

Security components require a range of cryptographic functions, such as hash functions,

symmetric key encryption schemes, public key encryption schemes, etc. The wide spectrum of

use cases, architectures, and use case requirements, highlight the need to provide a diverse

collection of encryption libraries rather than several fixed algorithms. A limited set of

algorithms that cannot be easily configured can endanger the security of the entire deployment

in case a severe vulnerability is found. However, a fragmented architecture where each security

component relies on a distinct library is hard to maintain and update later. As a consequence,

we introduce the Crypto Engine, a middle layer that provides the functionality of cryptographic

libraries for security components. Based on industry best practice, the functionality of the

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 42 of 106

Crypto Engine includes standard or widely-adopted algorithms and may be updated in the

future.

The Crypto Engine provides essential cryptographic functions for security components. It

brings more flexibility and facilitates the maintenance of the MiCADO orchestration system.

4.2.1.1 Status

An enabler prototype is under development. This is a preliminary specification and is subject

to changes.

4.2.2 Copyright

Copyright © 2017-2019 by COLA Project Consortium (http://www.cola-project.eu/)

4.2.3 Legal notice

N/A

4.2.4 Terms and definitions

4.2.5 Overview

Crypto Engine enabler is a collection of cryptographic algorithms. It provides a list of

cryptographic functions for other security components to perform certain cryptographic

operations such as encryption, decryption, hashing, etc. Furthermore, it is responsible for

generating new credentials, new keys, tokens, nonces, etc. In the context of the COLA security

architecture, the Crypto Engine will be available as a separate micro-service and will be

considered as one of the standard micro-services offered by COLA. The Crypto Engine is

intended to support the following list of functions:

 Key Generation Orchestration;

 Operations using Symmetric Cipher Suites;

 Operations using Asymmetric Ciphers Suites;

 Digital Signature;

 Cryptographic Hash Function;

 Message Authentication Code (MAC);

 Token Generation.

4.2.6 Basic concepts

Symmetric-key algorithms are algorithms for cryptography that use the same cryptographic

key to encrypt or decrypt ciphertext. The keys for encryption and decryption may be identical

or may be obtained through a simple transformation. The keys, represent a shared secret

between communicating parties and can be used to maintain a private information link [1].

Asymmetric cryptography or public key cryptographic systems use pairs of keys: public

keys that do not carry any secret information, and private keys that must be maintained secret

by the owner. Public key cryptographic systems accomplish two functions:

PKI Public Key Infrastructure

RSA Rivest-Shamir-Adleman public key encryption scheme

SHA Secure Hashing Algorithm

MAC Message authentication code

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 43 of 106

 Authentication, where the public key verifies that a holder of the private key encrypted

the message.

 Encryption, where only the private key holder can decrypt the message encrypted with

the public key.

Hash function – a function that takes as input an arbitrarily long string of bits or bytes and

produces a fixed-sized result. The resulting output is also known as digest or fingerprint. The

ideal hash function behaves like a random mapping from all possible input values to the set of

all possible output values. An attack on a hash function is a non-generic method of

distinguishing the hash function from an ideal hash function. Various hash functions exist and

a full review of the existing hash functions is out of the scope of this document.

Message authentication code (MAC) – construction that detects tampering with messages. A

MAC takes two arguments, a fixed-size key K and an arbitrarily sized message m, and

produced a fixed-size MAC value. An ideal MAC function is a random mapping from all

possible inputs to n-bit outputs.

4.2.7 Main interactions

4.2.7.1 Use cases

The following use cases address several main aspects of the functionality of the crypto engine.

They do not represent an exhaustive list of use cases and should be seen as a sample that should

be expanded further.

ID CE-1

Title Generate a public key cryptography key pair

Description The Administrator – directly through the Security Policy Manager

requests the generation of an RSA keypair.

Primary Actor Administrator | the Security Policy Manager

Preconditions Administrator defined a crypto security policy and configured the

crypto engine according to the crypto security policy.

Post-condition A keypair with at least 2048-bit security has been generated

Main success

scenario

1. Primary actor selects key type: RSA | ECDSA

2. Primary actor issues command to generate key and store it in a

pre-defined location.

3. Crypto Engine verifies request corresponds to security policy

and generates X.509 certificate.

Extensions 1a. Primary actor selects encryption mode for the key to be generated

Frequency of

Use

At each deployment of a component or workload.

Status Design phase

Owner RISE SICS

ID CE-2

Title Create X.509 certificates

Description The Administrator – directly through the Security Policy Manager

requests the generation of a X.509 certificate.

Primary Actor Administrator | Security Policy Manager

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 44 of 106

Preconditions Administrator defined a crypto security policy and configured the

crypto engine according to the crypto security policy.

Post-condition A certificate with at least 2048-bit security has been generated

Main success

scenario

1. Primary actor selects certificate type: RSA | ECDSA

2. Primary actor selects certificate validity period

3. Primary actors select Certificate Authority to sign certificate

4. Primary actor issues command to generate key and store it in a

pre-defined location.

5. Crypto Engine verifies request corresponds to security policy

and generates X.509 certificate.

Extensions 1a. Primary actor selects encryption mode for the private key to be

generated

Frequency of

Use

At each deployment of a MiCADO component.

Potentially at each deployment of a MiCADO workload.

Status Design phase

Owner RISE SICS

4.2.7.2 Security requirements traceability

The Crypto Engine directly addresses the following requirements outlined in D7.1 COLA

security requirements: SR12, SR13, CNSR-3, CNSR-9, CSSR-1

Furthermore, the Crypto Engine supports a set of additional requirements outlined in D7.1

COLA security requirements: SR01, SR02, SR11, CNSR-7.

4.2.7.3 Architecture objectives traceability

The Crypto Engine directly addresses the following security architecture objectives outlined in

D7.2 MiCADO security architecture specification: O3.1, O5.2

Furthermore, the Crypto Engine supports a set of additional security objectives outlined in D7.2

MiCADO security architecture specification: O1.1, O3.3, O2.2, O5.1, O4.1.

4.2.8 Architectural drivers

4.2.8.1 High-Level functional requirements

The high-level functional requirements towards the crypto engine component are based on: the

requirements towards cryptographic security of: (a) the primitive operations performed by the

crypto engine; (b) the cryptographic primitives produced by the Crypto Engine. The functional

requirements are formulated below:

 The Crypto Engine should encrypt messages with keys that are at least 128-bit long.

Less secure keys as well as deprecated algorithms MUST be rejected.

 The Crypto Engine should only accept the combination of parameters that allow

symmetric-key encryption security in the chosen-plaintext attack model.

 The Crypto Engine should only encrypt messages using public-key cipher suites with

keys that are at least 2048-bit long.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 45 of 106

 The Crypto Engine should only accept the combination of parameters that allow public-

key encryption security in the chosen-ciphertext attack model.

 The hash functions provided by the Crypto Engine must produce results that are

preimage-resistant.

4.2.8.2 Technical constraints

The crypto engine is designed to run on platforms with the x86 32-bit or 64-bit architecture.

Other architectures may be supported in a future release.

4.2.8.3 Business constraints

No business constraints have been found at this point.

4.2.8.4 API specifications

1. Generate public-private keypair

a. Input

i. Function invocation – genKey

ii. Parameters [crypto library, key type, encryption algorithm, encryption

mode]

b. Output

i. Tuple list <public key, private key>

c. Comment

The choice of the crypto library could be pre-defined by the administrator in the

crypto security policy.

2. Generate X.509 certificate

a. Input

i. Function invocation – genCert

ii. Parameters [crypto library, encryption algorithm, validity period,

certificate authority, certificate storage location]

b. Output

i. X509 certificate

c. Comment

The choice of the crypto library, validity period and certificate authority could

be pre-defined by the administrator in the crypto security policy.

3. Encrypt content using a symmetric cipher suite

a. Input

i. Struct <Plaintext message, Encryption Key>

ii. Parameters [crypto library, encryption algorithm, encryption mode]

b. Output

i. Tuple list < Result, Ciphertext message>

c. Comment

N/A

4. Decrypt content using a symmetric cipher suite

a. Input

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 46 of 106

i. Struct <Ciphertext message, Decryption Key>

ii. Parameters [crypto library, encryption algorithm, encryption mode]

b. Output

i. Tuple list < Plaintext message>

c. Comment

N/A

4.2.9 Test plan

1. Test Items

Item to Test Test Description

1 Key generator Test whether the component can generate keys according to

specifications.

2 Nonce generator Test whether the component can generate random numbers

according to specifications

3 Encryption library Test whether the component can encrypt and decrypt

messages according to specifications

2. Test features

Function to Test Test Description

1 Generate 128-bit

symmetric key

Test whether the function correctly generates a 128-bit
symmetric key with sufficient entropy.

2 Generate 256-bit

symmetric key

Test whether the function correctly generates a 256-bit
symmetric key with sufficient entropy.

3 Generate 2048-bit

asymetric key

Test whether the function correctly generates a 2048-bit
public-private keypair with sufficient entropy.

4 Generate random

nonce

Test whether the function generates random numbers with
sufficient entropy.

5 Encrypt and decrypt

data

Test whether the function works properly and correctly
encrypts and decrypts sample inputs using a given key,
encryption algorithm and encryption mode.

6 Generate X509

certificate

Test whether the function correctly generates a well-
formed X509 certificate.

3. Features not to be tested

Some features are not tested at this phase because they will be delayed for developing later or

they belong to another test phase.

Feature not to be

tested

Test Description

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 47 of 106

1 Symmetric Searchable

encryption

Test whether the component correctly implements

symmetric searchable encryption.

2 Asymmetric Searchable

encryption

Test whether the component correctly implements

asymmetric searchable encryption.

3 Probabilistic encryption Test whether the component correctly implements

probabilistic encryption.

4. Approach

Function to

Test

Test data description Metrics to be

collected

Pass/Fail criteria

1 Generate 256-

bit symmetric

key

Data involves: input

command, key type.

Correct/ Incorrect

“Correct” means

function produces a

uniformly

distributed 256-bit

sequence; Incorrect

otherwise

Precision = # of

incorrect/ # of test

runs

Pass if precision = 1

Fail if precision<1

2 Generate 2048-

bit asymetric

key

Data involves: input

command, key type.

Correct/ Incorrect

“Correct” means

function produces a

uniformly

distributed 2048-bit

sequence; Incorrect

otherwise

As above

3 Generate
random nonce

Data involves: input

command, nonce size

Correct/ Incorrect

“Correct” means

function produces a

uniformly

distributed

sequence of a given

size; Incorrect

otherwise

As above

4 Encrypt and
decrypt data

Data involves: input

command, input data,

encryption/decryption

key,

encryption/decryption

cipher and mode

Correct/ Incorrect

“Correct” means

function produces a

pseudorandom

sequence (for

encryption) that

equals the input

plaintext when

decrypted (for

decryption);

Incorrect otherwise

As above

5 Generate X509
certificate

Data involves: input

command, certificate

input data,

encryption/decryption

cipher and mode

Correct/ Incorrect

“Correct” means

function produces a

valid X509

certificate with

As above

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 48 of 106

correct input data.

Incorrect otherwise

4.2.10 Reused Technologies/Specifications

The Crypto Engine comprises functionality from a range of widely used cryptographic

libraries. While many of the cryptographic libraries provide the same functionality, they differ

in computation performance, feature set and support for new hardware features. The

cryptographic libraries that can be included in the crypto engine are as follows:

Component Feature Availability

OpenSSL Multipurpose Open Source

WolfSSL Multipurpose Proprietary, Code Available Open Source

mbedTLS Support for Intel SGX Open Source

4.3 Security Policy Manager: Open specifications

4.3.1 Preface

The Security Policy Manager is a component of MiCADO, that is in charge of security

requirements for each of the business processes within the COLA framework and has

connectors to perform the configuration of the security enablers to fullfill those requirements.

In the MiCADO architecture, the various security enablers require a single entry point for

providing security functions to other services within the architecture. Security components are

managed through a number of configuration files and APIs, which makes them hard to

implement in the various different components of MiCADO without locking the project to a

single implementation of the security enabler. The SPM remedies that by providing a

comprehensive, implementation-agnostic REST API to wrap security functions by a

standardized interface.

4.3.1.1 Status

An enabler prototype is under development. This is a preliminary specification and is subject

to changes.

4.3.2 Copyright

Copyright © 2017-2019 by COLA Project Consortium (http://www.cola-project.eu/).

4.3.3 Legal notice

N/A

4.3.4 Terms and definitions

TOSCA Topology and Orchestration Specification for Cloud Applications is

a specification format that provides a language to describe service

components and their relationships using a service topology in a

cloud environment.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 49 of 106

4.3.5 Overview

The exact design will be available and updated after the competition of the Design phase.

4.3.6 Basic concepts

The exact design will be available and updated after the competition of the Design phase.

4.3.7 Main interactions

The exact design will be available and updated after the competition of the Design phase.

4.3.7.1 Use cases

ID SPM-1

Title Provision a new worker node

Description Create a new worker node in the cloud infrastructure and put security

safeguards in place

Primary Actor Cloud Orchestrator

Preconditions The SPM, Cloud Orchestrator, Zorp SSL and PKI components are

successfully initialized and running as a Docker container on the

MiCADO master node.

Post-condition A new worker node is provisioned with security in place

Main success

scenario

1. The Cloud Orchestrator notifies the SPM that a new worker node

is to be provisioned.

