
1

D7.4 Security policy formats specification

Work Package WP7

Cloud Orchestration at the Level of Application

Project Acronym: COLA

Project Number: 731574

Programme: Information and Communication Technologies

Advanced Computing and Cloud Computing

Topic: ICT-06-2016 Cloud Computing

Call Identifier: H2020-ICT-2016-1

Funding Scheme: Innovation Action

Start date of project: 01/01/2017 Duration: 30 months

Deliverable:

D7.4 Security policy formats specification

Due date of deliverable: 29/06/2018 Actual submission date: 06/07/2018

WPL: Nicolae Paladi

Dissemination Level: PU

Version: 1.7

2

D7.4 Security policy formats specification

Work Package WP7

Status and Change History

Table 1 Status Change History

Status: Name: Date: Signature:

Draft: A. Michalas and N. Paladi 04/06/2018 Nicolae Paladi, A. Michalas

Reviewed: G. Pierantoni 05/07/2018 Gabriele Pierantoni

Approved: Tamas Kiss 06/07/2018 Tamas Kiss

Table 2 Document Change History

Version Date Pages Author Modification

V0.1 02/02 Hai-Van Dang Document template

V0.2 05/02 Hai-Van Dang

Add sections 2 – Roles in MiCADO, 3 –

security related information in TOSCA,

and 4 – required security related policies

 27/02 9-16 Antonis Michalas Change on section 2, 3, 4

 01/03 13-16 Hai-Van Dang Change on section 4

V0.25 05/03 17 Nicolae Paladi

Initial structure for application security

features

V0.3 13/03 Hai-Van Dang

Change title of section 4 into Security

actions

Add section 5 – security policies

V0.4 05/04 23 Hai-Van Dang

Re-structure the document and updated

content

V0.5 24 Antonis Michalas Change on section 2, 3, 4, 5, 6

V0.55 17/4 24 Nicolae Paladi

Update description of roles and security

features

V0.6 19/4 24 Hai-Van Dang Add section 1 and 7. Change on section 6.

V0.65 26/4 26 Hai-Van Dang Minor changes. Add section 7 - Extension

V0.7 2/5 26 Antonis Michalas Change on all sections

V0.8 10/5 27 Hai-Van Dang Updated all sections

V0.9 24/5 38 Balint Kovacs Changes on section 2, 3, 4, 5, 6

V0.95 28/5 38 Nicolae Paladi Edited text to improve readability

V1.0 31/5 38 Hai-Van Dang Updated all sections

V1.1 1/6 38 Antonis Michalas Updated all sections

V1.2 28/6 40 Nicolae Paladi Address reviewer comments

V1.3 28/6 40 Nicolae Paladi Update Figure 6

V1.4 28/6 41 Nicolae Paladi Final review and update

V1.5 5/7 45

Hai-Van Dang,

Balint Kovacs Update sections 2, 3, 4

V1.6 5/7 47 Nicolae Paladi Integrate changes, update §5, final edit.

V1.7 6/7 44 Nicolae Paladi Address final review comments

3

D7.4 Security policy formats specification

Work Package WP7

Acronyms

Table 3 List of acronyms

ADT Application Description Template

COLA Cloud Orchestration at the Level of Application

MiCADO
Microservices-based Cloud Application-level Dynamic

Orchestrator

SPM Security Policy Manager

SEA Security Enforcer Adaptor

CM Credential Manager

CS Credential Store

User MiCADO user

4

D7.4 Security policy formats specification

Work Package WP7

List of Figures and Tables

Figure 1 MiCADO Architecture [8] .. 9

Figure 2 Administrator launches MiCADO infrastructure .. 10

Figure 3 Administrator configures security settings .. 10

Figure 4 MiCADO user deploys application ... 11

Figure 5 MiCADO user updates security policies ... 11

Figure 6 Hierarchy of network security policies .. 16

Figure 3 Access policies for security-sensitive assets ... 31

Figure 4 Application security enforcement flow ... 37

Figure 5 User authentication enforcement ... 38

Figure 6 Security components initialization .. 38

Tables

Table 1 Status Change History .. 2

Table 2 Document Change History .. 2

Table 3 List of acronyms ... 3

Table 4 Security features ... 13

Table 5 Port setting in Application Description Template[2] .. 15

Table 6 L7Proxy policy properties .. 17

Table 7 SMTP Proxy policy properties ... 18

Table 8 HTTPProxy Properties .. 21

Table 9 HTTP URI Filter Proxy parameters .. 26

Table 10 Description for network security policy in ADT [10] .. 26

Table 11, Table 11 Internal database credential an Application Description Template 28

Table 12, Types of sensitive information .. 28

Table 13, Properties of sensitive information .. 30

Table 14, Description for access policy to application sensitive information 31

Table 15, Cloud user credential settings .. 33

Table 16, Example of user account in the init file ... 35

Table 17 Dependencies among components in master node ... 39

Table 18 Dependency between Security Policy Manager and Credential Manager 39

Table 19 Overview of password policy parameters ... 40

Table 20 User account lock policy parameters .. 41

Table 21 Log policy parameters .. 41

Table 22 Sensitive information access policy parameters ... 41

5

D7.4 Security policy formats specification

Work Package WP7

Table 23 Database confirmation parameters .. 42

Table 24 User reset password policy parameters ... 42

6

D7.4 Security policy formats specification

Work Package WP7

Table of Contents

Status and Change History .. 2

Acronyms .. 3

List of Figures and Tables... 4

Table of Contents .. 6

1 Introduction ... 7

2 MiCADO user roles and security features ... 9

2.1 Overview of MiCADO architecture ... 9

2.2 Identified roles in MiCADO .. 10

2.3 Infrastructure security features ... 11

2.4 Application security features ... 12

2.5 Authentication features .. 12

2.6 Summary of Security Features ... 13

3 Application security feature setting in the Application Description Template 15

3.1 Port setting ... 15

3.2 Firewall configuration .. 16

3.3 Application sensitive information setting .. 27

3.3.1 Standard description ... 28

3.3.2 Extended description .. 29

4 Infrastructure security features setting in the init file .. 33

4.1 Cloud user credential setting .. 33

4.2 Port setting ... 33

4.3 SSL configuration .. 34

4.4 User accounts ... 34

5 Security enforcement flow ... 36

5.1 Security enforcement in MiCADO .. 36

5.2 Application security features enforcement .. 36

5.3 User authentication enforcement ... 37

5.4 Infrastructure security features enforcement .. 38

5.4.1 Through the use of init file.. 38
5.4.2 Through the use of command line .. 40

5.4.3 Extension... 40

6 Summary and Conclusions .. 43

7 References ... 44

7

D7.4 Security policy formats specification

Work Package WP7

1 Introduction

This deliverable describes the security policy formats specification that aim to provide an

overview of how security features are described in the MiCADO infrastructure.

We classify security features based on the requirements towards from the two main roles

considered in the project: the administrator and user roles. The administrator is the entity that

launches the infrastructure and defines infrastructure-level security features. A user is the

entity who deploys an application in the launched infrastructure and defines application-level

security features. For each role, we classify features into basic and advanced. Basic features

must be implemented while advanced features are left for future development.

Next, we describe how basic features can be implemented in the underlying infrastructure.

Administrators control infrastructure-level security features which are configured through

configuration values in an initial configuration file (init file) used to launch the infrastructure.

Users control application-level security features which are configured through policies and

artefacts in an Application Description Template file describing the deployed application.

The Application Description Template is based on the TOSCA policy specification format

[2]. Finally, we illustrate a tentative overall process on how the security enablers defined in a

previous WP7 Deliverable[1] interact with the rest of the components to successfully deploy

the proposed security features.

Objectives

The objectives of this document are as follows:

 Describe the roles and security features present in the MiCADO architecture.

 Describe the format of application-level security feature settings in the Application

Description Template.

 Describe the format of infrastructure-level security feature settings in the

infrastructure initialization file

 Describe the security enforcement flow in the MiCADO architecture.

Scope

The purpose of this document is to specify the policy formats for security configuration on

the infrastructure and on the application levels. The policy format is described through

several concrete configuration examples of security enabler features. The examples can be

extrapolated to other security enablers and their features, both on the application and

infrastructure level.

The purpose of the document does not include defining a novel policy specification format.

Instead, this work leverages the TOSCA policy specification format. The security policy

formats described in this document will be adopted by the MiCADO framework for

configuration on the infrastructure and application level.

