
D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 1 of 84

Cloud Orchestration at the Level of Application

Project Acronym: COLA

Project Number: 731574

Programme: Information and Communication Technologies

Advanced Computing and Cloud Computing

Topic: ICT -06-2016 Cloud Computing

Call Identifier: H2020-ICT -2016-1

Funding Scheme: Innovation Action

Start date of project: 01/01/2017 Duration: 30 months

Deliverable:

D7.5 MiCADO security modules reference implementations

Due date of deliverable: 31/12/2018 Actual submission date: 21/12/2018

WPL: Nicolae Paladi

Dissemination Level: PU

Version: 1.6

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 2 of 84

Status and Change History

Table 1 Status Change History

Status: Name: Date: Signature:

Draft: N. Paladi 11/12/2018 Nicolae Paladi

Reviewed: B. Despotov 20/12/2018 Bogdan Despotov

Approved: T. Kiss 21/12/2018 Tamas Kiss

Table 2 Document Change History

Version Date Pages Author Modification

V0.1 20/11 7 Nicolae Paladi Document template

V0.2 22/11 18 Nicolae Paladi

Add sample description for Image

Integrity Verifier (Section 3.1)

V0.3 23/11 35 Nicolae Paladi

Add sample description for the Crypto

Engine security enabler (Section 3.2)

V0.4 03/12 34 Nicolae Paladi

Review Crypto Engine security enabler

(Section 3.2)

V0.5 03/12 34 Nicolae Paladi Add introduction to deliverable

V0.6 04/12 71

Antonis Michalas

Amjad Ullah

Hai-Van Dang

Add sample description for the Credential

Engine and Credential Store security

enablers

V0.7 04/12 71 Nicolae Paladi Write conclusion (to be updated)

V0.8 04/12 71 Amjad Ullah Changes to Section 2

V0.9 04/12 71 Peter Bauer Changes to Section 2

V1.0 04/12 71 Hai-Van Dang Changes to Section 2 and 3.4

V1.1 05/12 72 Nicolae Paladi Add section 4 Artefact Traceability

V1.2 05/12 75

Amjad Ullah

Hai-Van Changes to Section 3.3 and 3.4

V1.3 10/12 83 Peter Bauer

Add description of Zorp, Security Policy

Manager and Master-Worker Secure

Communication security enablers

V1.4 11/12 83 Balint Kovacs

Minor wording and formatting fixes in all

sections

V1.5 18/12 84 Nicolae Paladi Address some issues raised by reviewer

V1.6 20/12 84 Balint Kovacs Final edit

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 3 of 84

Glossary

API Application Programming Interface

AWS Amazon Web Services

COLA Cloud Orchestration at the Level of Application

UML Unified Modelling Language

MiCADO
Microservice-based Cloud Application-level Dynamic

Orchestrator

CM Credential Manager

PM Policy Manager

CSP Cloud Service Provider

MAC Message Authentication Code

HMAC Hash-based Message Authentication Code

DoS Denial of Service Attack

PII Personally Identifiable Information

Table 3 Glossary

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 4 of 84

List of Figures and Tables

Figure 1 MiCADO infrastructure with core components [14]... 10

Figure 2 MiCADO infrastructure with core components and security components 11

Figure 3 Component interaction for the image integrity verifier and image verification

sequence ... 13

Figure 4 The Image Integrity Verifier developed as an SGX library 14

Figure 5 Integrity Verification Mechanism inside the IIV component.................................... 15