2. SPM instructs PKI to generate a new keypair using the internal

CA for the newly created worker and assignes a token to the new

worker.

3. SPM notifies the Cloud Orchestrator to add the token as a

parameter for provisioning the new worker.

4. SPM notifies Zorp SSL Master of the newly created token.

5. Upon initial startup Zorp SSL Worker connects to Zorp SSL

Master using its token to acquire the TLS keypair, saves them

locally and starts listening for incoming requests using the new

keypair.

6. Zorp SSL Master accepts connection from Zorp SSL Worker,

verifies its IP address and token and serves the newly created

keypair from PKI.

7. Zorp SSL Master removes the token from its list.

Extensions

Frequency of

Use

This may happen infrequently, whenever the Optimiser component

decides to provision a new worker node due the heavy workload of the

application.

Status Design phase

Owner BalaSys

ID SPM-2

Title Decomission a worker node

Description Tear down an existing worker node and destroy all security identifiers

associated with them to avoid replay attacks

Primary Actor Cloud Orchestrator

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 50 of 106

Preconditions The SPM, Cloud Orchestrator, Zorp SSL and PKI components are

successfully initialized and running as a Docker container on the

MiCADO master node.

Post-condition The affected worker node is destroyed and its security identifiers

revoked

Main success

scenario

1. The Cloud Orchestrator notifies SPM that a new worker node is

to be decommissioned.

2. SPM instructs PKI to revoke the keypair associated with the

worker node within the internal CA.

3. SPM notifies Zorp SSL Master to refresh its revocation list.

Extensions

Frequency of

Use

This may happen infrequently, whenever the Optimiser component

decides to tear down a worker node due the reduced workload of the

application.

Status Design phase

Owner BalaSys

ID SPM-3

Title Provision a new MiCADO application

Description Upon provisioning a new MiCADO application, verify that the

TOSCA description has correctly configured security policies and

implement them

Primary Actor MiCADO administrator

Preconditions All core components of the MiCADO master node are initialized and

running

Post-condition The requested application is provisioned with all configured security

policies implemented and functional

Main success

scenario

1. The user initiates a TOSCA descriptor submission by sending an

authenticated HTTPS request to Zorp Firewall.

2. Zorp verifies the credentials and group membership of the user

and if applicable forwards the request to the TOSCA Submitter.

3. The TOSCA submitter verifies the format of the descriptor and

passes relevant information to the various Manager components

of the MiCADO master.

4. SPM verifies the syntax and semantics of the security policies

within the TOSCA descriptor (and instructs the submitter to

relay an error message to the user if validation fails).

5. SPM instructs the Submitter if a network topology change within

the application is required to implement security policies (e.g.

for firewalling).

6. SPM generates the configuration for Zorp Firewall to implement

network security policies.

7. The return value is sent back to the Submitter that forwards it to

the user.

8. SPM persists the state of the application’s security configuration.

Extensions

Frequency of

Use

Infrequently, when deploying a new MiCADO application

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 51 of 106

Status Design phase

Owner BalaSys

ID SPM-4

Title Change an existing MiCADO application

Description Upon changing the configuration of an existing MiCADO application,

verify that the TOSCA description has correctly configured security

policies and implement them

Primary Actor MiCADO administrator

Preconditions All core components of the MiCADO master node are initialized and

running

Post-condition The requested application is provisioned with all configured security

policies implemented and functional

Main success

scenario

1. The user initiates a TOSCA descriptor submission by sending an

authenticated HTTPS request to Zorp Firewall.

2. Zorp verifies the credentials and group membership of the user

and if applicable forwards the request to the TOSCA Submitter.

3. The TOSCA submitter verifies the format of the descriptor and

passes relevant information to the various Manager components

of the MiCADO master.

4. SPM verifies the syntax and semantics of the security policies

within the TOSCA descriptor (and instructs the submitter to

relay an error message to the user if validation fails).

5. SPM looks up the persisted state of the application and calculates

changes necessary for implementing the new configuration.

6. SPM instructs the Submitter if a network topology change within

the application is required to implement security policies (e.g.

for firewalling).

7. SPM generates the configuration for Zorp Firewall to implement

network security policies.

8. The return value is sent back to the Submitter that forwards it to

the user.

9. SPM persists the state of the application’s security configuration.

Extensions

Frequency of

Use

Infrequently, when changing the configuration of a MiCADO

application

Status Design phase

Owner BalaSys

ID SPM-5

Title Remove an existing MiCADO application

Description Upon removing an existing MiCADO application, remove persistent

state

Primary Actor MiCADO administrator

Preconditions MiCADO users’s registered credentials have been stored in CBS. Zorp

has obtained credential from a subscriber who accesses to MiCADO.

Post-condition The MiCADO application and its persistent state is removed

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 52 of 106

Main success

scenario

1. The user initiates a TOSCA descriptor submission by sending

an authenticated HTTPS request to Zorp Firewall.

2. Zorp verifies the credentials and group membership of the user

and if applicable forwards the request to the TOSCA Submitter.

3. The TOSCA submitter verifies the format of the descriptor and

passes relevant information to the various Manager components

of the MiCADO master.

4. SPM looks up the persisted state of the application and discards

it.

5. The return value is sent back to the Submitter that forwards it to

the user.

Extensions

Frequency of

Use

Infrequently, when tearing down a MiCADO application

Status Design phase

Owner BalaSys

ID SPM-6

Title Add a new MiCADO credential

Description Add a new MiCADO user with its authenticator via CLI

Primary Actor MiCADO administrator

Preconditions The Administrator has SSH access to the master node, SPM and CM

are successfully initialized and running as a Docker container on the

MiCADO master node.

Post-condition A new credential is added with its authenticator and roles set up

correctly and can be used to authenticate user access.

Main success

scenario

1. The Administrator logs in to the master node via SSH.

2. The Administrator runs a command to add the new credential

with username and role as its parameter.

3. The command line tool asks the Administrator to supply the

authenticator interactively or via a command line parameter.

4. The command line tool initiates a REST call to the SPM to add

the new user.

5. SPM initiates a REST call to CM to add the new user.

6. CM replies to SPM if the addition was successful which relays

the answer to the command line tool.

7. The Administrator is notified textually of the result and the

return code of the command line tool is set accordingly.

Extensions The use case can be extended to support graphical management of users.

Frequency of

Use

Infrequently, when adding new MiCADO users

Status Design phase

Owner BalaSys

ID SPM-7

Title Remove an existing MiCADO credential

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 53 of 106

Description Remove an existing MiCADO user and its authenticator via CLI

Primary Actor MiCADO administrator

Preconditions The Administrator has SSH access to the master node, SPM and CM

are successfully initialized and running as a Docker container on the

MiCADO master node.

Post-condition The existing credential is removed and cannot be further used to

authenticate user access.

Main success

scenario

1. The Administrator logs in to the master node via SSH.

2. The Administrator runs a command to remove the existing

credential with username as its parameter.

3. The command line tool asks the Administrator for confirmation

of the removal interactively or via a command line parameter.

4. The command line tool initiates a REST call to the SPM to

remove the user.

5. SPM initiates a REST call to CM to remove the new user.

6. CM replies to SPM if the removal was successful which relays

the answer to the command line tool.

7. The Administrator is notified textually of the result and the return

code of the command line tool is set accordingly.

Extensions The use case can be extended to support graphical management of users.

Frequency of

Use

Infrequently, when removing MiCADO users

Status Design phase

Owner BalaSys

ID SPM-8

Title Reset the authenticator of an existing MiCADO credential

Description Change the authenticator of an existing MiCADO user via CLI

Primary Actor MiCADO administrator

Preconditions The Administrator has SSH access to the master node, SPM and CM

are successfully initialized and running as a Docker container on the

MiCADO master node.

Post-condition The authenticator of the relevant user is changed with other attributes

kept unchanged, the previous authenticator is invalidated

Main success

scenario

1. The Administrator logs in to the master node via SSH.

2. The Administrator runs a command to change the credential with

username as its parameter.

3. The command line tool asks the Administrator to supply the

authenticator interactively or via a command line parameter.

4. The command line tool initiates a REST call to the SPM to

change the user’s authenticator.

5. SPM initiates a REST call to CM to change the authenticator.

6. CM replies to SPM if the change was successful which relays the

answer tot he command line tool.

7. The Administrator is notified textually of the result and the return

code of the command line tool is set accordingly.

Extensions The use case can be extended to support graphical management of users.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 54 of 106

Frequency of

Use

Infrequently, when changing MiCADO users’ authenticator by the

administrator

Status Design phase

Owner BalaSys

ID SPM-9

Title Add a new cloud credential

Description Add a new cloud user with its authenticator via CLI

Primary Actor MiCADO administrator

Preconditions The Administrator has SSH access to the master node, SPM and CS are

successfully initialized and running as a Docker container on the

MiCADO master node.

Post-condition A new credential is added with its authenticator and can be used to

perform cloud operations.

Main success

scenario

1. The Administrator logs in to the master node via SSH.

2. The Administrator runs a command to add the new credential with

cloud endpoint and username as its parameter.

3. The command line tool asks the Administrator to supply the

authenticator interactively or via a command line parameter.

4. The command line tool initiates a REST call to the SPM to add the

new credential.

5. SPM initiates a REST call to CS to add the new credential.

6. CS replies to SPM if the addition was successful which relays the

answer to the command line tool.

7. The Administrator is notified textually of the result and the return

code of the command line tool is set accordingly.

Extensions The use case can be extended to support graphical management of cloud

credentials.

Frequency of

Use

Infrequently, when adding cloud credentials by the Administator

Status Design phase

Owner BalaSys

ID SPM-10

Title Remove an existing cloud credential

Description Remove an existing MiCADO user and its authenticator via CLI

Primary Actor MiCADO administrator

Preconditions The Administrator has SSH access to the master node, SPM and CS are

successfully initialized and running as a Docker container on the

MiCADO master node.

Post-condition The existing credential is removed and cannot be further used to

perform cloud operations.

Main success

scenario

1. The Administrator logs in to the master node via SSH.

2. The Administrator runs a command to remove the existing

credential with username as its parameter.

3. The command line tool asks the Administrator for confirmation

of the removal interactively or via a command line parameter.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 55 of 106

4. The command line tool initiates a REST call to the SPM to

remove the user.

5. SPM initiates a REST call to CS to remove the new user.

6. CS replies to SPM if the removal was successful which relays

the answer tot he command line tool.

7. The Administrator is notified textually of the result and the

return code of the command line tool is set accordingly.

Extensions The use case can be extended to support graphical management of users

Frequency of

Use

Infrequently, when removing cloud credentials by the administrator

Status Design phase

Owner BalaSys

ID SPM-11

Title Change an existing cloud credential

Description Change the authenticator of an existing MiCADO user via CLI

Primary Actor MiCADO administrator

Preconditions The Administrator has SSH access to the master node, SPM and CS are

successfully initialized and running as a Docker container on the

MiCADO master node.

Post-condition The authenticator of the relevant user is changed with other attributes

kept unchanged, the previous authenticator is invalidated.

Main success

scenario

1. The Administrator logs in to the master node via SSH.

2. The Administrator runs a command to change the credential with

username as its parameter.

3. The command line tool asks the Administrator to supply the

authenticator interactively or via a command line parameter.

4. The command line tool initiates a REST call to the SPM to change

the user’s authenticator.

5. SPM initiates a REST call to CS to change the authenticator.

6. CS replies to SPM if the change was successful which relays the

answer to the command line tool.

7. The Administrator is notified textually of the result and the return

code of the command line tool is set accordingly.

Extensions The use case can be extended to support graphical management of users.

Frequency of

Use

Infrequently, when changing the authenticator of a cloud credential by

the administrator

Status Design phase

Owner BalaSys

ID SPM-12

Title Retrieve an existing cloud credential

Description Retrieve an existing cloud credential by the Cloud Orchestrator for

performing scaling operations

Primary Actor Cloud Orchestrator

Preconditions The Cloud Orchestrator, SPM and CM are successfully initialized and

running as a Docker container on the MiCADO master node.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 56 of 106

Post-condition The credential is returned to the Cloud Orchestrator in plain text

format.

Main success

scenario

1. The Cloud Orchestrator initiates a REST call to the SPM to

retrieve a cloud credential‘s authenticator.

2. SPM initiates a REST call to CS to retrieve the authenticator.

3. CS returns the credential to the SPM which relays the answer to

the CO.

4. The credential is discarded by the SPM and CO after

performing the operation.

Extensions The use case can be extended to support graphical management of users.

Frequency of

Use

Frequently, when performing automatic cloud operations by the Cloud

Orchestrator

Status Design phase

Owner BalaSys

4.3.7.2 Components and interaction overview

4.3.7.3 Security requirements traceability

Zorp Firewall addresses the following requirements outlined in D7.1 COLA security

requirements: SR05, SR06, SR10, CNSR-1, CNSR-2, CNSR-3, CNSR-4, CNSR-5, CNSR-6,

CNSR-7, CNSR-8, CNSR-9, CNSR-10

4.3.7.4 Architecture objectives traceability

The CM addresses the following security architecture objective outlined in D7.2 MiCADO

security architecture specification: O1.1, O4.2, O4.3, O4.4, O6.1, O6.2

4.3.8 Architectural drivers

4.3.8.1 High-Level functional requirements

Verify and implement MiCADO application security policies: Provisioned applications may

contain security policies that are provided by the MiCADO infrastructure. These policies need

to be verified upon submission of a new TOSCA descriptor and in case of validation failure a

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 57 of 106

user-comprehensible error status should be relayed back to the submitting administrator. If

verification is successful, the translation of the policies to concrete configuration elements is

done by the SPM.