8

D7.4 Security policy formats specification

Work Package WP7

Relation with other work packages and deliverables

This deliverable builds upon and is closely related to several earlier deliverables produced

within the COLA project, as follows:

 WP5 Deliverables: TOSCA-based Application Description Templates are described

in D5.2. The integration of the templates with the selected application description

approach is described in D5.3 and the initial set of templates and services of use cases

defined in D5.4.

 WP6 Deliverables: This deliverable is aligned with the earlier work on the prototype

and documentation of the cloud deployment orchestrator service described in

D6.1 Prototype and documentation of the cloud deployment orchestrator service and

D6.2 Prototype and documentation of the monitoring service.

 WP7 Deliverables: The current deliverable builds upon the earlier work in

deliverables D7.1 COLA security requirements and D7.2 MiCADO security

architecture specification. The current deliverable has been developed concurrently

with deliverable D7.3 MiCADO application security classification specification and is

compatible with the security enabler open specifications described in D7.3.

The current security enabler is intended to provide input to D7.5 Design and implementations

of security modules and D5.5 Second set of templates and services of use cases.

Document structure

The remainder of this document consists of the following chapters:

 Chapter 2 – Roles and security features: This chapter identifies the main roles in the

infrastructure as well as all the security features that are associated with each role.

 Chapter 3 – Application security features setting in the Application Description

Template: This chapter illustrates how application security features can be described

in an Application Description Template.

 Chapter 4 – Infrastructure security features setting in init file: This chapter points out

how infrastructure security features can be presented in the init file.

 Chapter 5 – Security enforcement flow: This chapter demonstrates a tentative process

through which security components can process security features derived from

configuration settings that are provided by the administrator or the user during the

deployment stage.

 Chapter 6 – Summary and Conclusion: This chapter concludes the deliverable.

9

D7.4 Security policy formats specification

Work Package WP7

2 MiCADO user roles and security features

2.1 Overview of MiCADO architecture

Before identifying user roles, we summarize the core architecture of MiCADO described

previously in deliverable D6.2 [8]. MiCADO, consists of one master node and an arbitrary set

of worker nodes. The master node performs operations related to handling of resources and

scheduling of microservices, while the worker nodes execute the actual microservices. Based

on the changing requirements of the running microservices, the master node handles the

allocation or launch of worker nodes continuously and automatically.

The master node contains five main components: MiCADO Submitter, Cloud Orchestrator,

Container Orchestrator, Policy Keeper and Monitoring system. The Optimiser component is

an extension later.

Figure 1 MiCADO Architecture [8]

MiCADO submitter is the entry point where MiCADO users, i.e. users, can input an

Application Description Template (ADT) file describing the application topology and the

relevant policies into MiCADO. The topology presents components of the application, their

Docker images as well as their relationship. Moreover, it describes the virtual machine

configuration for worker nodes on which Docker images will be deployed. Meanwhile,

policies illustrate the set of rules used throughout the lifecycle of the application, involving

scaling policies and security policies. For more details on the ADT file, please refer to

deliverable D5.4 [9]. Next, the Cloud Orchestrator and the Container Orchestrator are the two

main components for scaling. Cloud Orchestrator, aims to scale up or down virtual machines

(VM) while the Container Orchestrator performs for Docker containers. In addition to that,

Policy Keeper is responsible for the auto-scaling feature of MiCADO. It relies on scaling

policies described in ADT files and actual monitoring information collected from the

Monitoring System to make decisions regarding scaling up or down virtual machines and/or

containers. Finally, the Monitoring System is implemented to actively request monitoring

data about virtual machines, microservices and Docker containers from the existing

monitoring agents in the worker nodes.

Node/container
monitor

Node/container
monitor

MICADO
WORKER
NODE

Info on
nodes/containers

Container create/destroy/scale
up/down, node evacuation, etc.

Container
Orchestrator

Worker node create/destroy/scale up hor/verCloud
Orchestrator

Monitoring
System

MiCADO
Submitter

Policy Keeper

Register
policies

Scale/update
worker
nodes

Scale/update containers

description on
infrastructure
and policies

Create
Worker
nodes

MICADO
MASTER
NODE

container

container

container

Optimiser

Advice
Parameters

MICADO
WORKER
NODE

Container
Executor

Create
container
infra

Container
Executor

10

D7.4 Security policy formats specification

Work Package WP7

Specific instalment of such core components of the MiCADO master node could be described

through an init file. After the init file is executed, the master node and a default number of

worker nodes are set up. When the MiCADO infrastructure is ready, in order to deploy an

application in the launched MiCADO, an Application Description Template (ADT) file is

sent into the MiCADO Submitter. The Submitter then parses the ADT and sends appropriate

information to the master node components.

2.2 Identified roles in MiCADO

Based on how MiCADO is launched and how application is deployed, we identify that there

are two main roles in MiCADO. The first role is the administrator who is responsible for

enabling the overall service, i.e. launching MiCADO master node through an init file. In case

the master node is set up in the cloud, the administrator uploads the init file to the cloud

service provider and requests the launch of a virtual machine with a set of predefined

components (See Figure 2).

Figure 2 Administrator launches MiCADO infrastructure

In the other scenario, where the administrator initializes the master node in a desktop, the init

file is executed locally. Later, whenever the administrator wishes to configure the master

node security settings, she could perform it by accessing the master node and executing

command line instructions (See Figure 3).

Figure 3 Administrator configures security settings

The second role is the MiCADO user, i.e. user, who may deploy an application in the

launched infrastructure. After the successful launch of the infrastructure, the user uploads an

ADT file to run the application in the infrastructure (See Figure 4). The ADT file describes

the application as well as the configuration for the worker nodes on which the application

will be deployed. In addition to that, the ADT file also involves security policies relevant to

the application, for instance, firewall policies and application sensitive information storing

requirements. Later, when the user wishes to update the application security policies, she can

upload the updated ADT file (See Figure 5).

11

D7.4 Security policy formats specification

Work Package WP7

Figure 4 MiCADO user deploys application

Figure 5 MiCADO user updates security policies

Each role has a set of different security features that needs to be carefully considered and

configured. The features that the role administrator is eligible to control are called

Infrastructure Security Features, while the ones that the role users can control are called

Application Security Features. Apart from that, by Authentication Features, we refer to

features related to MiCADO accounts that users can manage. All these features will be

thoroughly discussed in the next sections.

2.3 Infrastructure security features

This section aims to identify infrastructure-level security features that the administrator can

configure during the launch of MiCADO architecture and re-configure when MiCADO is

running. In general, the administrator is eligible to configure security settings for the master

node and manage all MiCADO users.

During the setup of the master node, the administrator configures a list of settings such as:

 Set up SSH to master node. This allows the administrator to access the master node

for further configuration or updates;

 Add cloud user credentials for the Cloud Orchestrator component. This enables the

Cloud Orchestrator to request the Cloud Service Provider to scale up or down virtual

machines;

 Install digital certificates (this will allow the protection of the communication

between different entities through TLS/SSL) for the master node;

 Add users’ accounts into MiCADO infrastructure. Such information will be used to

authenticate users before allowing them to deploy applications in.

12

D7.4 Security policy formats specification

Work Package WP7

Apart from setting up SSH that could be configured through Cloud Service Provider, other

features could be configured through the init file and/or command lines.

After the infrastructure has been launched, the administrator should be able to perform

updates such as:

 Update cloud user credential (extended feature);

 Remove cloud user credential (extended feature);

 Re-configure open ports on master node (extended feature);

 Re-configure network security policies (extended feature);

 Update SSL certificate (extended feature);

 Reset password for a user;

 Add a new user;

 Remove a user;

 Create/Define password rules for users (extended feature).

All these features can be configured through the command line.

2.4 Application security features

This section aims to identify the application-level security features that the MiCADO user

can configure during the launch of an application and re-configure when the application is

running.

After the successful launch of the infrastructure, the user uploads an ADT file to run the

application in the infrastructure. The ADT file describes the application, the configuration for

the worker nodes on which the application will be deployed, as well as relevant security

policies. For instance, the application may require a number of ports to be exposed on worker

nodes. Apart from that, users may wish to store sensitive information inside MiCADO so that

it can be reachable by the specified running microservices. By this way, users could avoid

storing the sensitive information directly in the source code or the Docker file. The following

list covers all such configurations:

 Identify open ports for the application;

 Configure network security policies for open ports;

 Add sensitive information to be stored inside MiCADO and configure which

microservices are allowed to access the sensitive information.

When the user wishes to perform certain updates while the application is running in the

infrastructure, she makes changes to the ADT file and re-upload it into MiCADO. Such

updates include the following:

 Re-configure open ports on worker nodes (extended feature);

 Re-configure network security policies for worker nodes (extended feature);

 Update application’s sensitive information (extended feature);

 Remove sensitive information of an application from the infrastructure (extended

feature).

2.5 Authentication features

Apart from the application security features that MiCADO user can configure, there are other

features related to authentication. Not everyone has the right to upload ADT files. Each user

13

D7.4 Security policy formats specification

Work Package WP7

has an account that is used for authentication in MiCADO. While the administrator can

manage all these accounts, user are able to manage their personal accounts. For instance:

 Authenticate based on user name and password;

 Change password (extended feature);

 Reset password (extended feature).

These features might be done through the REST APIs provided by MiCADO.

2.6 Summary of Security Features

For a more systematic view, we summarize the mentioned security features of both roles in

the following table along with the scope of affect and entry point for each feature.

Table 4 Security features

Security features Scope Entry point

 Infrastructure security features

1 Set up SSH Master node Cloud service

provider

2 Add cloud user credentials Master node Init file and/or

Command line

3 Install SSL certificate Master node Init file and/or

Command line

4 Add user accounts with default passwords Master node Init file and/or

Command line

5 Reset password for a user Master node Command line

6 Update cloud user credential (extended

feature)

Master node Command line

7 Remove cloud user credential (extended

feature)

Master node Command line

8 Re-configure open ports (extended feature) Master node Command line

9 Re-configure network security policies

(extended feature)

Master node Command line

10 Update SSL certificate for the master node

(extended feature)

Master node Command line

11 Add a new user Master node Command line

12 Remove a user Master node Command line

13 Create/Define password rules for users

(extended feature)

Master node Command line

 Application security features

14 Configure firewall to open defined ports for

the application

Worker node ADT file

15 Configure network security policies Worker node ADT file

16 Add application sensitive information to be

stored inside the infrastructure and configure

which microservices could access it

Master node ADT file

18 Re-configure open ports (extended feature) Worker node ADT file

19 Re-configure network security policies

(extended feature)

Worker node ADT file

14

D7.4 Security policy formats specification

Work Package WP7

20 Update/ Delete application sensitive

information (extended feature)

Master node ADT file

21 Remove sensitive information of an

application (extended feature)

Master node ADT file

 Authentication features

22 Authenticate based on user name and

password

Master node Rest API

23 Change password (extended feature) Master node Rest API

24 Reset password (extended feature) Master node Rest API

While the infrastructure security features are executed through the init file and/or command

line, the application security features are done through an ADT file. Apart from that, the

authentication features are performed through REST APIs.

In the next two chapters, we examine how information related to application security features

could be represented in an Application Description Template and how infrastructure security

features could be described in the init file. Later, we continue with the presentation of the

flows for enforcing these security features. The flows describe how components in MiCADO

communicate with each other to set up the security features.

15

D7.4 Security policy formats specification

Work Package WP7

3 Application security feature setting in the Application

Description Template

In this chapter, we focus on the basic application security features that involves

 Configure firewall to open defined ports for the application

 Configure network security policies

 Add application sensitive information to be stored inside the infrastructure and

configure which microservices could access it

More precisely, we investigate how relevant information of the application (e.g.

application’s sensitive information and firewall setting information for worker nodes), would

be defined in an Application Description Template .

3.1 Port setting

We consider the case where an application requires to open certain ports in worker nodes. In

the current Application Description Template, a user may describe which ports are required

to be open to run an application. We illustrate this below by using the relevant part from the

current ADT file developed by the COLA team (See Table 2)

Table 5 Port setting in Application Description Template[2]

t opol ogy_t empl at e:
 i nput s :
 por t _exposed_da:
 t ype: i nt eger
 descr i pt i on: por t exposed f or dat a_avenue
 r equi r ed: yes
 def aul t : 8080
 por t _exposed_mysql :
 t ype: i nt eger
 descr i pt i on: por t exposed f or mysql
 r equi r ed: yes
 def aul t : 3306

node_t empl at es :
 dat a_avenue:
 t ype: t osca. nodes . Mi CADO. Cont ai ner . Appl i cat i on. Docker
 pr oper t i es :
 exposed_por t : { get _i nput : por t _exposed_da }
 mysql :
 t ype: t osca. nodes . Mi CADO. Cont ai ner . Appl i cat i on. Docker
 pr oper t i es :
 exposed_por t : { get _i nput : por t _exposed_mysql }

In this example, it can be seen that the service data_avenue requires port 8080 to be exposed

and the service mysql requires port 3306. Therefore, ports 8080 and 3306 should be open in

all worker nodes hosting the application. Based on such services’ description in Application

Description Template, we should extract the exposed port information, then the underlying

firewalls should be configured to open all the necessary ports automatically without the user

experiencing any disruption or delay in the overall running of the service.

However, each port may be required to be attached to a network security policy. The applied

network security policy makes sure that the constraints configured by the user are enforced,

such as:

 application protocol (e.g. HTTP);

16

D7.4 Security policy formats specification

Work Package WP7

 TLS encryption;

 protocol-specific security features, such permitted methods or url filtering within

HTTP.

For instance, users may require port 8080 to be tied with a HTTP policy that only accepts

request methods of the type GET, PUT or POST with a timeout of 10 seconds and without

any encryption.

In such cases, the above representation in ADT (see Table 5) could not illustrate any network

security policies attached to open ports. Consequently, we need another way to express both

ports to be open and its relevant security network policies in ADT. Details on security

network policies and the way to describe them in ADT will be represented in Section 3.2.

3.2 Firewall configuration

Firewall configuration is done automatically through setting exposed ports for a specific

application and a set of pre-defined security policies that correspond to application-level

filtering rules.

The policy objects are organized in a hierarchical manner and attributes are added to the

specific types through inheritance, where each object type will automatically carry forward

the attributes of any of their ancestors. The object that exposes the ports also has a “security”

parameter that accepts an object derived from the AbstractNetworkSecurityPolicy type. This

fits well with the overall design approach of the Application Description Templates whereby

Policies can be arranged in a hierarchy akin to that of classes in an Object-Oriented language.

Figure 6 Hierarchy of network security policies

Each Policy in the hierarchy of network security policies (see Figure 6) is further described

with two sets of parameters: generic parameters that describe the metadata of the policy and

parameters that are specific, these sets of parameters are listed in the following sections.

Based on such information, corresponding security policies are defined in Application

17

D7.4 Security policy formats specification

Work Package WP7

Description Template [10] to fulfil the requirement of describing both open ports and its

relevant network policies in ADT.

AbstractNetworkSecurityPolicy

Description:

- Name: tosca.policies.MiCADO.Security.Network

- Type: Abstract container of all security policies

- Description: Requires to set specific configuration for firewalls in worker nodes

Derived from: tosca.policies.Root

PassthroughPolicy

Description:

- Name: tosca.policies.MiCADO.Security.Network.Passthrough

- Type: Policy that specifies no filtering

- Description: Policy that specifies that no additional filtering should be done and no

application-level firewall should be applied on the traffic

Derived from: tosca.policies.MiCADO.Security.Network

L7Proxy

Description:

- Name: tosca.policies.MiCADO.Security.Network.L7Proxy

- Type: Policy that specifies application level relaying and TLS control

- Description: Policy that specifies no additional protocol enforcement, but states that

and application-level firewall should be applied to the traffic and also can provide

TLS control

- Target: Worker nodes

Derived from: tosca.policies.MiCADO.Security.Network

Properties:

Table 6 L7Proxy policy properties

Name Type Subtype Required Description

target_ports TOSCA

application’s

exposed port

 yes Target ports that this policy is

attached to

Stage String yes Deployment

Priority Integer yes 100

Encryption boolean yes Specifies if encryption should

be employed for the protocol

proxy

18

D7.4 Security policy formats specification

Work Package WP7

encryption_key String no The key file to be used for TLS

encryption in unencrypted PEM

format

encryption_cert String no The certificate file to be used

for TLS encryption in PEM

format

encryption_offload String no Controls whether the

connection should be re-

encrypted on the server side

encryption_cipher String no Specifies the allowed ciphers

on the client side during TLS

handshake

SmtpProxy

Description:

- Name: tosca.nodes.MiCADO.SecurityPolicy.Network.SmtpProxy

- Type: Policy that specifies that the SMTP protocol should be enforced

- Description: Policy that specifies SMTP protocol enforcement, specifies that an

application-level firewall should be applied to the traffic and also can provide TLS

control

- Target: Worker node

Derived from: tosca.nodes.MiCADO.SecurityPolicy.L7Proxy

Properties:

Table 7 SMTP Proxy policy properties

Name Type Subtype Required Description

target_ports TOSCA

application’s

exposed port

 yes Target ports that this policy is

attached to

Stage string yes Deployment

Priority int yes 100

relay_check boolean yes Enable disable relay checking

permit_percent_ha

ck

boolean no Allow the % sign in the local

part of e mail addresses

error_soft boolean no Return a soft error condition

when recipient filter does not

match If enabled the proxy

will try to re validate the

recipient and send the mail

again This option is useful

when the server used for the

recipient matching is down

relay_domains list string no Domains mails are accepted

for Use Postfix style lists E g

example com allows every

19

D7.4 Security policy formats specification

Work Package WP7

subdomain of example com

but not example com To

match example com use

example com

permit_exclamatio

n_mark

boolean no Allow the sign in the local

part of e mail addresses

relay_domains_mat

cher_whitelist

list string no Domains mails are accepted

for based on a list of regular

expressions (has precedence

over blacklist)

relay_domains_mat

cher_blacklist

list string no Domains mails are rejected

for based on a list of regular

expressions

sender_matcher_w

hitelist

list string no Sender addresses that are

accepted for based on a list of

regular expressions (has

precedence over blacklist)

sender_matcher_bl

acklist

list string no Sender addresses that are

explicitly rejected for based

on a list of regular expressions

recipient_matcher_

whitelist

list string no Recipient addresses that are

accepted for based on a list of

regular expressions (has

precedence over blacklist)

recipient_matcher_

blacklist

list string no Recipient addresses that are

explicitly rejected for based

on a list of regular expressions

autodetect_domain

_from

enum

(“mailname”,

“fqdn”)

string no If you want Zorp to autodetect

the domain name of the

firewall and write it to the

Received line then set this

This attribute either set the

method how the Zorp detect

the mailname Only takes

effect if add_received_header

is TRUE

append_domain string no Domain to append to email

addresses which do not

specify domain name An

address is rejected if it does

not contain a domain and

append_domain is empty

permit_omission_o

f_angle_brackets

boolean no Permit MAIL From and

RCPT To parameters without

the normally required angle

brackets around them They

will be added when the

message leaves the proxy

anyway

interval_transfer_n int no The interval between two

20

D7.4 Security policy formats specification

Work Package WP7

oop NOOP commands sent to the

server while waiting for the

results of stacked proxies

resolve_host boolean no Resolve the client host from

the IP address and add it to

the Received line Only takes

effect if add_received_header

is TRUE

permit_long_respo

nses

boolean no Permit overly long responses

as some MTAs include

variable parts in responses

which might get very long If

enabled responses longer than

max_auth_request_

length

int no Maximum allowed length of a

request during SASL style

authentication

max_response_len

gth

int no Maximum allowed line length

of a server response

unconnected_respo

nse_code

int no Error code sent to the client if

connecting to the server fails

add_received_head

er

boolean no Add a Received header into

the email messages

transferred by the proxy

domain_name string no If you want to set a fix

domain name into the added

Receive line set this Only

takes effect if

add_received_header is

TRUE

tls_passthrough boolean no Change to passthrough mode

after a successful STARTTLS

request Zorp does not process

or change the encrypted

traffic in any way it is

transported intact between the

client and server

Extensions list string no List of allowed ESMTP

extensions, indexed by the

extension verb e g ETRN

require_crlf boolean no Specifies whether the proxy

should enforce valid CRLF

line terminations

Timeout int no Timeout in milliseconds If no

packet arrives within this in

interval the connection is

dropped

max_request_lengt

h

int no Maximum allowed line length

of client requests

permit_unknown_c

ommand

boolean no Enable unknown commands

21

D7.4 Security policy formats specification

Work Package WP7

HttpProxy

Description:

- Name: tosca.nodes.MiCADO.SecurityPolicy.Network.HttpProxy

- Type: Policy that specifies application level relaying and TLS control

- Description: Policy that specifies HTTP protocol enforcement and states that and

application-level firewall should be applied on the traffic and also can provide TLS

control

- Target: Worker node

Derived from: tosca.nodes.MiCADO.SecurityPolicy.L7Proxy

Properties:

Table 8 HTTPProxy Properties

Name Type Subtype Required Description

target_ports TOSCA

application’s

exposed port

 yes Target ports that this policy

is attached to

Stage string yes Deployment

Priority int yes 100

max_keepalive

_requests

int no Maximum number of

requests allowed in a single

session If the number of

requests in the session the

reaches this limit the

connection is terminated

The default 0 value allows

unlimited number of

requests

permit_proxy

_requests

boolean no Allow proxy type requests

in transparent mode

reset_on_close boolean no Whenever the connection is

terminated without a proxy

generated error message

send an RST instead of a

normal close Causes some

clients to automatically

reconnect

permit_unicode

_url

boolean no Allow unicode characters in

URLs encoded as u This is

an IIS extension to HTTP

UNICODE UTF 7 UTF 8

etc URLs are forbidden by

the RFC as default

permit_server

_requests

boolean no Allow server type requests

in non transparent mode

22

D7.4 Security policy formats specification

Work Package WP7

max_hostname

_length

int no Maximum allowed length of

the hostname field in URLs

parent_proxy string no The address or hostname of

the parent proxy to be

connected Either

DirectedRouter or

InbandRouter has to be used

when using parent proxy

permit_ftp

_over_http

boolean no Allow processing FTP

URLs in non transparent

mode

parent_proxy

_port

int no The port of the parent proxy

to be connected

permit_http09

_responses

boolean no Allow server responses to

use the limited HTTP 0 9

protocol As these responses

carry no control information

verifying the validity of the

protocol stream is

impossible This does not

pose a threat to web clients

but exploits might pass

undetected if this option is

enabled for servers It is

recommended to turn this

option off for protecting

servers and only enable it

when Zorp is used in front

of users

rewrite_host

_header

boolean no Rewrite the Host header in

requests when URL

redirection is performed

max_line_length int no Maximum allowed length of

lines in requests and

responses This value does

not affect data transfer as

data is transmitted in binary

mode

max_chunk

_length

int no Maximum allowed length of

a single chunk when using

chunked transfer encoding

The default 0 value means

that the length of the chunk

is not limited

strict_header_

checking_action

enum(“accep

t”, “drop”,

“abort”)

string no This attribute control what

will the Zorp do if a non rfc

conform or unknown header

found in the communication

Only the

HTTP_HDR_ACCEPT

23

D7.4 Security policy formats specification

Work Package WP7

HTTP_HDR_DROP and

HTTP_HDR_ABORT can

be used

target_port_range string no List of ports that non

transparent requests are

allowed to use The default

is to allow port 80 and 443

to permit HTTP and HTTPS

traffic The latter also

requires the CONNECT

method to be enabled

strict_header_

checking

boolean no Require RFC conformant

HTTP headers

max_auth_time int no Request password

authentication from the

client invalidating cached

one time passwords If the

time specified in seconds in

this attribute expires Zorp

requests a new

authentication from the

client browser even if it still

has a password cached

max_url_length int no Maximum allowed length of

an URL in a request Note

that this directly affects

forms using the GET

method to pass data to CGI

scripts

timeout_request int no Time to wait for a request to

arrive from the client

rerequest_attempts int no Controls the number of

attempts the proxy takes to

send the request to the

server In case of server

failure a reconnection is

made and the complete

request is repeated along

with POST data

error_status int no If an error occurs Zorp uses

this value as the status code

of the HTTP response it

generates

keep_persistent boolean no Try to keep the connection

to the client persistent even

if the server does not

support it

error_files

_directory

string no Location of HTTP error

messages

max_header int no Maximum number of

24

D7.4 Security policy formats specification

Work Package WP7

_lines header lines allowed in a

request or response

use_canonicalized

_urls

boolean no This attribute enables URL

canonicalization which

means to automatically

convert URLs to their

canonical form This

enhances security but might

cause interoperability

problems with some

applications It is

recommended to disable

this setting on a per

destination basis URL

filtering still sees the

canonicalized URL but at

the end the proxy sends the

original URL to the server

max_body

_length

int no Maximum allowed length of

an HTTP request or

response body The default 0

value means that the length

of the body is not limited

require_host

_header

boolean no Require the presence of the

Host header If set to FALSE

the real URL cannot be

recovered from certain

requests which might cause

problems with URL

filtering

buffer_size int no Size of the I O buffer used

to transfer entity bodies

permitted

_responses

list dict(stri

ng, int)

no Normative policy hash for

HTTP responses indexed by

the HTTP method and the

response code e g PWD 209

etc See also

transparent_mode boolean no Set the operation mode of

the proxy to transparent

TRUE or non-transparent

FALSE

Permit_null

_response

boolean no Permit RFC incompliant

responses with headers not

terminated by CRLF and

not containing entity body

Language string no Specifies the language of

the HTTP error pages

displayed to the client

English

error_silent boolean no Turns off verbose error

25

D7.4 Security policy formats specification

Work Package WP7

reporting to the HTTP client

makes firewall

fingerprinting more difficult

permitted_requests list string no List of permitted HTTP

methods, indexed by the

HTTP method e g GET

PUT etc

use_default

_port_in

_transparent_mode

boolean no Set the target port to the

value of

timeout_response int no Time to wait for the HTTP

status line to arrive from the

server

permit_invalid

_hex_escape

boolean no Allow invalid hexadecimal

escaping in URLs must be

followed by two

hexadecimal digits

auth_cache_time int no Caching authentication

information this amount of

seconds

Timeout int no General I O timeout in

milliseconds If there is no

timeout specified for a

given operation this value is

used

default_port int no This value is used in non-

transparent mode when the

requested URL does not

contain a port number The

default should be 80

otherwise the proxy may

not function properly

HttpURIFilterProxy

Description:

- Name: tosca.nodes.MiCADO.SecurityPolicy.Network.HttpURIFilterProxy

- Type: Policy that specifies that the HTTP protocol should be enforced and provides

URL filtering

- Description: Policy that specifies HTTP protocol enforcement with regex-based URL

filtering capabilities, specifies that an application-level firewall should be applied to

the traffic and also can provide TLS control

- Target: Worker node

Derived from: tosca.nodes.MiCADO.SecurityPolicy.HttpProxy

Properties:

26

D7.4 Security policy formats specification

Work Package WP7

Table 9 HTTP URI Filter Proxy parameters

Name Type Subtype Required Description

target_ports TOSCA

application’s

exposed port

 yes Target ports that this policy

is attached to

Stage string yes Deployment

Priority int yes 100

matcher_whitelist list string yes List of regular expressions

determining whether access

to an URL is permitted (has

precedence over blacklist)

matcher_whitelist list string yes List of regular expressions

determining whether access

to an URL is prohibited

HttpWebdavProxy

Description:

- Name: tosca.nodes.MiCADO.SecurityPolicy.Network.HttpWebdavProxy

- Type: Policy that specifies that the HTTP protocol should be enforced and allows

request methods required for WebDAV

- Description: Policy that specifies HTTP protocol enforcement with extended set of

request methods, but states that and application-level firewall should be applied to the

traffic and also can provide TLS control

Next, we use the example in Table 10 to demonstrate how the defined security network

policies in ADTs could provide information regarding the ports that are required to be open

as well as on the attached network policies.

Table 10 Description for network security policy in ADT [10]

policy_types:

 tosca.policies.MiCADO.Security.Network:

 derived_from: tosca.policies.Root

 description: Base policy for MiCADO network security policies

 properties:

 priority:

 type: integer

 required: true

 default: 100

 stage:

 type: string

 required: true

 default: deployment

 target_ports:

 type: list

 required: true

 tosca.policies.MiCADO.Security.Network.L7Proxy:

 derived_from: tosca.policies.MiCADO.Security.Network

 description: No protocol enforcement. Apply application-level firewall; can provide TLS control

 properties:

27

D7.4 Security policy formats specification

Work Package WP7

 encryption:

 type: boolean

 description: Specifies if encryption should be used

 required: true

 encryption_key:

 type: string

 description: The key file for TLS encryption as unencrypted .PEM

 required: false

 encryption_cert:

 type: string

 description: The cert file for TLS encryption as .PEM

 required: false

 encryption_offload:

 type: string

 description: Controls whether connection should be re-encrypted server side

 required: false

 encryption_cipher:

 type: string

 description: Specifies allowed ciphers client side during TLS handshake

 required: false

The example describes L7Proxy policy with some defined properties. To identify which ports

are attached with this policy, MiCADO user only needs to provide values for the properties

target_ports.

3.3 Application sensitive information setting

There are various types of sensitive information that applications may require to access

during run time. For instance, it is common for applications to have access to a wide variety

of databases and storage resources. In such case, the application needs to know the

corresponding database/storage credentials. However, this information should not be hard-

coded directly into the application’s source code because anyone with access to the source

code can retrieve this sensitive information. In addition to that, it should not be stored in the

docker image because users with access to the actual image can also access that content. For

these reasons, it is important to provide users with an option to store such information

directly in the infrastructure.

The standard description allows the user to add sensitive information through defining inputs

as supported by TOSCA. This method allows the user to provide sensitive information only

when submitting the ADT to MiCADO and pass the values for inputs as parameters. This lets

the user avoid saving sensitive information inside ADT, which may be published in a source

code repository or CI system.

However, the use of the TOSCA construct input does not allow to define additional

information which describes the modality with which this information is managed by the

infrastructure submission. To achieve this goal we have created a set of policies which can be

used to describe in detail not only the sensitive information itself but also the details of how

the infrastructure manages them.

28

D7.4 Security policy formats specification

Work Package WP7

3.3.1 Standard description

This use of the TOSCA input construct requires to include the sensitive information in an

Application Description Template. In the following example, we show how this can be done

[2]:

Table 11, Table 11 Internal database credential an Application Description Template

t opol ogy_t empl at e:
 i nput s :
 mysql _dat abase:
 t ype: s t r i ng
 descr i pt i on: env i r onment var i abl e t o set t he dat abase name
 r equi r ed: yes
 mysql _user :
 t ype: s t r i ng
 descr i pt i on: env i r onment var i abl e t o set t he use name
 r equi r ed: yes
 mysql _passwor d:
 t ype: s t r i ng
 descr i pt i on: env i r onment var i abl e t o set t he passwor d
 r equi r ed: yes
 node_t empl at es :
 dat a_avenue:
 t ype: t osca. nodes . Mi CADO. Cont ai ner . Appl i cat i on. Docker
 r equi r ement s :
 - ser v i ce:
 node: mysql
 r el at i onshi p: t osca. r el at i onshi p. Connec t sTo
 mysql :
 t ype: t osca. nodes . Mi CADO. Cont ai ner . Appl i cat i on. Docker
 pr oper t i es :
 env :
 MYSQL_ROOT_PASSWORD: { get _i nput :
mysql _r oot _passwor d }
 MYSQL_DATABASE: { get _i nput : mysql _dat abase }
 MYSQL_USER: { get _i nput : mysql _user }
 MYSQL_PASSWORD: { get _i nput : mysql _passwor d }
 exposed_por t : { get _i nput : por t _exposed_mysql }

In this example, the application data_avenue requires to use the database mysql_database in

mysql service. Both the application and mysql are deployed as docker services in the

infrastructure. However, in order to access the database, the application needs to know the

credentials for the database (i.e. mysql_user and mysql_password).

To summarize, in Table 5 we present all the described security-related information as well as

the node types that can be used to describe them in the Application Description Template.

Table 12, Types of sensitive information

Parameter Explanation

 Database

credential for

internal database

service

1 database_name Name of database instance

29

D7.4 Security policy formats specification

Work Package WP7

2 database_user Name of user

3 database_password Password of user

4 database_port Port of database instance

 Database

credential for

external database

6 admin_user Root user

7 admin_password Root password of database server

8 url_path URL path of database, including port

 Username and

password

credential

9 user_name User name

10 password password

 HTTP basic access

authentication

credential

11 token User name and password that are combined into a string

 X-Auth-Token

credential

12 Token Token that is encoded in Base64

 OAuth bearer

token credential

13 Token Token that is encoded in Base64

 OpenStack SSH

key pair

14 Token A reference (ID) to an existing keypair (already installed)

3.3.2 Extended description

The option to store applications’ sensitive information in the infrastructure should not be

configured implicitly. The main reason for this, is due to the fact that it is infeasible to

automatically distinguish which information is sensitive and which is not. Instead, this is

something that must be decided by the actual user. Apart from that, this feature should be

optional, meaning that the user may choose to store or not such information.

In addition to that, in the MiCADO infrastructure, we aim to provide as much flexibility and

maintainability as possible. At the first stage, we would utilize the Container Orchestrator

(i.e. docker swarm), to provide secure storage for sensitive information. In such case, we can

take advantage of the fact that sensitive information provisioning is managed by Swarm [3].

However, we would possibly provide another option for the secure storage based on

Credential Store [1] as an extension. To achieve such flexibility, the system should offer

users the option to select one of the existing secure storage types. Therefore, we should

design the description of sensitive information in the Application Description Template in

such a way that can be easily extended later.