Standardize PKI and credential management interfaces: The SPM acts as a wrapper above

all security enablers’ native interfaces to make sure, that the security services provided to

other microservices are comprehensive and implementation-agnostic.

4.3.8.2 Technical constraints

No technical constraints identified currently.

4.3.8.3 Business constraints

No know business constraint.

4.3.8.4 API specifications

1. Provision new cryptographic keys

a. Input

i. KeyProvisioningRequest <CommonName, IP Address>

b. Output

i. Return value ALREADY_EXISTS or Access token that can be used to

retrieve the generated keypair

c. Comment Provisioning cryptographic keys aims to generate a new keypair for

authentication by the internal Certification Authority and provide a means to

securely retrieve them. These are then used for securing internal communication

within the distributed architecture.

2. Revoke cryptographic keys

a. Input

i. KeyRevocationRequest <CommonName>

b. Output

i. Return value NOT_EXIST, SUCCESS

c. Comment Revoking cryptographic keys aims to make an existing keypair unfit

for futher authentication within the distributed architecture. This happens if a

key is compromised, or a worker node is automatically decommissioned by the

scaling logic.

3. Provision new MiCADO application

a. Input

i. ToscaNewApplication <Application name, Relevant TOSCA parts>

b. Output

i. Return value ALREADY_EXISTS or VALIDATION_FAILURE and

exact cause or SUCCESS and network topology information

c. Comment The new application request aims to verify if the security policies

within the newly submitted TOSCA description are syntactically and

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 58 of 106

semantically correct and if yes, translate the policies into concrete configuration

elements of the MiCADO infrastructure. In case of any validation error, a user-

comprehensible error message should be returned.

4. Change an existing MiCADO application

a. Input

i. ToscaChangeApplication <Application name, Relevant TOSCA parts>

b. Output

i. Return value NOT_EXISTS or VALIDATION_FAILURE and exact

cause or SUCCESS and network topology information

c. Comment The change application request aims to verify if the security policies

within the submitted TOSCA description are syntactically and semantically

correct and if yes, change the existing MiCADO security infrastructure to reflect

the changes to the descriptor.

5. Remove an existing MiCADO application

a. Input

i. ToscaRemoveApplication <Application name>

b. Output

i. Return value NOT_EXISTS or SUCCESS

c. Comment The change application request aims to remove any persistent state

data to be removed alongside with the application.

6. Add a new MiCADO credential

a. Input

i. MCredentialNew <Identity, Role, Authenticator>

b. Output

i. Return value ALREADY_EXISTS or SUCCESS

c. Comment Adding new credentials enables the Administrator to grant access to

stakeholders of different roles to the MiCADO infrastructure.

7. Remove MiCADO credential

a. Input

i. MCredentialRemove <Identity >

b. Output

i. Return value NOT_EXIST or SUCCESS

c. Comment Removing credentials allows the Administator to revoke access to

the MiCADO infrastructure.

8. Reset MiCADO credential‘s authenticator

a. Input

i. MCredentialChangeCred <Identity, Authenticator>

b. Output

i. Return value NOT_EXIST or SUCCESS

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 59 of 106

c. Comment The credential reset functionality allows the Administrator to reset

the state of the accounts with forgotten or compromised authenticators.

9. Add a new cloud credential

a. Input

i. CCredentialNew <Endpoint, Identity, Authenticator>

b. Output

i. Return value ALREADY_EXISTS or SUCCESS

c. Comment Adding new credentials enables the Administrator to grant access to

cloud services for the Cloud Orchestrator component.

10. Remove cloud credential

a. Input

i. CCredentialRemove <Endpoint, Identity>

b. Output

i. Return value NOT_EXIST or SUCCESS

c. Comment Removing credentials allows the Administator to revoke access to

cloud services.

11. Change cloud credential‘s authenticator

a. Input

i. CCredentialChangeCred <Endpoint, Identity, Authenticator>

b. Output

i. Return value NOT_EXIST or SUCCESS

c. Comment The credential reset functionality allows the Administrator to reset

the authenticator of compromised cloud accounts.

12. Retrieve cloud credential

a. Input

i. CCredentialGet <Identity, Authenticator, Endpoint>

b. Output

i. Return value NOT_EXIST, WRONG_PASS or SUCCESS and

credential in key-value format

c. Comment The credential retrieval functionality allows the Cloud Orchestration

component to keep sensitive credentials in a secure container. This way data at

rest is in an encrypted storage, while data in motion is minimized for the

duration of any cloud operation.

4.3.9 Test plan

1. Test items

Item to Test Test Description

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 60 of 106

1 Security Policy

Manager (SPM)

Test whether the component can communicate with CM,

CS, CO, PKI, TOSCA Submitter and Zorp SSL, and works

properly or not

2 Credential Store (CS) Test whether the component can communicate with SPM,

and works properly or not

3 Credential Manager

(CM)

Test whether the component can communicate with SPM,

and works properly or not

4 Container Orchestrator

(CO)

Test whether the component can communicate with SPM,

and works properly or not

5 TOSCA Submitter Test whether the component can communicate with SPM,

and works properly or not

6 Public Key

Infrastructure (PKI)

Test whether the component can communicate with SPM,

and works properly or not

7 Zorp SSL Test whether the component can communicate with SPM,

and works properly or not

2. Test features

Function to Test Test Description

1 Provision new

cryptographic keys

Test whether the function works properly and returns

correct response

2 Revoke cryptographic

keys

Test whether the function works properly and returns

correct response

3 Provision new

MiCADO application

Test whether the function works properly and returns

correct response

4 Change existing

MiCADO application

Test whether the function works properly and returns

correct response

5 Remove existing

MiCADO application

Test whether the function works properly and returns

correct response

6 Add new MiCADO

credential

Test whether the function works properly and returns

correct response

7 Remove existing

MiCADO credential

Test whether the function works properly and returns

correct response

8 Reset authenticator of a

MiCADO credential

Test whether the function works properly and returns

correct response

9 Add new cloud

credential

Test whether the function works properly and returns

correct response

10 Remove an existing

cloud credential

Test whether the function works properly and returns

correct response

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 61 of 106

11 Change an existing

cloud credential

Test whether the function works properly and returns

correct response

12 Retrieve and existing

cloud credential

Test whether the function works properly and returns

correct response

3. Approach

Function to

Test

Test data description Metrics to be

collected

Pass/Fail criteria

1 Provision new

cryptographic

keys

Data involves two

cases: already existing

keypair and new

keypair

Correct/ Incorrect

Precision = # of

incorrect/ # of test

runs

Pass if precision = 1

Fail if precision<1

2 Revoke

cryptographic

keys

Data involves cases:

non-existent keypair

and existing keypair

Correct/ Incorrect As above

3 Provision new

MiCADO

application

Data involves cases:

descriptor with

incorrect security

policy configuration,

descriptor with non-

existent security policy,

valid descriptor,

already existing

application

Correct/ Incorrect As above

4 Change

existing

MiCADO

application

Data involves cases:

descriptor with

incorrect security

policy configuration,

descriptor with non-

existent security policy,

valid descriptor, non-

existent application

Correct/ Incorrect As above

5 Remove

existing

MiCADO

application

Data involves cases:

non-existent

application, existing

application

Correct/ Incorrect As above

6 Add new

MiCADO

credential

Data involves cases:

non-existent user and

existing user

Correct/ Incorrect As above

7 Remove

existing

Data involves cases:

non-existent user and

existing user

Correct/ Incorrect As above

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 62 of 106

MiCADO

credential

8 Reset

authenticator of

a MiCADO

credential

Data involves cases:

non-existent user and

existing user

Correct/ Incorrect As above

9 Add new cloud

credential

Data involves cases:

non-existent credential

and existing credential

Correct/ Incorrect As above

10 Remove an

existing cloud

credential

Data involves cases:

non-existent credential

and existing credential

Correct/ Incorrect As above

11 Change an

existing cloud

credential

Data involves cases:

non-existent credential

and existing credential

Correct/ Incorrect As above

12 Retrieve and

existing cloud

credential

Data involves cases:

non-existent credential

and existing credential

Correct/ Incorrect As above

4.3.10 Re-utilised Technologies/Specifications

Component Role Availability

Flask Python Framework Software library to provide

easy development of REST

APIs

Open Source

The utilized components are modified where necessary for the purposes of the enabler.

4.4 Credential Manager: Open specifications

4.4.1 Preface

MiCADO infrastructure is not publicly available. More precisely, only authorized users are

eligible to access the services provided by MiCADO. Therefore, authorized users need to

authenticate themselves prior to the deployment of their applications in the underlying

infrastructure. In addition to that, the administrator also needs to be authenticated to perform

any management actions. Furthermore, the Credential Manager is combined with Zorp to

provide authentication for MiCADO.

4.4.1.1 Status

An enabler prototype is under development. This is a preliminary specification and is subject

to changes.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 63 of 106

4.4.2 Copyright

Copyright © 2017-2019 by COLA Project Consortium (http://www.cola-project.eu/).

4.4.3 Legal notice

N/A

4.4.4 Terms and definitions

Table 5 Terms and definitions for authentication [6][21]

4.4.5 Overview

In the scope of MiCADO framework, authentication is explicitly performed by the master node.

After a user has been successfully authenticated she is allowed to use the underlying

infrastructure. Hence, in our authentication protocol we only consider the following two

entities:

 Subscriber/claimant who can be any MiCADO user or administrator;

 The verifier which is MiCADO’s master node. More precisely, the verifier is

implemented through a combination of Zorp and the Credential Manager component.

Apart from that, the Credential Manager manages the backend storage for users’

credentials which are used to authenticate the subscribers.

4.4.6 Basic concepts

Zorp is an open source software that provides access control and token management. When a

user/administrator connects to MiCADO, Zorp acts as a gateway that tries to authenticate the

user prior allowing it to the application deployment/performing management. Zorp, connects

to the Credential Manager to verify the user’s identity. If the verification is successful, Zorp

allows the user to deploy applications in MiCADO infrastructure, or the administrator to

execute management tasks.

Credential Manager (CM) is the mediator between Zorp and the credentials backend storage.

It plays the role of verifier. In order to authenticate a user, CM receives the user’s credentials

from Zorp, then connects to the backend user storage to request for the user’s stored

authenticator. After that, CM performs a verification to check if the received information from

Zorp matches the stored authenticator.

Subscriber or Claimant Any entity that needs to be authenticated. In the scope

of MiCADO framework, a subscriber refers to a user or

an administrator

Identity An attribute that uniquely identifies a subscriber (e.g.,

username)

Authenticator or Token Information that the subscriber owns and uses for

authentication (e.g., password)

Credential An object containing an identity (e.g. username) of a

subscriber binding with its authenticator (e.g.

password) which the subscriber possesses

Verifier Entity that verifies the subscriber’s authenticator

Authentication protocol A protocol that runs between the subscriber and the

verifier and authenticates the subscriber to the verifier

(i.e. subscriber is a legitimate user)

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 64 of 106

Credential Backend Storage (CBS) stores all MiCADO users’s authenticators along with

identity information (e.g. username). There are various types of authenticators such as

passwords, certificates, pin numbers etc., and different types of backend storage such as files,

relational database.

4.4.7 Main interactions

4.4.7.1 Use cases

In this section, we describe a set of typical use cases for the Credential Manager enabler. The

use cases are described in the “fully-dressed” format [29].

Table 6 Use case CM-1: Authentication

ID CM-1

Title Authenticate a user/ an administrator prior to allowing the user’s

application deployment/ the administrator’s management actions

Description CM obtains the subscriber’s (user/ administrator) credential from Zorp,

compare it with the stored credential in the backend storage (CBS).

Primary Actor Zorp

Credential Manager (CM)

Preconditions MiCADO users’s registered credentials have been stored in CBS. Zorp

has obtained credential from a subscriber who accesses to MiCADO.

Post-condition Zorp obtains a statement of whether the subscriber is authenticated

successful or not

Main success

scenario

1. Zorp sends the subscriber’s credential to CM

2. CM connects to CBS to query for the authenticator and its role

based on the identity contained in the received credential.

3. If CBS returns no result, meaning that there does not exist the

queried identity in CBS, return NOT_EXIST

4. CBS returns CM an authencator corresponding to the queried

identity

5. CM compares the authenticator in the received credential from

Zorp and the authenticator sent back by CBS

6. If comparison is not matched, return WRONG_PASS.

Otherwise, go to Step 8.

7. Return ROLE _VALUE (user/admin) that is queried in Step 3.

8. The return value is sent back to Zorp

9. Zorp relies on the return value to allow access to suitable

services or not

Extensions The use case can be extended to support lock-out mechanism after a

fixed number of log-in fails.

In addition to specific authentication result in the main scenario, the

function may include a general message to be returned to users. That

would prevent malicious users from knowing the true reason of any

failed authentication.

Frequency of

Use

At each user/ admin’s log in

Status Design phase

Owner UoW

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 65 of 106

Table 7 Use case CM-1: Add new identity

ID CM-2

Title Add a new identity and its role

Description CM adds a new credential and its role

Primary Actor Credential Manager (CM)

Security Policy Manager (SPM)

CryptoEngine (CE)

Preconditions SPM is keeping a new identity and its role that are added into

MiCADO by the administrator.

Verifying that the user who request to add new identity is an

administrator has been done.

Post-condition CM adds the new identity with a default value for authenticator, along

with its role to credential storage backend (CBS)

Main success

scenario

1. SPM sends the identity and its role to CM

2. CM queries for the identity in the credential from CBS

3. If CBS returns the corresponding identity, return EXISTED.

Otherwise, go to step 4.

4. CM calls a random generator from CE to generate a random

value for the authenticator default value.

5. CM adds the credential <identity, default authenticator> and its

role to CBS. Return DEFAULT_PASS which is the generated

default authenticator.

Extensions When administrator adds a new identity, it is required to input the

identity’s email. After successful new identity insertion, the default

authenticator is sent to the identity’s email.

Frequency of

Use

At each user/ admin’s log in

Status Design phase

Owner UoW

Table 8 Use case CM-3: Change authenticator

ID CM-3

Title Change an authenticator

Description CM changes the authenticator of an existing credential to a new

authenticator value

Primary Actor Credential Manager (CM)

Security Policy Manager (SPM)

Preconditions SPM is keeping the credential and its new authenticator.

Verifying that the new authenticator is satisfied with password-policies

has been done.

Post-condition CM update the authenticator if the credential is verified.

Main success

scenario

1. SPM sends the credential and its new authenticator to CM

2. CM verifies the credential. If verification returns NOT_EXIST

or WRONG_PASS, return NOT_EXIST or WRONG_PASS.

Otherwise, go to step 3.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 66 of 106

3. Update the credential’s authenticator with the new

authenticator. Return SUCCESS.

Extensions

Frequency of

Use

At each user/ admin’s request

Status Design phase

Owner UoW

Table 9 Use case CM-4: Reset authenticator

ID CM-4

Title Reset an authenticator by administrator

Description Administrator resets the authenticator of an existing identity

Primary Actor Credential Manager (CM)

Security Policy Manager (SPM)

Crypto Engine (CE)

Preconditions SPM is keeping the identity.

Administrator has been verified.

Post-condition CM update the authenticator if the credential is verified.

Main success

scenario

1. SPM sends the identity to CM

2. CM queries for the identity. If it does not exist, return

NOT_EXIST. Otherwise, go to step 3.

3. CM uses a random generator provided by CE to generates a

random value. Check to ensure that the generated value is

different from NOT_EXIST.

4. Set the corresponding authenticator to the generated value.

Return DEFAULT_PASS which is the generated value.

Extensions Extending the function for reset an authenticator by the subscriber itself.

An email is sent to the subscriber to notify about the reset of password.

Frequency of

Use

At each admin’s request

Status Design phase

Owner UoW

Table 10 Use case CM-5: Use case CM-5: Delete identity

ID CM-5

Title Delete an identity

Description CM deletes an identity

Primary Actor Credential Manager (CM)

Security Policy Manager (SPM)

Preconditions The user who issues this request is authenticated as an administrator.

He/she does not delete themselves.

Post-condition CM deletes the identity

Main success

scenario

1. SPM sends the identity CM

2. CM queries for the identity. If it does not exist, return

NOT_EXIST. Otherwise, go to step 3.

3. CM deletes the identity out of CBS. Return SUCCESS

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 67 of 106

Extensions A notification email is sent to the removed identity.

Frequency of

Use

At each admin’s request

Status Design phase

Owner UoW

4.4.7.2 Components and interaction overview

The following figures illustrate the interactions of the CM with the other components in the

MiCADO architecture, in particular in relation with Security Policy Manager and Zorp. For

the first stage of implementation, user’s identity is defined by username and authenticator is

defined by password. CBS is implemented as a simple file in CM’s filesystem. Therefore,

interaction between CM and CBS is considered as self-interaction of CM.

Figure 22 Component interaction for the credential manager in the use case CM-1

Figure 23 Component interaction for the credential manager in the use case CM-2

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 68 of 106

Figure 24 Component interaction for the credential manager in the use case CM-3

Figure 25 Component interaction for the credential manager in the use case CM-4

Figure 26 Component interaction for the credential manager in the use case CM-5

4.4.7.3 Database design

As stated, for the first version of security components in MiCADO, the Credential Backend

Storage (CBS) is implemented using a text file. However, in order to prepare for any

extension in future, we still provide database design for data as belows.

1. Table Credential

Description: This table contains data about all users in MiCADO.

Table 11 Credential table

Table name Field name Type Primary

key

Foreign

key

IsNull Description

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 69 of 106

1 Credential Id Integer Y N N Identity

2 Credential Username String Y N N Identity

3 Credential Password String N N N Authenticator

4 Credential CreateDate Date N N Y Date of creation

5 Credential CreateBy Integer N Y Y Identity of admin who

creates this user

6 Credential Email String N N Y Email of user

7 Credential Phone String N N Y Phone number of user

8 Credential Role Byte N N N 0 = user

2 = administrator

9 Credential State Byte N N N 0 = active

2 = deleted

2. Table AccessLog

Description: This table contains log information about users’s accesses to MiCADO.

Table 12 AccessLog table

Table name Field name Type Primary

key

Foreign

key

IsNull Description

1 AccessLog Id Integer Y N N Id

2 AccessLog UserId Integer N Y N Identity of user

3 AccessLog StartTime Time N N Y Starting time of the

recent continuous log-

in attempts

Default value = 0

4 AccessLog NoFails Integer N N Y Number of fails from

StartTime

5 AccessLog LockStatus Byte N N Y 0 = unlocked

2 = locked

6 AccessLog LockStartTime Time N N Y Time when the account

is locked

Default value = 0

7 AccessLog IpAddress String N N N IP address. This value

could be used in future

to lock access from an

IP.

In order to demonstrate how the table AccessLog is used, we describe a protocol for user

authentication with lock-out functionality in case of continuous failed log in with the same

identity. This is an extension for the use case CM-1.

Table 13 Protocol for authentication with lock-out functionality

1. User enters credential for log in

2. System checks if LockStatus = LOCKED or UNLOCKED. If LOCKED, go to step 3.

Otherwise, go to step 4.

3. Get the current time. If CurrentTime – LockStartTime > DurationForLock, reset

LockStatus = unlocked and NoFails = 0. Go to step 4. Otherwise, return

BEING_LOCKED.

4. Verify the credential as in the use case CM-1. If return value is ROLE_VALUE,

meaning authentication is successful, reset NoFails = 0. Return ROLE_VALUE.

Otherwise, go to step 5.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 70 of 106

5. If return value is NOT_EXIST, return NOT_EXIST. If return value is WRONG_PASS,

go to step 6.

6. Get the current time. If CurrentTime - StartTime < DurationForAttempts (this is queried

from the AccessConfig table), increase NoFails by 1 and go to step 6. Otherwise, set

NoFails = 1, StartTime = CurrentTime and return WRONG_PASS.

7. Compare NoFails with MaxFails. If NoFails > MaxFails, set LockStatus = locked. Set

LockStartTime = CurrentTime. Return LOCKED.

3. Table AccessConfig

Description: This table contains configuration settings related to user’s authentication. Only

administrator can access and set value in this table. The latest row in the table indicates the

latest configuration that is in use.

Table 14 AccessConfig table

Table name Field name Type Primar

y key

Foreig

n key

IsNul

l

Description

1 AccessConfi

g

Id Intege

r

Y N N Increasing auto number.

The last row contains

the updated

configuration.

1 AccessConfi

g

DurationForAttempt

s

Time N N Y Duration (in minutes)

for counting failed log in

attempts. For instance,

DurationForAttempts=6

0 means that during 60

minutes, failed log in

attempt will be counted.

2 AccessConfi

g

MaxFails Byte N N Y Maximum of allowed

fails in fixed time

defined by

DurationForAttempts

3 AccessConfi

g

DurationForLock Time N N Y Duration (in minutes)

for locking-out a

credential

4 AccessConfi

g

CreatedBy Id N Y Y Identity of admin who

creates it

5 AccessConfi

g

CreatedDate Date N N Y Date of creation

4.4.7.4 Security requirements traceability

The CM addresses the following requirements outlined in D7.1 COLA security requirements:

CNSR-1, CNSR-3.

4.4.7.5 Architecture objectives traceability

The CM addresses the following security architecture objective outlined in D7.2 MiCADO

security architecture specification: O4.2, O5.1

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 71 of 106

4.4.8 Architectural drivers

4.4.8.1 High-Level functional requirements

Authentication: All subscribers, including users and administrators, must be authenticated

prior to application deployment/management in the infrastructure.

Secure Credential Backend Storage: CBS is deployed so that only CM can access it. In the

scope of MiCADO, CM is deployed as a container in the master node and CBS is implemented

using a file. The CBS file, should be contained in a separate volume of CM. Then, only the

host (the master node) and CM can access the file.

Confidentiality and integrity of network communication: All network communication

between subscribers and MiCADO must be confidentiality and integrity protected.

4.4.8.2 Technical constraints

CM is responsible for verifying a subscriber’s authenticator given its credential. In order to

complete the authentication process, it is required to have session management and access

control implemented. Zorp is responsible for these tasks.

4.4.8.3 Business constraints

No business constraints have been found at this point.

4.4.8.4 API specifications

1. Verify authenticator

d. Input

i. Credential <Identity, Authenticator>

e. Output

i. Return value NOT_EXIST, WRONG_PASS or ROLE_VALUE

f. Comment Authenticator verification aims to verify whether the inputted

credential matches with any authenticator stored in the backend database or not.

This is a simple comparison that returns a binary answer – matched or not

matched. If matched, the subscriber is allowed to access to MiCADO services.

Otherwise, the subscriber is not allowed to do anything else.

2. Add new identity

a. Input

i. <Identity, Role>

b. Output

i. Return value EXISTED or DEFAULT_PASS

c. Comment This API aims to add a completely new identity. This API is only for

administrator’s usage.

3. Change authenticator

a. Input

i. <Identity, Authenticator, New authenticator>

b. Output

i. Return value NOT_EXIST or WRONG_PASS or SUCCESS

c. Comment The authenticator is updated only if the identity and authenticator

verification is successful.

4. Reset authenticator

a. Input

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 72 of 106

i. <Identity>

b. Output

i. Return value NOT_EXIST or DEFAULT_PASS

c. Comment

5. Specify credential backend storage (extension)

a. Input

i. Backend storage information <Type>

b. Output

i. Return value 0 or 1 (0 means failed provisioning, 1 means successful

provisioning)

c. Comment In case MiCADO supports multiple types of CBS, (e.g., storing

credentials in a file/Consul/Credential Store), it can provide the administrator

with options to select a specific type of CBS.

4.4.9 Test plan

This test plan is created for the unit level of testing and is under development. Other levels such

as integration testing level, system level, and acceptance level are not concerned yet.

1. Test items

Table 15 Credential Manager - Test items

Item to Test Test Description

1 Security Policy

Manager

Test whether the component can communicate with CM,

and works properly or not

2 Credential Manager Test whether the component can communicate with SPM,

and works properly or not

2. Test features

Table 16 Credential Manager - Test features

Function to Test Test Description

1 Verify authenticator Test whether the function works properly and returns correct

response

2 Add new identity Test whether the function works properly and returns correct

response

3 Change authenticator Test whether the function works properly and returns correct

response

4 Reset authenticator Test whether the function works properly and returns correct

response

5 Delete identity Test whether the function works properly and returns correct

response

5 Integration of #1 and

#2

Test whether the two functions corporate smoothly to

deliver the function of adding a new identity or not

6 Integration of #1 and

#3

Test whether the two functions corporate smoothly to

deliver the function of changing authenticator or not

7 Integration of #1 and

#4

Test whether the two functions corporate smoothly to

deliver the function of resetting authenticator or not

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 73 of 106

8 Integration of #1 and

#5

Test whether the two functions corporate smoothly to

deliver the function of deleting an identity or not

3. Features not to be tested

Some features are not tested at this phase because they will be delayed for developing later or

they belong to another test phase.

Table 17 Credential Manager - Features not to be tested

Feature not to be

tested

Test Description

1 Lock-out mechanism Test whether the function works properly and returns correct

response

2 Verifying password

strength

Test whether the function works properly and returns correct

response

3 Reset authenticator by

user himself

Test whether the function works properly and returns correct

response

4 Collision of random

authenticator

Test whether new random generated authenticator matches

with any of other generated ones in the past

5 Forcing user to change

the default

authenticator

Test whether users changed their default authenticator from

the first log-in or not

6 Testing for credentials

transported over

protected channel

Test whether credentials are transported with POST method

through HTTPS protocol or not. This test should involve all

sensitive requests, such as log in request, TOSCA file

submission.

7 Testing for bypassing

authentication

Test whether user can bypass authentication by means such

as directing to another page which is not under access

control, parameter modification, session Id prediction, SQL

injection.

8 Test for non-specific

announcement for

failed login

Test whether user knows if username or password fails or

not.

9 Test for default

credentials

Test whether user is using common default credentials or

not. For e.g., common usernames are admin, qa, test, root.

Common passwords are blank password, pass123, 123,

nopass, password.