30

D7.4 Security policy formats specification

Work Package WP7

Furthermore, an application that is deployed in MiCADO infrastructure could be composed

of multiple services. It is common that not all services need to access some specific sensitive

information. For instance, assuming that a web application is composed of data controller

service, web interface service and business controller service. Only the data controller service

requires to access database credential that is sensitive information. Therefore, it is better to let

the user limit access to database credential so that only data controller services can access it.

To implement these requirements a family of security policies needs to be established that

define pieces of sensitive information and tie into the existing application elements. The

policy hierarchy is set up in a way that it is extensible to new types of sensitive information

that might be identified in future.

Based on the above, we define the following possible properties of sensitive information that

need to be described in the Application Description Template.

Description:

- Name: Application sensitive information storage

- Type: Application sensitive information storage

- Description: Requires application sensitive information to be stored inside

MiCADO’s master node in such a way that application’s docker service can access it

at runtime

Properties:

Table 13, Properties of sensitive information

Name Type Description

Target TOSCA node type Docker service

Stage String Deployment

Priority Integer 100

Secret_name_list List of string List of secret names

Secret_value_list List of string List of secret values

Secret_storage_list List of binary List of secret storage

0 = Docker storage in Swarm (Default value)

1 = MiCADO’s credentials store (for extension

in the future)

Secret_access_list Nested list of

docker services

For each secret, defining names of docker

services which are allowed to access it.

Example:

Assuming that the application is composed of three docker services A, B and C.

Secr et _name_l i s t = { “ db_name” , “ db_user ” , “ db_pass” , “ db_por t ” }
Secr et _val ue_l i s t = { “ ogani zat i on” , ” t es t ” , ” 123” , ” 5000” }
Secr et _s t or age_l i s t = { 0, 0, 0, 0}
Secr et _access_l i s t = { { A, B} , { A, B} , { A, B} , { A, B} }

The policy defines that the user wishes to store 4 pieces of sensitive information as docker

secrets, including db_name, db_user, db_pass and db_port. Their corresponding values are

31

D7.4 Security policy formats specification

Work Package WP7

organization, test, 123 and 5000. In addition, only services A and B are allowed to access this

information.

Such information can be presented as security policy in an Application Description Template

as shown in Figure 15. A sample security policy is implemented in [6] and presented in

Figure 3.

Table 14, Description for access policy to application sensitive information

 i nput s :
 my_f i r s t _secr et :
 t ype: s t r i ng
 descr i pt i on: passwor d, f or exampl e
 def aul t : none

 node_t empl at es :
 app:
 t ype: t osca. nodes . Mi CADO. Cont ai ner . Appl i cat i on. Docker
 pr oper t i es :
 command: echo " Hel l o Wor l d"
 por t s :
 - 80: 80
 ar t i f ac t s :
 i mage:
 t ype: t osca. ar t i f ac t s . Depl oyment . I mage. Cont ai ner . Docker
 f i l e: busybox
 r epos i t or y : docker _hub
 r equi r ement s :
 - ser v i ce:
 node: db
 r el at i onshi p:
 t ype: t osca. r el at i onshi ps . Connec t sTo
 pr oper t i es :
 net wor k : def aul t

 db:
 t ype: t osca. nodes . Mi CADO. Cont ai ner . Appl i cat i on. Docker
 ar t i f ac t s :
 i mage:
 t ype: t osca. ar t i f ac t s . Depl oyment . I mage. Cont ai ner . Docker
 f i l e: r edi s
 r epos i t or y : docker _hub

 pol i ci es:
 - sec r et _di s t r i but i on:
 t ype: t osca. pol i c i es . Docker Secr et Di s t r i but i on
 t ar get s : [db]

Figure 7 Access policies for security-sensitive assets

SensitiveAssetAbstractAcce

SensitiveAssetDBAcces
sPolicy

SensitiveAssetDBAccess
Policy

AbstractNetworkSecurityPo

Tosca.root.po

32

D7.4 Security policy formats specification

Work Package WP7

 pr oper t i es :
 s t age: execut i on
 pr i or i t y : 100
 f i l e_secr et s :
 my_pem_secr et : t mp/ my_f i l e. pem
 t ex t _secr et s :
 my_db_name_secr et : " name of my db"

 - sec r et _di s t r i but i on:
 t ype: t osca. pol i c i es . Mi CADOSecr et Di s t r i but i on
 t ar get s : [app]
 pr oper t i es :
 s t age: execut i on
 pr i or i t y : 100
 t ex t _secr et s :
 my_ot her _secr et : { get _i nput : my_f i r s t _secr et }

In this example, the user defines two access policies for the application’s sensitive

information.

 First policy, defines that only the application ‘db’ can access the sensitive information

retrieved from the file ‘tmp/my_file.pem’ or from text "name of my db". Furthermore,

this sensitive information would be stored as a docker secret in swarm based on the

TOSCA type ’tosca.policies.DockerSecretDistribution’.

 Second policy, defines that only the application ‘app’ can access the sensitive

information ‘my_first_secret’, that would be stored in the Credential Store based on

the TOSCA type ’ tosca.policies.MiCADOSecretDistribution’.

With this approach, to support future extension of the infrastructure to support various secure

storage for different kinds of sensitive information, it would suffice to define a new TOSCA

type for the new secure storage.

33

D7.4 Security policy formats specification

Work Package WP7

4 Infrastructure security features setting in the init file

Infrastructure security features are currently not implemented based on policies. A policy-

based implementation is considered as a future step. Instead, several infrastructure security

features would be initialized through the init file, some others would be provisioned

automatically while the rest would require administrator’s configuration using command line

through SSH. In this chapter, we illustrate how basic infrastructure security features can be

described directly in the init file.

The init file is a descriptor in YAML[12] format that is consumed by the configuration

management tool (cloud-init in the current implementation, which will be exchanged to

Ansible[13] in version 4) to perform security-related settings and adding security-related

information to the infrastructure upon initial provisioning. The following init file examples

are subject to change during implementation and have to be included in their current format

in the product documentation.

4.1 Cloud user credential setting

In the current version of MiCADO
1
, cloud user credentials are described in the init file. At

first, the cloud user’s credentials (i.e. email address and password), are written in a temporary

file. Later, when the Cloud Orchestrator component is deployed, it retrieves the credential

from that file.

Table 15, Cloud user credential settings

wr i t e_f i l es :
#USER DATA
- pat h: / var / l i b/ mi cado/ occopus/ t emp_user _dat a. yaml
 cont ent : |
 user _dat a:
 aut h_dat a:
 t ype: c l ouds i gma
 emai l : [cl oud user name]
 passwor d: [cl oud user passwor d]

As in the above example, the cloud user’s credentials are temporarily stored in a file that the

Cloud Orchestrator (Occopus), can access later. However, storing user’s credentials in a static

file is considered as insecure. Storing them in a secure storage such as the one provided by

the Credential Store (CS) component can properly safeguard this information. CS is designed

be deployed as a web service that provides a restful API that allows a user to store sensitive

information and will be added in a future release as a security enhancement. The Security

Policy Manager (SPM) would call this API to add the corresponding cloud username and

password into the CS. As a consequence, it must be ensured that the CS component would be

deployed and launched prior to that API call. This may be managed in the docker-compose

file that is used to launch components in the master node as docker containers.

4.2 Port setting

The MiCADO infrastructure requires the firewall to open several ports that its components

need. The open ports would be set up by default by the infrastructure. However, for later

extension, it could be set up by retrieving necessary ports through the init files for both the

master and the worker nodes.

1

 At the time that this document is written, MiCADO is on Version 3.0.

34

D7.4 Security policy formats specification

Work Package WP7

The infrastructure-related port settings do not affect settings performed through the ADT and

are solely responsible for the operation of the MiCADO internal infrastructure. Ports defined

in the ADT are opened automatically on the worker nodes on deployment of the application.

Below is the list of the required open ports.

 TCP: 22, 53, 80, 443, 2375, 2377, 7946, 8300, 8301, 8302,
8400, 8500, 8600, 9090, 9093, 9095, 9100, 9200

 UDP: 7946, 8301, 8302, 8600

The above list may change accordingly based on MiCADO’s infrastructure changes.

4.3 SSL configuration

Communication between master node and worker nodes, among worker nodes, and between

MiCADO with users should be protected via SSL/TLS. Meanwhile, the communication

between the deployed application and the end users connecting to the application depends on

the application developer. It may be protected or not, depending on specific application

development.

1. Communication between master node and worker nodes. For instance, for sending

logs and operational monitoring information from worker nodes to the master node.