4. Approach

Table 18 Credential Manager - Test approach

Function to

Test

Test data description Metrics to be

collected

Pass/Fail criteria

1 Verify

authenticator

Data involves not existed

identity, existed identity

with wrong authenticator,

existed identity with

matched authenticator

Correct/

Incorrect

Precision = # of

incorrect/ # of test runs

Pass if precision = 1

Fail if precision<1

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 74 of 106

2 Add new

identity

Data involves not existed

identity, existed identity

Correct/

Incorrect

As above

3 Change

authenticator

Data involves not existed

identity, existed identity

with wrong authenticator,

existed identity with

matched authenticator but

empty new authenticator,

existed identity with

matched authenticator and

non-empty new

authenticator

Correct/

Incorrect

As above

4 Reset

authenticator

Data involves not existed

identity, existed identity

Correct/

Incorrect

As above

5 Delete identity Data involves not existed

identity, existed identity

Correct/

Incorrect

As above

6 Integration of

#1 and #2

Combination data from #1

and #2

Correct/

Incorrect

As above

7 Integration of

#1 and #3

Combination data from #1

and #3

Correct/

Incorrect

As above

8 Integration of

#1 and #4

Combination data from #1

and #4

Correct/

Incorrect

As above

9 Integration of

#1 and #5

Combination data from #1

and #5

Correct/

Incorrect

As above

4.4.10 Re-utilised Technologies/Specifications

Re-utilized technologies are presented in the table below:

Component Role Availability

Zorp Access control and token

management

Open Source

The utilized components are modified where necessary for the purposes of the enabler.

4.5 Crendential Store: Open specifications

4.5.1 Preface

MiCADO infrastructure itself requires certain private information to run. For instance, the

Cloud Orchestrator (CO) requires cloud credential from the user to communicate with the CSP.

Without providing valid cloud credential, CSP will not allow CO to request for scale up or

down of the cloud resources. In addition to that, CO also requires swarm worker token that is

used to configure new worker nodes to join into the swarm.

Apart from that, it is common that applications need to access some private information during

runtime. This allows the applications to complete several tasks such as database account,

external storage account, API key, SSL certificate, etc. Such private information is not

recommended to be hard-coded into the source code, or stored in Docker images of the

applications.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 75 of 106

Both categories of this sensitive information (i.e. application and infrastructure sensitive

information), may be stored inside the MiCADO infrastructure, and Credential Store is built

up to take charge of this task.

4.5.1.1 Status

An enabler prototype is under development. This is a preliminary specification and is subject

to changes.

4.5.2 Copyright

Copyright © 2017-2019 by COLA Project Consortium (http://www.cola-project.eu/).

4.5.3 Legal notice

N/A

4.5.4 Terms and definitions

4.5.5 Overview

There is one major difference between application and infrastructure sensitive information:

sensitive information provisioning. The infrastructure sensitive information only need to be

provisioned to an internal component in the master node; therefore, they will be stored in

Credential Store. Meanwhile, the application sensitive information need to be accessed by

swarm application services in worker nodes. Swarm services are created based on the user’s

application that should not acknowledge about any specific deployment of components inside

the infrastructure. For such reason, Credential Store aims to mainly store infrastructure

sensitive information. For application sensitive information, there will be two options for

application developers. For the first option, their sensitive information will be stored as Docker

secrets in the Swarm Manager that are easily accessed by authorized swarm services. The

majority of the application developers would know about this mechanism offered by Docker.

Thus, they can implement a function inside their application that will give them access to this

private information. For the second option, their sensitive information will be stored in the

Credential Store of the master node. The developers can then use the provided API to access

their private information.

In this section, we mainly describe the Credential Store which will be built on the top of some

open source software. Although we have not decided a specific open source for

implementation, we rely on Hashicorp Vault [27] to describe basic concepts as well as use

cases of this enabler.

In addition to that, we also provide some valuable insights regarding the Docker Secret which

may be more appropriate for swarm services to access private information compared to the

Credential Store. The reason is that developers may be familiar with Docker and it is easier for

them to retrieve secrets from swarm instead of using the APIs provided by MiCADO.

Docker secret A piece of data that is encrypted at rest in a Docker swarm and can

be securely transmit to swarm services

Hashicorp vault An open source that provides secure storage and access controls to

secret data (https://www.vaultproject.io)

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 76 of 106

4.5.6 Basic concepts

Storage backend is responsible for storing sensitive information in encrypted form and it is

considered as a non-trusted entity. In the first stage of the implementation, the storage backend

is implemented using a simple text file.

Server is an instance that provides APIs for clients. Through these APIs, clients can manage

secrets.

Client is an instance that uses APIs to interact with the server in order to manage secrets.

Secret is a piece of information that the client requests the server to store securely in the storage

backend.

Vault is a tool for storing secrets and allowing securely access to secrets. This tool runs in the

server.

Initialization is the process that configures the vault for client use.

Authentication is a way for the server to authenticate a client prior allowing the client to manage

secrets.

Client token is granted to the client by the server after successful authentication. It is used for

verifying the client’s identity for future request without re-authentication.

Root token is generated by the server after initialization. With root token, the client can do

anything in the vault.

Keys are generated by the server after initialization. The server will use keys to open the

decryption key that helps to decrypt data from the storage backend. However, the server does

not store keys. Instead, only client who can access the secrets is able to keep the keys.

Unseal is the process that provides vault with the client’s keys so that can successfully access

the decryption key.

In MiCADO, Security Policy Manager (SPM) plays the client role and Credential Store does

the server role.

4.5.7 Main interactions

4.5.7.1 Use cases

In this section, we describe use cases for the Credential Store enabler. The use cases are

described in the “fully-dressed” format [29].

Table 19 Use case CS-1: Initialize Credential Store

ID CS-1

Title Initialize Credential Store

Description The Security Policy Manager (SPM) requests to initialize the

Credential Store.

Primary Actor The Credential Store (CS) or the server.

The Security Policy Manager (SPM) or the client.

Preconditions CS and SPM are started as Docker containers in the master node

already. CS is configured as a vault server with a file for the storage

backend.

Post-condition The vault in CS is initialized successfully.

Main success

scenario

1. SPM sends “init“ request to CS

2. CS initializes the vault, return the root token and keys to SPM

3. SPM saves the root token and keys into its filesystem

Extensions 3a. Root tokens and keys may be stored in encrypted form

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 77 of 106

Frequency of

Use

This happens only once when the infrastructure is initialized

Status Design phase

Owner UoW

Table 20 Use case CS-2: Read/ write/ remove sensitive information

ID CS-2

Title Read/ write/ remove sensitive information

Description SPM reads sensitive information from/ write sensitive information to/

remove sensitive information from CS

Primary Actor Security Policy Manager (SPM)

Credential Store (CS)

Preconditions CS has been started and initialized

SPM has the keys which will be used to unseal CS

Post-condition The sensitive information is read to SPM/ written to CS/ removed from

CS

Main success

scenario

1. SPM uses the keys to unseal CS

2. CS changes the vault status from “sealed“ to “unsealed“

3. SPM reads/ writes/ removes the sensitive information
4. CS reads or removes/ writes the sensitive information from/ to

the backend file

5. SPM seals CS

Extensions

Frequency of

Use

Write sensitive information: one time when the infrastructure is

launched for sensitive information such as cloud user credential, swarm

worker token;

Read sensitive information: multiple times when Cloud Orchestrator

sends requests;

Remove sensitive information: possibly not supported now.

Status Design phase

Owner UoW

Table 21 Use case DS-1: Read Docker secret from swarm

ID DS-1

Title Read a secret from swarm

Description Swarm application services reads a secret from swarm

Primary Actor Swarm application service (SAS)

Preconditions The secret is written to swarm

SAS is granted right to access the secret

SAS is running and knows the secret name

Post-condition The secret is read to SAS

Main success

scenario

1. SAS uses the secret name to open the file contained the secret.

This file has been provisioned to SAS as soon as SAS was

granted right to access the secret.

Extensions

Frequency of

Use

Possibly once, depending on application

Status Design phase

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 78 of 106

Owner UoW

Table 22 Use case DS-2: Write secret to swarm and grant access right

ID DS-2

Title Write a secret to swarm and grant access right to swarm application

services

Description User writes a secret into swarm and grant access right to swarm

application services

Primary Actor Security Policy Manager (SPM)

Container Orchestrator (CO)

Preconditions User writes a secret and swarm application services that will be granted

access to that secret into TOSCA file which is submitted to MiCADO.

TOSCA submitter parses the secret along with swarm application

services names and passes to Security Policy Manager (SPM).

Post-condition The secret is written to swarm

Main success

scenario

1. SPM passes the secret and the swarm application services

names to the Container Orchestrator (CO)

2. CO creates the secret in swarm

3. CO adds the secret to the swarm application services based on

received names

Extensions

Frequency of

Use

Once

Status Design phase

Owner UoW

Table 23 Use case DS-3: Remove Docker secret

ID DS-3

Title Remove a secret from swarm

Description User removes a secret from swarm

Primary Actor Security Policy Manager (SPM)

Container Orchestrator (CO)

Preconditions
Post-condition The secret is removed from swarm

Main success

scenario

1. SPM passes the secret name to the Container Orchestrator (CO)

2. CO removes the secret from swarm

Extensions

Frequency of

Use

Once

Status Design phase

Owner UoW

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 79 of 106

4.5.7.2 Components and interaction overview

The following figures illustrate the interactions of the Credential Store (CS), Security Policy

Manager and Container Orchestrator in order to provide sensitive information storage service

for MiCADO.

Figure 27 Initialize Credential Store

Figure 28 Write sensitive information to Credential Store

Figure 29 Read sensitive information from Credential Store

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 80 of 106

Figure 30 Write sensitive information to swarm

Figure 31 Read Docker secret from swarm

4.5.7.3 Database design

As stated, the Storage Backend is implemented using a text file. However, in order to prepare

for any extension in future, we still provide database design for storing sensitive information

as belows.

2. Table InfraSecrets

Description: This table contains data about infrastructure sensitive information in MiCADO

that are kept secure by the Credential Store.

Table name Field name Type Primary

key

Foreign

key

IsNull Description

1 InfraSecrets Id Integer Y N N Id

2 InfraSecrets SecretName String N N N Name of secret

3 InfraSecrets SecretValue String N N N Value of secret

3. Table InfraSecretsAccess

Description: This table contains description about access rights to infrastructure sensitive

information in MiCADO.

Table name Field name Type Primary

key

Foreign

key

IsNull Description

1 InfraSecretsAccess Id Integer Y N N Identity

2 InfraSecretsAccess SecretId String N Y N Identity of

secret

3 InfraSecretsAccess AccessRight Byte N N Y Bitwise

0 = no

components

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 81 of 106

2 = Cloud

Orchestrator

4 = Container

Orchestrator

4. Table AppSecrets

Description: This table contains data about application sensitive information in MiCADO that

are kept secure by Docker Swarm or Credential Store.

Table name Field name Type Primary

key

Foreign

key

IsNull Description

1 AppSecrets Id Integer Y N N Id

2 AppSecrets SecretName String N N N Name of secret

3 AppSecrets SecretValue String N N N Value of secret

5. Table AppSecretsAccess

Description: This table contains description about access rights to application sensitive

information in MiCADO.

Table name Field name Type Primary

key

Foreign

key

IsNull Description

1 AppSecretsAccess Id Integer Y N N Identity

2 AppSecretsAccess SecretId String N Y N Identity of

secret

3 AppSecretsAccess AccessRight String N N Y Swarm

application

service name

4.5.7.4 Security requirements traceability

The CM addresses an extension for the requirements outlined in D7.1 COLA security

requirements.

4.5.7.5 Architecture objectives traceability

The CM addresses the following security architecture objective outlined in D7.2 MiCADO

security architecture specification: O5.1

4.5.8 Architectural drivers

4.5.8.1 High-Level functional requirements

Secure Storage Backend Sensitive information are stored securely in a file so that only CS can

access to it. However, without keys provided by CM, CS cannot decrypt to retrieve the sensitive

information.

4.5.8.2 Technical constraints

There are two options for storing application sensitive information: Docker Swarm or

Credential Store. For the first option, secrets provisioning is done automatically by swarm

server. In the latter, MiCADO must take care of provisioning that is currently out of scope and

may be extended later.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 82 of 106

4.5.8.3 Business constraints

No business constraints have been found at this point.

4.5.8.4 API specifications

1. Initialize Credential Store

a. Input

i. URL (both address and port) of Credential Store

b. Output

i. Root token and keys, or Error

c. Comment Credential Store has been deployed as a Docker container in the

master node in advance with a file as storage backend. Initialization aims to

generate root token and keys which are granted to SPM. Root token and keys

will be stored in filesystem of SPM Docker container.

2. Write sensitive information to Credential Store

a. Input

i. <URL of Credential Store, List of sensitive information in form of <key,

value>>

b. Output

i. No value is returned

c. Comment SPM uses keys to unseal and then write sensitive information to CS.

After that, SPM unseals CS.

3. Read sensitive information from Credential Store

a. Input

i. <URL of Credential Store, List of sensitive information names>

b. Output

i. List of sensitive information values

c. Comment SPM uses secret keys to unseal and then read sensitive information

from CS using the inputted names. After that, SPM unseals CS.

4. Write sensitive information (Docker secret) to Docker Swarm

a. Input

i. List of sensitive information and Docker service names which are

allowed to access the sensitive information: <key, value, list of Docker

service names>.

b. Output

i. No value is returned

c. Comment SPM communicate with Docker daemon to add sensitive

information as Docker secrets into swarm and grant access rights to the

corresponding Docker services.

5. Read sensitive information (Docker secret) from Docker Swarm

a. Input

i. Name of sensitive information

b. Output

i. Value of sensitive information is returned

c. Comment Docker service uses the name of the information to access its value.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 83 of 106

4.5.9 Test plan

This test plan is created for the unit level of testing and is under development. Other levels such

as integration testing level, system level, and acceptance level are not concerned yet.

1. Test items

Item to Test Test Description

1 Security Policy

Manager (SPM)

Test whether the component can communicate with CO and

CS, and works properly or not

2 Credential Store (CS) Test whether the component can communicate with SPM,

and works properly or not

3 Container Orchestrator

(CO)

Test whether the component can communicate with SPM,

and works properly or not

4 Docker service Test whether the Docker service in worker node can access

the sensitive information which it is granted or not

2. Test features

Function to Test Test Description

1 Initialize Credential

Store

Test whether the function works properly and returns correct

response

2 Write sensitive

information to

Credential Store

Test whether the function works properly and returns correct

response

3 Read sensitive

information from

Credential Store

Test whether the function works properly and returns correct

response

3. Features not to be tested

Some features are not tested at this phase because they will be delayed for developing later or

they belong to another test phase.

Function to Test Test Description

1 Write sensitive

information to Docker

Swarm

Test whether the function works properly and returns correct

response

2 Read sensitive

information from

Docker Swarm

Test whether the function works properly and returns correct

response

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 84 of 106

4. Approach

Function to

Test

Test data description Metrics to be

collected

Pass/Fail criteria

1 Initialize

Credential

Store

Data involves two

cases: correct URL of

Credential Store,

incorrect URL of

Credential Store

Correct/ Incorrect

(“correct” means

that Credential

Store is initialized

successful if

providing URL is

correct, and vice

versa)

Precision = # of

incorrect/ # of test

runs

Pass if precision = 1

Fail if precision<1

2 Write sensitive

information to

Credential

Store

Data involves cases: no

information, one piece

of information, multiple

pieces of information

Correct/ Incorrect As above

3 Read sensitive

information

from Credential

Store

Data involves cases: not

existed information

name, existed

information name, and

combination.

Correct/ Incorrect As above

4 Write sensitive

information to

Docker Swarm

Data involves cases: no

information, one piece

of information, multiple

pieces of information

Correct/ Incorrect As above

5 Read sensitive

information

from Docker

Swarm

Data involves cases:

accessing the sensitive

information that the

Docker service is

allowed to access,

accessing the sensitive

information that it is

not allowed to access

Correct/ Incorrect As above

4.5.10 Re-utilised Technologies/Specifications

Re-utilized technologies are presented in the table below:

Component Role Availability

Vault Secret store Open Source

Docker daemon Docker secret store Open Source

The utilized components are modified where necessary for the purposes of the enabler.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 85 of 106

4.6 Zorp Firewall: Open specifications

4.6.1 Preface

While MiCADO master node can be deployed locally or in cloud, worker nodes are deployed

in cloud. Attackers can attack against both master node and worker nodes. Consequently, all

shall be protected by restricting access and open ports, that can be done by installing firewalls.

Zorp firewall is a piece of open-source software, that can play such role.

4.6.1.1 Status

An enabler prototype is under development. This is a preliminary specification and is subject

to changes.

4.6.2 Copyright

Copyright © 2017-2019 by COLA Project Consortium (http://www.cola-project.eu/).

4.6.3 Legal notice

N/A

4.6.4 Terms and definitions

TLS Transport Layer Security (TLS) is a cryptographic protocol that

provides communications security over a computer network.

CM Credential Manager, a component that stores user credentials and

roles and exposes and authentication interface via a REST API

TOSCA Topology and Orchestration Specification for Cloud Applications is

a specification format that provides a language to describe service

components and their relationships using a service topology in a

cloud environment.

4.6.5 Overview

Zorp can perform the following tasks on the master node:

 Perimeter network access control;

 Application protocol enforcement;

 TLS offloading;

 Authentication and authorization;

 URL-based routing.

The role of Zorp on the master node is to provide the highest possible level of network security

when the user accesses the master node. As the master node contains all management functions,

its security is of paramount importance.

Zorp will pre-filter incoming packets using the builtin Linux netfilter infrastructure and then

fully process the accepted packets as a proxy. Additional security features include adding an

encryption layer (TLS offloading), adding authentication to protocols that support it (e.g.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 86 of 106

HTTP) and can also perform authorization based on the URL to be accessed. Based on the

URL, Zorp can also forward the request to different microservices in the MiCADO master, for

example to the TOSCA submitter, or the Credential Manager user interface. By using Zorp for

this task, the security features do not have to be implemented one-by-one in the microservices

and also expose less endpoints that can be abused as attacker entry points.

By implementing the 2-factor authentication support, the security of the management user

interface could be raised substantially.

By implementing access control delegation (OAuth2 or SAML), the user administration of the

master nodes used in enterprise enviroments would be eased considerably. In low-security

environments, this also eases deployment as users could utilize a 3rd party provider (e.g.

Google) for providing access control information.

4.6.6 Basic concepts

Authentication: All subscribers, including users and administrators, must be authenticated

prior to application deployment/management in the infrastructure.

Authorization: All subscribers, including users and administrators, must be granted access to

protected resources within the MiCADO architecture only based on their corresponding role,

unathorized access MUST be prevented.

URL-based routing: To reduce the number of open ports and provide uniform security

features to all user-facing MiCADO microservices, only one graphical management interface

should be opened towards all subscribers, the reverse proxy (Zorp in this case) will examine

the URL and forward the request to the corresponding microservice of the MiCADO master.

Perimeter network access control: To perform filtering on incoming requests to the

MiCADO master node, all incoming traffic is handed to the firewall microservice for

examination, except explicitly enabled well-known traffic that is only subject to packet

filtering (swarm, etc).

Application protocol enforcement: To prevent exploitation of possible application server

programming errors, the formal requirements of all graphical management protocols (HTTP

and TLS) must be met, all traffic must compy with their corresponding RFCs, violations must

result in termination of the connection.

TLS offloading: To provide a uniform level of transport security, the TLS layer of all traffic

to the user-facing microservices of the MiCADO master node must be enforced at the

perimeter, only secure versions and ciphers must be allowed for key exchange and

negotiation.

4.6.7 Main interactions

4.6.7.1 Use cases

ID ZM-1

Title Access MiCADO dashboard

Description The user initates a web request towards the dashboard component on

the MiCADO master node via its URL

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 87 of 106

Primary Actor The user.

Preconditions The CM and the Dashboard are started as Docker containers on the

master node. The user is previously added to the CM with the

appropriate authenticator.

Post-condition The web interface is presented to the authenticated user successfully.

Main success

scenario

1. The user sends an HTTPS request to the master node.

2. Zorp presents an authentication form to the user.

3. The user supplies its MiCADO credentials.

4. Zorp initiates a REST call to the CM to verify the user’s

credentials.

5. The CM confirms user credentials (if correct) and presents the

users roles in its answer.

6. Zorp uses its predefined ruleset to determine the final target of

the request based on the URL

7. Zorp forwards the initial request to the dashboard microservice

8. Zorp forwards successive calls the the dashboard without futher

authentication based on the verification of a Cookie token until

timeout occurs.

Extensions Dashboard may implement a logout link to invalidate the Cookie and

terminate the user session.

Frequency of

Use

This may happen frequently, whenever the user would like to monitor

the status of the MiCADO infrastructure

Status Design phase

Owner BalaSys

ID ZM-2

Title TOSCA description submission

Description The user would like to create or change a MiCADO application by

initiating web request towards the dashboard component on the

MiCADO master node via its URL and submitting a TOSCA

descriptor

Primary Actor The user.

Preconditions The CM and the TOSCA submitter are started as Docker containers on

the master node. The user is previously added to the CM with the

appropriate authenticator.

Post-condition The web interface is presented to the authenticated user successfully.

Main success

scenario

1. The user sends an HTTPS request to the master node.

2. Zorp presents a basic authentication request (HTTP response

code 401) to the user.

3. The user supplies its MiCADO credentials.

4. Zorp initiates a REST call to the CM to verify the user’s

credentials.

5. The CM confirms user credentials (if correct) and presents the

users roles in its answer.

6. Zorp verifies if the user has the administrator role and permits

submission if applicable.

7. Zorp uses its predefined ruleset to determine the final target of

the request based on the URL

8. Zorp forwards the initial request to the submitter microservice

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 88 of 106

Extensions

Frequency of

Use

This may happen infrequently, whenever the user would like to

provision or change a MiCADO application

Status Design phase

Owner BalaSys

ID ZM-3

Title Password change

Description The user initializes a password change

Primary Actor The user.

Preconditions The CM is started as Docker container on the master node. The user is

previously added to the CM with the appropriate authenticator. The

user has successfully performed authentication.

Post-condition The user’s password is successfully changed.

Main success

scenario

1. The authenticated user sends a password change request to the

master node.

2. Zorp presents a web page to the user where they have to input

their current password and the desired new password and

password confimation.

3. The user supplies its old and new MiCADO credentials.

4. Zorp initiates a REST call to the CM to change the user’s

credentials.

5. The CM confirms the change of the user credentials (if correct).

6. Zorp redirects the user to the login page to re-authenticate with

the new credentials.

Extensions

Frequency of

Use

This may happen infrequently, whenever the user would like to

provision or change a MiCADO application

Status Design phase

Owner BalaSys

4.6.7.2 Components and interaction overview

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 89 of 106

4.6.7.3 Security requirements traceability

Zorp Firewall addresses the following requirements outlined in D7.1 COLA security

requirements: SR05, SR06, SR10, CNSR-1, CNSR-2, CNSR-3, CNSR-4, CNSR-5, CNSR-6,

CNSR-7, CNSR-8, CNSR-9, CNSR-10

4.6.7.4 Architecture objectives traceability

The CM addresses the following security architecture objective outlined in D7.2 MiCADO

security architecture specification: O1.1, O4.2, O4.3, O4.4, O6.1, O6.2

4.6.8 Architectural drivers

4.6.8.1 High-Level functional requirements

Authentication: All subscribers, including users and administrators, must be authenticated

prior to application deployment/management in the infrastructure.

Authorization: All subscribers, including users and administrators, must be granted access to

protected resources within the MiCADO architecture only based on their corresponding role,

unathorized access MUST be prevented.

URL-based routing: To reduce the number of open ports and provide uniform security

features to all user-facing MiCADO microservices, only one graphical management interface

should be opened towards all subscribers, the reverse proxy (Zorp in this case) will examine

the URL and forward the request to the corresponding microservice of the MiCADO master.

Perimeter network access control: To perform filtering on incoming requests to the

MiCADO master node, all incoming traffic is handed to the firewall microservice for

examination, except explicitly enabled well-known traffic that is only subject to packet

filtering (swarm, etc).

Application protocol enforcement: To prevent exploitation of possible application server

programming errors, the formal requirements of all graphical management protocols (HTTP

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 90 of 106

and TLS) must be met, all traffic must compy with their corresponding RFCs, violations must

result in termination of the connection.

TLS offloading: To provide a uniform level of transport security, the TLS layer of all traffic

to the user-facing microservices of the MiCADO master node must be enforced at the

perimeter, only secure versions and ciphers must be allowed for key exchange and

negotiation.

Key provisioning: The keypair for TLS encryption must be supplied via Ansible when

provisioning the master node, otherwise the self-signed, auto-generated “snakeoil” keypair is

used. Automatic key provisioning is not in scope for the prototype.

4.6.8.2 Technical constraints

No known technical constraints at this time.

4.6.8.3 Business constraints

No business constraints have been found at this point.

4.6.8.4 API specifications

No strict API is described for user interaction, the use cases describe standard procedures.

For interaction with the CM, the CM defines the wire format. The programmatic interface in

Zorp is defined by the AbstractAuthenticationBackend4 class.

4.6.9 Test plan

1. Test items

Item to Test Test Description

1 Zorp Firewall Test whether the component can communicate with CM,

and works properly or not

2 Credential Manager Test whether the component can communicate with Zorp,

and works properly or not

2. Test features

Function to Test Test Description

1 Authentication Test whether the function works properly and returns correct

response

2 Change authenticator Test whether the function works properly and returns correct

response

3 User session

termination

Test whether the function works properly and returns correct

response

4 User access control Test whether the function works properly and returns correct

response

5 URL-based request

routing

Test whether the function works properly and returns correct

response

4 https://github.com/Balasys/zorp/blob/master/pylib/Zorp/AuthDB.py

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 91 of 106

6 Application protocol

enforcement

Test whether the function works properly and returns correct

response

7 Network access control Test whether the function works properly and returns correct

response

3. Features not to be tested

Some features are not tested at this phase because they will be delayed for developing later or

they belong to another test phase.

Feature not to be

tested

Test Description

1 Automatic TLS keypair

provisioning

Test whether the function works properly and returns correct

response

2 2-factor authentication Test whether the function works properly and returns correct

response

3 Authentication

delegation

Test whether the function works properly and returns correct

response

6 Testing for credentials

transported over

protected channel

within MiCADO

Test whether credentials are transported with POST method

through HTTPS protocol or not. This test should involve all

sensitive requests, such as log in request, TOSCA file

submission within the MiCADO master node.

7 Testing for bypassing

authentication

Test whether user can bypass authentication by means such

as directing to another page which is not under access

control, parameter modification, session Id prediction, SQL

injection.