This case is managed by the infrastructure itself, based on its internal components and

implementation details.

2. Communication between a user and MiCADO. In this case, we can use the self-signed

certificate. The init file may describe a X509 key/cert for now, or hostname to

automatically generate a self-signed certificate inside MiCADO. However, it can

possibly be extended to use LetsEncrypt certificate later. Then the init file may

describe the hostname and MiCADO would automatically connect to LetsEncrypt for

auto certificate provisioning. In general, SSL-related information that can be

presented in the init file involves the following:

 SSL-cert-provision-type: { f i l e, sel f - s i gn, l et sencr ypt 2} , meaning

that SSL certificate type could be a certificate file, or self-signed certificate

generated by the infrastructure, or LetsEncrypt certificate;

 SSL-cert-hostname: { host name }

3. Communication between application users with application assuming that the

application supports https. This is considered as an advanced feature that may be

extended later. Although it is provided by the infrastructure, it is an application

security feature, that cannot be decided until the user deploys their application. The

needed x509 keys are to be included in the corresponding sections of the configured

security policy and described in the Application Description Template.

4. Communication among application containers in worker nodes: it is protected by

Swarm overlay network

5. Communication between MiCADO with admin: protected by SSH

4.4 User accounts

MiCADO’s current version does not support authentication. This is a new feature that will be

added into the infrastructure. In this scope, authentication means verifying any user who

2
 LetsEncrypt, a free, automated, and open Certificate Authority. https://letsencrypt.org/

35

D7.4 Security policy formats specification

Work Package WP7

wishes to deploy an application in the infrastructure, and it is based on password verification.

Therefore, in order to perform authentication, a database of users’ accounts stored in the

master node is required. The Credential Manager (CM) component stores users’ accounts and

is deployed as a web service that provides a restful API to manage users’ accounts, including

adding a new user. The relation of CM to other security components is described in

Deliverable 7.3.

At least one user account needs to be added prior to the deployment of an application.

Although the administrator could add a user by logging into the master node and utilize the

command line, it is better to provide an option to add a user at the time of launching the

infrastructure. The implementation should support adding the user account (i.e. username and

password), on initial provisioning through the init file. There are several ways to implement

this behaviour, a preliminary design is to use the Security Policy Manager (SPM) component

as a workflow owner. The SPM calls the restful API of the CM component with the user

account as argument to insert it into the CM as below example.

Table 16, Example of user account in the init file

 cr edman:
 i mage: my_docker _r egi s t r y / c r edman
 cont ai ner _name: c r edman
 expose:
 - 5001
 spm:
 depends_on:
 - c r edman
 i mage: my_docker _r egi s t r y / spm
 cont ai ner _name: spm
 expose:
 - 5003
 command: >
 / bi n/ bash - c "
 . / wai t _f or _i t . sh c r edman: 5001;
 cur l cr edman: 5001/ v1. 0/ adduser - X POST - - dat a ' { " user name" :
" user 01" , " passwor d" : " 123" , " emai l " : " user 01@emai l . com" } '
 py t hon . / my_scr i pt . py
 "

In the example above, there are two containers, defining security enablers described in

Deliverable 7.3:

1. cr edman, implementing the Credential Manager;

2. spm, implementing the Security Policy Manager.

The Security Policy Manager requests a REST call from the credential manager to add a user

into the infrastructure.

The call may have the following form: ‘ cr edman: 5001/ v1. 0/ adduser ’

Note that this is an example and the final implementation may change later.

36

D7.4 Security policy formats specification

Work Package WP7

5 Security enforcement flow

In this section, we present the flow we designed for enforcing the security features. In

addition to the application and infrastructure security features, we also elaborate on the

adopted authentication feature that verifies users prior allowing them to deploy an application

in the infrastructure.

5.1 Security enforcement in MiCADO

In the context of this document, a security enforcement flow is the chaining of security

components that ensures that the security of data throughout the system. In particular, such

chaining prevents unauthorized transfer of data across security domains and restricts transfer

to specific interfaces.

The security enforcement flows described in this section aim to preserve the integrity and

authenticity of MiCADO user actions (to e.g. authenticate and deploy applications) and

administrators (to configure and initialize security components). The hierarchy of security

enforcement flows in MiCADO mirrors the hierarchy of existing MiCADO roles

(administrator and user).

Users interact with the MiCADO framework primarily to deploy application and describe

security policies in ADTs. Administrators describe configurations of security components in

init files and command line instructions. Note that the purpose of the security enforcement is

to configure the correct use of the security enablers, rather than protect the security of

specific instances of ADTs. Specific ADT artefacts are protected using industry-standard

communication security protocols, such as Transport Layer Security[11].

The security enforcement flows described below implement the MiCADo security

architecture described in Deliverable 7.2[1] and will be implemented as part of the upcoming

deliverables. While the implementation details are subject to change, the prototypes will be

implemented considering the security enforcement flows described below.

5.2 Application security features enforcement

The following figure illustrates a first design of the flow of information that connects the

security policies defined in the Application Description Template to the security components.

37

D7.4 Security policy formats specification

Work Package WP7

Figure 8 Application security enforcement flow

Description:

1. User uploads ADT file to the Submitter;

2. Upon reception, the sub-component Parser and Mapper of the Submitter parses and

maps the file content into a parsed object (a complex Python object returned by the

OpenStack TOSCA Parser [7] - whose attributes and methods facilitate future

processing of the template) and sends it to the Security Enforcer Adaptor (SEA), that

is also a sub-component of the Submitter;

3. SEA translates the TOSCA objects into configuration for Zorp and Docker daemon.

The configuration for Docker daemon (the sensitive information storage setting),

would contain a list of sensitive information with their required storage and

application services that would use them.

The configuration for Zorp is based on configured network security policies

4. SEA executes REST calls to Security Policy Manager (SPM);

5. SPM executes a command line call to docker daemon to add sensitive information

into swarm and allow appropriate application services to access it;

6. SPM stores configuration information for Zorp into Consul;

7. Zorp retrieves the configuration information from Consul and executes it.

5.3 User authentication enforcement

Figure below, describes how MiCADO executes user authentication.

38

D7.4 Security policy formats specification

Work Package WP7

Figure 9 User authentication enforcement

1. User provides user name and password to the infrastructure through protected

channel;

2. Upon reception, Zorp component in the infrastructure calls REST API of CM to

verify user name and password;

3. CM verifies the received user name and password based on a local file or database

that store users’s credentials, then returns the result to Zorp;

4. Upon reception, Zorp allows or disallows the user to use the infrastructure based on

the received result.

5.4 Infrastructure security features enforcement

5.4.1 Through the use of init file

The following figure depicts what security components are deployed during the launch time

of the infrastructure. The arrow between any two components inside the master node

indicates their start-up order.

Figure 10 Security components initialization

1. Administrator generates an init file and runs it into the cloud service provider (CSP)

or a desktop. This init file describes all core components of the infrastructure,

including the security components.

2. The master node is launched with a list of components:

 Security Policy Manager, i.e. SPM, as a docker container;

 Credential Store, i.e. CS, as a docker container;

 Credential Manager (i.e. CM, as a docker container);

 Zorp as a docker container,

 Crypto Engine, i.e. CE, as a library.

39

D7.4 Security policy formats specification

Work Package WP7

3. SPM executes

 REST call to Credential Store to insert the cloud user credential in this secure

storage;

 REST call to Credential Manager to insert user account, that will be used to

authenticate user later, into this secure storage;

 Validates security policies in incoming Application Description Templates and

signals other components if an application-level firewall container should be

deployed along with the application;

 Creates current Zorp configuration from exposed ports and network security

policies and saves them to the distributed key-value store;

 Signals Zorp instances to re-load their configuration.

4. Prior to spawning a new worker node, the Cloud Orchestrator executes REST calls to

SPM in order to

 Request a token SSL setting on the new worker node;

 Retrieve ports required to be open on the new worker node;

 Retrieve the cloud user credential to be able to send requests to cloud service

provider.

According to the activity flow at launch time of the master node, it can be seen that there

exist dependencies among components in the master node.

Table 17 Dependencies among components in master node

Dependency Explanation

1 Security Policy Manager

depends on Credential Manager

CM service needs to be ready before SPM

execute REST call to add a user account

2 Security Policy Manager

depends on Credential Store

CS service needs to be ready before SPM execute

REST call to add cloud user credential

3 Cloud Orchestrator depends on

Security Policy Manager

SPM needs to be ready before CO notifies the

SPM that a new worker node is to be provisioned

and request SPM to return a token for setting up

Zorp SSL in newly created worker node

Such dependencies can be complied with by utilizing the start-up order configuration in

docker compose [4]. The following example demonstrates how to configure it in the init file

that may change later.