8 Test for default

credentials

Test whether user is using common default credentials or

not. For e.g., common usernames are admin, qa, test, root.

Common passwords are blank password, pass123, 123,

nopass, password.

4. Approach

Function to

Test

Test data description Metrics to be

collected

Pass/Fail criteria

1 Verify

authenticator

Data involves not existing

identity, existing identity

with wrong authenticator,

existing identity with

matched authenticator via

HTTP basic authentication

Correct/

Incorrect

Precision = # of

incorrect/ # of test runs

Pass if precision = 1

Fail if precision<1

2 Change

authenticator

Data involves existing

identity with wrong

authenticator, existing

identity with matched

authenticator and non-

empty new authenticator

and non-verified identity

Correct/

Incorrect

As above

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 92 of 106

supplying new

authenticator

3 User session

termination

Data involves not existing

session, existing session

Correct/

Incorrect

As above

4 User access

control

Data involves

unauthenticated identity

with protected resources,

existing authenticated

identity with permitted

resources and existing

authenticated identity with

prohibited resources

Correct/

Incorrect

As above

5 URL-based

request routing

Data involves not existing

route, existing route

(URL-target server

mapping)

Correct/

Incorrect

As above

6 Application

protocol

enforcement

Data involves compliant

and non-RFC compliant

HTTP and TLS

Correct/

Incorrect

As above

7 Network access

control

Data involves permitted

and prohibited traffic via

manual testing

Correct/

Incorrect

As above

4.6.10 Re-utilised Technologies/Specifications

Component Role Availability

Zorp Access control and token

management

Open Source

The utilized components are modified where necessary for the purposes of the enabler.

4.7 Zorp SSL: Open specifications

4.7.1 Preface

Secure communication within a distributed architecture is a complex task, that requires great

flexibility and tight integration with existing components. To be able to secure the

communication between the master and worker nodes of MiCADO Zorp is deployed in a

specialized way to provide encryption and traffic encapsulation to the master node’s

components in a seamless way.

4.7.1.1 Status

An enabler prototype is under development. This is a preliminary specification and is subject

to changes.

4.7.2 Copyright

Copyright © 2017-2019 by COLA Project Consortium (http://www.cola-project.eu/).

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 93 of 106

4.7.3 Legal notice

N/A

4.7.4 Terms and definitions

TLS Transport Layer Security (TLS) is a cryptographic protocol that

provides communications security over a computer network.

CA In cryptography, a certificate authority or certification authority

(CA) is an entity that issues digital certificates.

PKI A public key infrastructure (PKI) is a set of roles, policies, and

procedures needed to create, manage, distribute, use, store, and

revoke digital certificates and manage public-key encryption. In

this case it refers to the corresponding MiCADO component.

SPM Security Policy Manager, see section 4.3

4.7.5 Overview

Zorp can perform the following tasks on the worker node:

 TLS wrapping;

 Nontransparent proxying;

 Traffic multiplexing;

 Automatic PKI provisioning (e.g. certificate enrollment).

The role of Zorp on the worker node is to provide confidentiality, integrity, and availability of

the internal traffic of the MiCADO architecture. It uses TLS as a transport security

implementation (hence the outdated name Zorp SSL). It applies encryption to passing traffic

on-demand and on-the-fly and ensures mutual authentication of conversing endpoints using

mutual TLS authentication via x509 keypairs. Its configuration is static, but the endpoints are

registered via the distributed key-value store of Consul, that is already used and updated in the

Docker Swarm architecture. Keypairs are generated and distributed automatically during

worker node deployment and updated automatically when approaching expiry.

By implementing the OCSP and OCSP stapling functionalities, revocation of a key could take

immediate effect as opposed to distributing or pulling revocation lists periodically. This would

shorten the timeframe where a successful attacker could impersonate a node.

Zorp SSL Master is the component that resides on the MiCADO master node and serves as a

dispatcher to other microservices when trying to connect to the worker nodes. Zorp SSL

Worker is its counterpart on the worker node.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 94 of 106

4.7.6 Basic concepts

TLS wrapping: The confidentiality, integrity and authenticity of all messages between the

MiCADO master node and the MiCADO worker are ensured by adding a layer of transport

security (TLS) on top of management traffic and is secured by mutual TLS authentication to

an internal Certification Authority.

Nontransparent proxying: To reduce the complexity of the network architecture, a

nontransparent HTTP proxying solution is put in place to add structure and encapsulation to

the distributed architecture of the MiCADO master-worker systems, with this solution only

one port is needed to be opened for collecting diagnostic data while keeping a clean routing

architecture.

Automatic PKI provisioning: All newly created worker nodes must be able to acquire TLS

keypairs from the master node using a preshared, random-generated secret that is passed on

to them during initial provisioning via the Cloud Orchestrator.

4.7.7 Main interactions

4.7.7.1 Use cases

ID ZS-1

Title Gather performance data from cAdvisor

Description The Prometheus component of the MiCADO master initializes a

request to gather performance data from the cAdvisor component on

the MiCADO worker node

Primary Actor The Prometheus component.

Preconditions The worker node is successfully provisioned. Zorp SSL is running on

the master node as a Docker container.

Post-condition The performance metrics are supplied to the Prometheus component

successfully.

Main success

scenario

1. The Prometheus component initiates a request to the worker

node’s cAdvisor listening port via Zorp SSL as the proxy server.

2. Zorp SSL Master forwards the request to the appropriate worker

node, based on addressing information within the HTTP proxy

request.

3. Zorp SSL Master wraps the request in a TLS layer and presents

a client certificate to the worker node.

4. Zorp SSL Master verifies the server certificate presented by the

worker node to the internal CA.

5. Zorp SSL Worker verifies the client certificate to the internal CA

and accepts the connection if applicable.

6. Zorp SSL Worker analyzes the request and forwards the traffic

to the cAdvisor component based on its listening port.

7. Both Zorp instances forward the response to the original caller.

Extensions TLS security can be extended by implementing OCSP lookup and OCSP

stapling for online revocation checking.

Frequency of

Use

Frequent, Prometheus gathers performance metrics often and

periodically to be able to serve as a base for scaling decisions.

Status Design phase

Owner BalaSys

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 95 of 106

ID ZS-2

Title Gather performance data from Node_exporter

Description The Prometheus component of the MiCADO master initializes a

request to gather performance data from the Node exporter component

on the MiCADO worker node

Primary Actor The Prometheus component.

Preconditions The worker node is successfully provisioned. Zorp SSL is running on

the master node as a Docker container.

Post-condition The performance metrics are supplied to the Prometheus component

successfully.

Main success

scenario

1. The Prometheus component initiates a request to the worker

node’s cadvisor listening port via Zorp SSL as the proxy server.

2. Zorp SSL Master forwards the request to the appropriate worker

node, based on adressing information within the HTTP proxy

request.

3. Zorp SSL Master wraps the request in a TLS layer and presents

a client certificate to the worker node.

4. Zorp SSL Master verifies the server certificate presented by the

worker node to the internal CA.

5. Zorp SSL Worker verifies the client certificate to the internal CA

and accepts the connection if applicable.

6. Zorp SSL Worker analyzes the request and forwards the traffic

tot he node_exporter component based on its listening port.

7. Both Zorp instances forward the response to the original caller.

Extensions

Frequency of

Use

Frequent, Prometheus gathers performance metrics often and

periodically to be able to serve as a base for scaling decisions.

Status Design phase

Owner BalaSys

ID ZS-3

Title Initialize new worker

Description The user initates a web request towards the dashboard component on

the MiCADO master node via its URL

Primary Actor Security Policy Manager

Preconditions The SPM, Cloud Orchestrator, Zorp SSL and PKI components are

successfully initialized and running as a Docker container on the

MiCADO master node.

Post-condition The worker node is successfully provisioned, Prometheus is able to

gather performance statistics.

Main success

scenario

1. The Cloud Orchestrator notifies the SPM that a new worker node is

to be provisioned.

2. SPM instructs PKI to generate a new keypair using the internal CA

for the newly created worker and assignes a token to the new worker.

3. SPM notifies the Cloud Orchestrator to add the token as a parameter

for provisioning the new worker.

4. SPM notifies Zorp SSL Master of the newly created token.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 96 of 106

5. Upon initial startup Zorp SSL Worker connects to Zorp SSL Master

using its token to acquire the TLS keypair, saves them locally and

starts listening for incoming requests using the new keypair.

6. Zorp SSL Master accepts connection from Zorp SSL Worker,

verifies its IP address and token and serves the newly created keypair

from PKI.

7. Zorp SSL Master removes the token from its list.

Extensions

Frequency of

Use

This may happen infrequently, whenever the Optimiser component

decides to provision a new worker node due the heavy workload of the

application.

Status Design phase

Owner BalaSys

4.7.7.2 Components and interaction overview

4.7.7.3 Security requirements traceability

Zorp Firewall addresses the following requirements outlined in D7.1 COLA security

requirements: SR05, SR06, SR10, CNSR-1, CNSR-2, CNSR-3, CNSR-4, CNSR-5, CNSR-6,

CNSR-7, CNSR-8, CNSR-9, CNSR-10

4.7.7.4 Architecture objectives traceability

The CM addresses the following security architecture objective outlined in D7.2 MiCADO

security architecture specification: O1.1, O4.2, O4.3, O4.4, O6.1, O6.2

4.7.8 Architectural drivers

4.7.8.1 High-Level functional requirements

TLS wrapping: The confidentiality, integrity and authenticity of all messages between the

MiCADO master node and the MiCADO worker are ensured by adding a layer of transport

security (TLS) on top of management traffic and is secured by mutual TLS authentication to

an internal Certification Authority.

Nontransparent proxying: To reduce the complexity of the network architecture, a

nontransparent HTTP proxying solution is put in place to add structure and encapsulation to

the distributed architecture of the MiCADO master-worker systems, with this solution only one

port is needed to be opened for collecting diagnostic data while keeping a clean routing

architecture.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 97 of 106

Automatic PKI provisioning: All newly created worker nodes must be able to acquire TLS

keypairs from the master node using a preshared, random-generated secret that is passed on to

them during initial provisioning via the Cloud Orchestrator.

4.7.8.2 Technical constraints

All services that use the Zorp SSL component for secure master-worker communication must

be able to use an HTTP proxy.

4.7.8.3 Business constraints

No known business constraint.

4.7.8.4 API specifications

1. Provision new keypair

a. Input

i. URL (both address and port) of Zorp SSL Master API, new worker node

name and IP address, access token and keypair in key-value format

b. Output

i. Success, or Error

c. Comment Zorp SSL has been deployed as a Docker container on the master

node in advance. SPM has instructed the PKI component to generate the keypair,

has assigned a randomly generated access token to the worker. Keys will be

temporarily stored in filesystem of the Zorp SSL Master Docker container, until

served to the worker.

2. Serve new keypair to worker node

a. Input

i. Publicly accessible URL (both address and port) of Zorp SSL Master

API, new worker node name and IP address, access

b. Output

i. Keypair or Error

c. Comment Zorp SSL has been deployed as a Docker container in the master node

in advance. The Cloud Orchestrator has initiated key provisioning via SPM and

provisioning was successful. Zorp SSL Worker connects to Zorp SSL Master via

its public URL, presents its access token, Zorp SSL Master verifies the token and

the node’s source IP address and serves the new keypair. Keys are removed from

the filesystem of the Zorp SSL Master Docker container after successful

completion.

4.7.9 Test plan

1. Test items

Item to Test Test Description

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 98 of 106

1 Security Policy

Manager (SPM)

Test whether the component can communicate with CO,

PKI and Zorp SSL, and works properly or not

2 Public Key

Infrastructure (PKI)

Test whether the component can communicate with SPM,

and works properly or not

3 Container Orchestrator

(CO)

Test whether the component can communicate with SPM,

and works properly or not

4 Prometheus Test whether the component can communicate with Zorp

SSL Master, and works properly or not

5 Zorp SSL Master Test whether the component can communicate with SPM

and Zorp SSL Worker, and works properly or not

6 Zorp SSL Worker Test whether the component can communicate with Zorp

SSL Master, and works properly or not

2. Test features

Function to Test Test Description

1 Provision new keypair

Test whether the function works properly and returns correct

response

2 Serve new keypair to

worker node

Test whether the function works properly and returns correct

response

3 Forward request from

Prometheus to worker

Test whether the function works properly and returns correct

response

3. Approach

Function to

Test

Test data description Metrics to be

collected

Pass/Fail criteria

1 Provision new

keypair

Data involves two

cases: correct URL of

Credential Store,

incorrect URL of

Credential Store

Correct/ Incorrect

Precision = # of

incorrect/ # of test

runs

Pass if precision = 1

Fail if precision<1

2 Serve new

keypair to

worker node

Data involves cases:

incorrect IP address,

correct IP address,

invalid token, valid

token

Correct/ Incorrect As above

3 Forward

request from

Prometheus to

worker

Data involves cases:

non-existent worker,

existing incorrectly

provisioned worker,

existing correctly

provisioned worker

Correct/ Incorrect As above

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 99 of 106

4.7.10 Re-utilised Technologies/Specifications

Component Role Availability

Zorp Access control and token

management

Open Source

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 100 of 106

5 Updated use case partner security requirements

The COLA security architecture is based on a combination of security best-practices adopted

by major cloud platforms, as well as on the experience and first-hand needs of the use case

partners. Such needs were initially collected, analyzed and distilled into a set of requirements.

The security requirements were produced based on the feedback of five end-user organizations

(further referred to as verticals): Outlandish, CloudSME (combining the use cases of HKN and

Rheinschafe GmbH), Saker, and INY-SARGA. The target organizations represent various

service domains and business models, which contributes to describing a rich variety of use

cases and viewpoints:

 HKN is a German Managed Hosting Company, focusing on building HA clusters for

its customers. HKN’s customers are normally small and medium sized, German

companies.

 Rheinschafe GmbH from Duisburg, Germany is a Digital Agency founded with the

main focus on developing websites with TYPO3 and digital communication.

 Outlandish is a 20-person cooperative digital agency specialising in middleware,

usability, search and scalable data applications. Outlandish’s main focus is on the

interface between computers and users in insight-generation and data management.

Outlandish have considerable experience building highly usable and intuitive data

management solutions.

 Instrumentacion y Componentes S.A. provides high quality services and solutions with

added value in IT and Communications, Energy, Laboratory Equipment, Electronics

and Medical Equipment.

 Saker Solutions Limited has a mission to expand the benefits achieved from the use of

simulation modelling. Saker a provider of simulation-based tools, training, support and

consultancy in the UK.

An initial set of requirements has been collected throughout February – April 2017 and distilled

into a set of common security requirements for the COLA project, published in Deliverable

D7.1 COLA Security Requirements.

The evolution of the threat landscape, as well as the introduction of new legislation – such as

the General Data Protection Regulation (GDPR) highlighted the need to collect additional and

updated feedback. A final set of use case updates were collected in January 2018. The feedback

of the use case partners has been compressed into four categories: access control, computation

security, data security and compliance. The updates are presented below.

5.1 Instrumentacion y Componentes S.A. (Inycom) Security
Requirements

The requirements update provides the following details:

 Access control:

o The system has only one role, automated service transparent to the end user.

 Computation security:

o The semantic processing engine is the core business asset;

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 101 of 106

o Semantic processing in not supported by the MiCADO functionality;

o The semantic processing will be deployed using the MiCADO framework.

 Data security:

o Anonymization is explicitly excluded from the scope of the project;

o Use of personally identifiable information (PII) in use case scenarios;

o Storage security all low priority, since work is on public.

 Compliance:

o According to GDPR - must have a registry of collected information;

o Data must be processed in EU;

o Once database persistence issue is solved, data must be sent encrypted.

5.2 SAKER Security Requirements

The main scenario for the Saker use case is a private cloud completely disconnected from the

Internet. The following specific use case aspects apply:

 Access control:

o Access control within the internal, air-gapped systems is ensured using

Windows authentication;

o Currently the models are run in the local desktops or out to SakerGrid, that is

planned to be supported by MiCADO;

o There is currently no access control in SakerGrid apart from Windows

authentication;

o Every analyst can access SakerGrid directly.

 Computation security:

o The models that are deemed security sensitive can only be run on physically

separate (air-gapped) infrastructure.

 Data security:

o No PII is used in the process of creating and running the models;

o Use of PII is proactively avoided;

o Databases containing sensitive data are stored on air-gapped networks and

servers;

o Data used for security-sensitive scenarios cannot be stored in public clouds,

even encrypted.

 Compliance:

o Sensitive scenarios related to the core business (such as nuclear power plant

evacuation models) are run on physically separate infrastructure. This excludes

them from the scope of the COLA project;

o Scenario models created and run for Government organizations always run on

private infrastructure;

o There are explicitly No specific security compliance requirements for non-

government data; most important assets are model configuration parameters and

efficiency results.

5.3 Outlandish Security Requirements

Outlandish employs a wide range of security technologies that should be potentially

supportable by the MiCADO framework. The requirements update provides the following

details:

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 102 of 106

 Access control:

o Multiple user roles with varying degree of access and control

o Audience AGNECY (AA) access to the console; built-in AWS policies and

roles currently in use;

o Support for Ansible roles to set up software requirements (for example NGINX

and Node.js) is explicitly assumed;

o Two access levels (read-access and full access) must be translated to MiCADO

access levels, as follows:

 Role A: submit TOSCA descriptors;

 Role B: provide console access;

 Role C: the continuous integration pipeline and machine accounts are a

distinct access level.

 Computation security:

o Currently on AWS - only OUTLANDISH controlling the servers.

 Storage security:

o Full disk encryption – typically unlocked at boot – may be necessary for

particularly sensitive applications that store either PII or business critical

information;

o The use case partner expects the cloud service provider to provide disk

encryption.

 Compliance:

o Use of PII is currently a grey area – the company does not use personal data;

however, the collected data could be considered as PII;

o Future development may include more PII-able data.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 103 of 106

6 Summary and Conclusions

The scope of this deliverable was fourfold. First of all, by providing a detailed security analysis

of MiCADO’s core architecture we gave valuable insights regarding the overall security of the

system. This analysis allowed us to identify a set of basic security requirements for the

infrastructure. These requirements are summarized below:

 Protecting the communication between a user and the infrastructure;

 Protecting the communication between virtual machines in the infrastructure;

 Protecting the communication between a machine in the infrastructure and any external

entity.

Secondly, we identified several threat surfaces based on MiCADO’s infrastructure. By

analyzing these threat surfaces we presented a concrete list of threat models with specific

possible attacks that can be performed. Moreover, for each of the described attack vector, we

presented possible counter measures such as:

 Using TLS/SSL to secure communication;

 Using captcha and/or lock-out account mechanism to hinder user impersonation

attacks;

 Using emails for reset password functions;

 Using HSTS protocol, i.e. HTTP Strict Transport Security;

 Using email notification to alert about unexpected increase in cloud resource usages;

 Providing sensitive information storage;

 Using firewall.

Thirdly, we described the security requirements collected from the use case partners. Such

requirements were mainly extracted from the specific needs of the pilots based on their

applications. Such requirements include:

 Protecting personally identifiable information (PII);

 Protecting data in transit;

 Providing full disk encryption.

Finally, based on the security enablers/ components described in D7.2 we provided a list of

countermeasures for the infrastructure against several possible attacks. As a result, in this

document, we gave detailed specifications for all the identified security enablers:

 Image Integrity Verifier to verify container image;

 CryptoEngine to provide cryptographic functions;

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 104 of 106

 Security Policy Manager to provide central management for security components;

 Credential Manager to provide authentication and credentials storage that help to hinder

user impersonation attacks;

 Credential Store to provide sensitive information storage;

 Zorp to provide firewall and TLS/SSL.

Based on the conducted security analysis as well as on the open specifications for security

enablers that was presented in this deliverable, we plan to further describe how these enablers

are coordinated with core components of MiCADO in order to deliver security enforcement.

This work will take place in deliverable D7.4.

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 105 of 106

7 References

[1] D6.2 – Prototype and documentation of the monitoring service.

[2] D5.4 – First Set of Templates and Services of Use Cases.

[3] Krawczyk, Hugo, Ran Canetti, and Mihir Bellare. "HMAC: Keyed-hashing for

message authentication." (1997).

[4] https://docs.docker.com/engine/swarm/how-swarm-mode-works/pki/#rotating-the-ca-

certificate, last accessed on 5 Feb, 2018

[5] Kaliski, Burt. "PKCS# 5: Password-based cryptography specification version 2.0."

(2000).

[6] Paul Grassi et al. Digital identity guidelines. NIST Special Publication, 800-63, 2017.

[7] Gruschka, Nils, and Meiko Jensen. "Attack surfaces: A taxonomy for attacks on cloud

services." Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on.

IEEE, 2010.

[8] Gelernter, Nethanel, et al. "The password reset mitm attack." Security and Privacy (SP),

2017 IEEE Symposium on. IEEE, 2017.

[9] Antonis Michalas and Ryan Murray. “Keep Pies Away from Kids: A Raspberry Pi

Attacking Tool”. Proceedings of the 1st ACM CCS International Workshop on Internet

of Things Security and Privacy (IoT S&P’17) in Conjunction with ACM CCS 2017,

Dallas, USA, October 30 – November 03, 2017.

[10] Antonis Michalas, Nikos Komninos and Neeli R. Prasad. “Multiplayer Game for

DDoS Attacks Resilience in Ad hoc Networks”. Proceedings of the 2nd IEEE

International Conference on Wireless Communications, Vehicular Technology,

Information Theory and Aerospace & Electronic Systems Technology (Wireless Vitae

2011), Chennai, India, 2011.

[11] Antonis Michalas, N. Komninos, Neeli R. Prasad and Vladimir A. Oleshchuk. “New

Client Puzzle Approach for DoS Resistance in Ad hoc Networks”. Proceedings of the

IEEE International Conference on Information Theory and Information Security

(ICITIS’10), Beijing, China, 2010.

[12] Antonis Michalas, Nikos Komninos and Neeli R. Prasad. “Cryptographic Puzzles and

Game Theory against DoS and DDoS attacks in Networks”. Encryption: Methods,

Software and Security”, Nova Science Publishers, 2011.

[13] Antonis Michalas, Vladimir A. Oleshchuk, Nikos Komninos and Neeli R. Prasad.

“Privacy preserving Trust Establishment scheme for Mobile Ad Hoc Networks”.

Proceedings of the 16th IEEE International Conference on Communications

(ISCC’11), Corfu, Greece, 2011.

[14] Tassos Dimitriou and Antonis Michalas. “Multi-Party Trust Computation in

Decentralized Environments”. Proceedings of the 5th IFIP International Conference

on New Technologies, Mobility & Security (NTMS’12), Istanbul, Turkey, 2012.

[15] Antonis Michalas and Nikos Komninos. “The Lord of the Sense: A Privacy Preserving

Reputation System for Participatory Sensing Applications”. Proceedings of the 19th

IEEE International Conference on Communications (ISCC’14), Madeira, Portugal,

2014.

[16] Tassos Dimitriou and Antonis Michalas. “Multi-Party Trust Computation in

Decentralized Environments in the Presence of Malicious Adversaries”. Ad Hoc

Networks Journal, a special issue on “Smart Solutions for Mobility Supported

Distributed and Embedded Systems”, Elsevier,

[17] Kassaye Yitbarek Yigzaw, Antonis Michalas and Johan Gustav Bellika. “Secure and

Scalable Deduplication of Horizontally Partitioned Health Data for Privacy-

https://docs.docker.com/engine/swarm/key-concepts/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/pki/#rotating-the-ca-certificate
https://docs.docker.com/engine/swarm/how-swarm-mode-works/pki/#rotating-the-ca-certificate
https://prometheus.io/docs/operating/security/

D7.3 Design of application level security classification formats and principles

Work Package WP7 Page 106 of 106

Preserving Distributed Statistical Computation”. Journal of Medical Informatics and

Decision Making (BMC), 2017.

[18] Rafael Dowsley, Antonis Michalas, Matthias Nagel and Nicolae Paladi. “A Survey on

Design and Implementation of Protected Searchable Data in the Cloud”. Journal of

Computer Science Review, Elsevier, 2017.

[19] Klein, Daniel V. "Foiling the cracker: A survey of, and improvements to, password

security." Proceedings of the 2nd USENIX Security Workshop. 1990.

[20] Ding, Yun, and Patrick Horster. "Undetectable on-line password guessing

attacks." ACM SIGOPS Operating Systems Review 29.4 (1995): 77-86.

[21] Paul Grassi et al. Digital identity guidelines – Authentication and Lifecycle

Management. NIST Special Publication, 800-63B, June 2017.

https://pages.nist.gov/800-63-3/sp800-63b.html#sec5

[22] Callegati, Franco, Walter Cerroni, and Marco Ramilli. "Man-in-the-Middle Attack to

the HTTPS Protocol." IEEE Security & Privacy 7.1 (2009): 78-81.

[23] Duane Peifer. "SSL spoofing. Man-in-the-middle attack on SSL". Owasp

presentation. https://www.owasp.org/images/7/7a/SSL_Spoofing.pdf

[24] Hodges, Jeff, Collin Jackson, and Adam Barth. Http strict transport security (hsts).

No. RFC 6797. 2012.

[25] Open Web Application Security Project, Session Management Cheat Sheet, .

[26] Open Web Application Security Project, REST Security Cheat Sheet,

https://www.owasp.org/index.php/REST_Security_Cheat_Sheet

[27] https://www.vaultproject.io, last accessed on May 3, 2018

[28] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon, J. Ramsdell,

A. Segall, J. Sheehy, and B. Sniffen, “Principles of remote attestation,” International

Journal of Information Security, vol. 10, no. 2, pp. 63–81, 2011.

[29] Cockburn, Alistair. "Writing effective use cases." Addison-Wesley, 2001. ISBN

9780201702255

[30] Paladi, N., & Gehrmann, C. (2016). TruSDN: Bootstrapping Trust in Cloud Network

Infrastructure. 12th EAI International Conference on Security and Privacy in

Communication Networks.

[31] Paladi, Nicolae and Karlsson, Linus. 2017. Safeguarding VNF Credentials with Intel

SGX. In Proceedings of the SIGCOMM Posters and Demos (SIGCOMM Posters and

Demos '17). ACM, New York, NY, USA, 144-146.

[32] Paladi, Nicolae, Linus Karlsson, and Khalid Elbashir. "Trust Anchors in Software

Defined Networks." European Symposium on Research in Computer Security.

Springer, Cham, 2018 (in press).

https://pages.nist.gov/800-63-3/sp800-63b.html#sec5
https://www.vaultproject.io/