Table 18 Dependency between Security Policy Manager and Credential Manager

 cr edman:
 i mage: my_docker _r egi s t r y / c r edman
 cont ai ner _name: c r edman
 expose:
 - 5001
 spm:
 depends_on:
 - c r edman
 i mage: my_docker _r egi s t r y / spm
 cont ai ner _name: spm
 expose:
 - 5003
 command: >

40

D7.4 Security policy formats specification

Work Package WP7

 / bi n/ bash - c "
 . / wai t _f or _i t . sh cr edman: 5001;
 cur l cr edman: 5001/ v1. 0/ adduser - X POST - - dat a ' { " user name" :
" user 01" , " passwor d" : " 123" , " emai l " : " user 01@emai l . com" } '
 py t hon . / my_scr i pt . py
 "

Assuming that we have a bash script wai t _f or _i t . sh that checks if a REST service is

available, and REST API cr edman: 5001/ v1. 0/ adduser that adds a user into the

Credential Manager. As shown in the example, SPM depends on the Credential Manager

component (CredMan). In addition, when SPM is started, it continuously checks if the service

from CredMan on port 5001 is ready before calling REST API to add a new user into the

Credential Manager.

5.4.2 Through the use of command line

While some infrastructure security features need to be initialized using the init file, others can

be configured later by the administrator through command line using SSH connection.

Furthermore, as soon as the administrator needs to change some security features, he can do it

through the command line. For instance:

 Update cloud user credential;

 Update SSL certificate of the master node for MiCADO;

 Update the credentials of MiCADO master node users.

5.4.3 Extension

The infrastructure may be extended to support the administrator to configure security features

by defining policies (through the init file) or updating policies (using command line). Has

there has been no decision as of now on how to implement the description of such policies,

we describe them in the format of tables. Each table contains a list of parameters for each

defined policy along with its type and meaning.

1. Password policy

This policy defines how users should choose their passwords.

Table 19 Overview of password policy parameters

Parameter Type Meaning

PASSWD_MIN_LEN Integer Minimum length of password

PASSWD_MAX_LEN Integer Maximum length of password

UPPERCASE Boolean Indicating if the password must contain at least

one uppercase letter or not

LOWERCASE Boolean Indicating if the password must contain at least

one lowercase letter or not

NUMBER Boolean Indicating if the password must contain at least

one number or not

SPECIAL_CHAR Boolean Indicating if the password must contain at least

one special character or not

SPECIAL_CHAR_LIST List List of allowed special characters

RESET_PWD_AFTER Integer The number of days before the user is asked to be

change their password

41

D7.4 Security policy formats specification

Work Package WP7

2. User account lock policy

This policy defines how the infrastructure deals with failed log in attempts (e.g. locking out

accounts).

Table 20 User account lock policy parameters

Parameter Type Meaning

LOCK_DURATION Integer How long (in minutes) an account should be

locked?

MAX_FAILS Integer Maximum number of allowed failed attempts to

log in before the account is locked

SEND_MAIL Boolean Indicating if the system shall send email to the

user whose account is locked or not.

3. Log policy

This policy defines how the system logs its error and notifies the administrator.

Table 21 Log policy parameters

Parameter Type Meaning

LOG_LEVEL String Indicating the lowest level that should be logged.

For instance, LOG_LEVEL = INFO means that

logging all information at levels INFO,

WARNING, ERROR, CRITICAL but the level

DEBUG should be logged

MAIL_NOTIFICATION Integer Indicating if the system sends notification email

to the admin whenever errors happen

MAIL_LOG_LEVEL String Indicating the lowest level that a notification

email should be sent to the administrator.

For instance, LOG_LEVEL = ERROR means that

logging all information at levels ERROR,

CRITICAL should be notified by email to the

admin.

MAIL_SERVER String Mail server

MAIL_SERVER_PORT Integer Mail server port

SENDER_MAIL String Mail address

SENDER_MAIL_PASSWD String Mail password

RECEIVER_MAIL String Mail address

4. Sensitive information access policy

This policy defines which components can access sensitive information stored in the master

node.

Table 22 Sensitive information access policy parameters

Parameter Type Meaning

SECRET_NAME String Name of sensitive information. This name should

match the name stored in the Credential Store

component

COMPONENT_LIST String Name of components, i.e. docker containers, in the

42

D7.4 Security policy formats specification

Work Package WP7

master node that are allowed to access the sensitive

information

5. Database configuration

This configuration defines the location to store the credential database.

Table 23 Database confirmation parameters

Parameter Type Meaning

DB_PATH String Path and filename of the database

6. User reset password policy

This policy defines how the infrastructure processes the reset password request.

Table 24 User reset password policy parameters

Parameter Type Meaning

RESET_BY_LINK_OR_TEMP_PASSWD Integer Indicating if sending a

temporary password or a reset-

password-link to the user

VALID_DURATION Integer How long (in minutes) a

temporary password or a reset-

password-link shall be valid? If

time is over and user does not

change to their new password,

the password keeps unchanged.

43

D7.4 Security policy formats specification

Work Package WP7

6 Summary and Conclusions

In this document, we identified the necessary security features for the MiCADO

infrastructure. To this end, we identified features supported for applications as well as

features that are directly associated with the infrastructure. With application security features,

users can customize their parameters to make them suitable for their applications. However,

only the administrator can configure the security features of the infrastructure.

Users can configure security features of an application by creating valid policies in an

Application Description Template based on the TOSCA specification language. Each

generated Application Description Template file will be given as input to the Submitter who

then passes it to the Security Policy Manager (SPM) component. Upon reception, SPM sends

a request to the relevant security components to deploy each security feature. This request

can be processed automatically without the involvement of a user. Instead, the user just needs

to worry about customizing policies that are defined in the Application Description Template

file. Users do not need to know about how these features would be executed (e.g. by which

internal components etc.).

Meanwhile, security components and infrastructure security features are presented in the init

file. The security components are launched right after the master node is started. After that,

security features are executed. This requires control on start-up order of the security

components and their seamless interactions in the infrastructure.

In both cases, in order to apply application and infrastructure security features, it requires

communication among different components in the infrastructures. In this document, we

pointed out how these components would communicate to each other and how the

configuration information will be processed from the user or admin to the internal component

of the infrastructure that needs to be deployed. Although this might be changed in the future

to adapt the actual implementation, this is a detailed overview on how the system works in

order to provide basic security features.

44

D7.4 Security policy formats specification

Work Package WP7

7 References

[1] D7.2 - MiCADO security architecture specification

[2] https://github.com/COLAProject/COLARepo/blob/master/templates/dataavenue.yaml

last accessed on 3 May, 2018

[3] https://docs.docker.com/engine/swarm/key-concepts/, last accessed on 5 Feb, 2018

[4] https://docs.docker.com/compose/startup-order/, last accessed on 19 April, 2018

[5] http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-

Simple-Profile-YAML-v1.2.pdf, last accessed on 21 Feb, 2018

[6] https://github.com/COLAProject/COLARepo/blob/master/examples/secret_example.y

aml, last accessed on 10 May, 2018

D7.3 - Design of application level security classification formats and principles

[7] https://github.com/openstack/tosca-parser, last accessed on 28 June, 2018

[8] D6.2 - Prototype and documentation of the monitoring service

[9] D5.4 - First Set of Templates and Services of Use Cases

[10] https://github.com/micado-

scale/tosca/blob/master/policy/security/network/firewall_configuration.yaml, last

accessed on 28 June, 2018

[11] Dierks, Tim, and Eric Rescorla. The transport layer security (TLS) protocol version
1.2. No. RFC 5246. 2008.

[12] YAML Web Page. http://yaml.org/

[13] Ansible Web Page. https://www.ansible.com/

https://github.com/COLAProject/COLARepo/blob/master/templates/dataavenue.yaml
https://github.com/COLAProject/COLARepo/blob/master/templates/dataavenue.yaml
https://docs.docker.com/engine/swarm/key-concepts/
https://docs.docker.com/compose/startup-order/
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.pdf
https://github.com/COLAProject/COLARepo/blob/master/examples/secret_example.yaml
https://github.com/COLAProject/COLARepo/blob/master/examples/secret_example.yaml
https://github.com/openstack/tosca-parser
https://github.com/micado-scale/tosca/blob/master/policy/security/network/firewall_configuration.yaml
https://github.com/micado-scale/tosca/blob/master/policy/security/network/firewall_configuration.yaml
http://yaml.org/