Figure 6 image verifier rest API invocation and response. .. 16

Figure 7 Summary of final flow implementation. ... 18

Figure 8 Crypto Engine Functionality ... 19

Figure 9 genToken API format request ... 24

Figure 10 genKey API format request ... 25

Figure 11 encryptdata API format request ... 26

Figure 12 decryptdata request/response specification ... 27

Figure 13 rsaencryptdata request/response specification ... 28

Figure 14 rsadecryptdata request/response specification ... 29

Figure 15 getHash request/response specification ... 30

Figure 16 genCert request/response specification ... 32

Figure 17 genSignature request/response specification ... 33

Figure 18 veriSignature request/response specification .. 34

Figure 19 Component interaction for the infrastructure secret request 36

Figure 20 Vault Initialization Mechanism ... 37

Figure 21 Secret Insertion Mechanism .. 38

Figure 22 Secret Insertion request and response .. 38

Figure 23 Secret Retrieval Mechanism .. 39

Figure 24 Secret Retrieval request and response ... 40

Figure 25 Secret Deletion Mechanism ... 41

Figure 26 Secret Deletion request and response .. 41

Figure 27 Secret Update Mechanism ... 42

Figure 28 Secret Update request and response .. 42

Figure 29 Credential Store Flow Implementation ... 44

Figure 30 Component interaction for user authentication ... 45

Figure 31 User Creation Mechanism ... 46

Figure 32 New user creation API request and response .. 47

Figure 33 User Information retrieval mechanism .. 48

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 5 of 84

Figure 34 User information retrieval API request and response .. 49

Figure 35 User update mechanism ... 50

Figure 36 User update API request and response .. 50

Figure 37 User deletion mechanism .. 52

Figure 38 User delete API request and response ... 52

Figure 39 All users retrieval mechanism ... 53

Figure 40 All users retrieval API request and response ... 53

Figure 41 New role creation mechanism ... 55

Figure 42 New role creation API request and response formats ... 55

Figure 43 All roles retrieval mechanism .. 56

Figure 44 All roles retrieval API request and response formats .. 56

Figure 45 Role retrieval mechanism .. 57

Figure 46 Role retrieval API request and response formats .. 58

Figure 47 Role label update mechanism .. 59

Figure 48 Role label update API request and response formats .. 59

Figure 49 Role deletion mechanism .. 60

Figure 50 Role deletion API request and response formats ... 60

Figure 51 User role retrieval mechanism ... 61

Figure 52 User role retrieval API request and response formats ... 62

Figure 53 User role revocation mechanism ... 63

Figure 54 User role revocation API request and response formats ... 63

Figure 55 User role grant mechanism .. 64

Figure 56 User role grant API request and response formats .. 64

Figure 57 User verification mechanism ... 65

Figure 58 User verficiation API request and response formats ... 66

Figure 59 User password change mechanism .. 67

Figure 60 User password change API request and response formats 67

Figure 61 User password reset mechanism .. 68

Figure 62 User password reset API request and response formats .. 69

Figure 63 Credential Manager Flow Implementation .. 70

Figure 64 Network flow ... 71

Figure 65 Firewall communication overview .. 72

Figure 66 TLS setup process.. 73

Figure 67 HTTP basic authentication .. 74

Figure 68 HTTP form authentication ... 75

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 6 of 84

Figure 69 Request routing .. 76

Figure 70 Master-Worker Secure Communication setup .. 79

Tables

Table 1 Status Change History .. 2

Table 2 Document Change History .. 2

Table 3 Glossary .. 3

Table 4 API specification, for main functionalities offered by the Crypto Engine. 21

Table 5 Parameter requirements of genKey API usage ... 25

Table 6 Parameter requirements for symmetric APIs usage .. 27

Table 7 Parameter requirements for Asymmetric API usage .. 28

Table 8 Parameter requirement for getHash API usage... 30

Table 9 Parameter requirements for genCert API usage ... 32

Table 10 Parameter requirements for genSignature and veriSignature APIs 33

Table 11 Crypto Engine Configuration parameters ... 34

Table 12 Vault Server configuration in HCL format ... 36

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 7 of 84

Table of Contents

Status and Change History ... 2

Glossary ... 3

List of Figures and Tables.. 4

Table of Contents ... 7

1 Introduction .. 9

2 Overview of MiCADO security modules ... 10

3 MiCADO Security Modules Implementation Description ... 13

3.1 Image Integrity Verifier .. 13

3.1.1 Image Integrity Verifier Functionality ... 13
3.1.2 Image Integrity Verifier Design ... 14
3.1.3 Image Integrity Verifier Implementation ... 15

3.2 Crypto Engine ... 19

3.2.1 Crypto Engine Functionality .. 19
3.2.2 Functional and Security Requirements .. 20
3.2.3 Design and Implementation ... 22

3.3 Credential Store... 35

3.3.1 Credential Store Functionality ... 35
3.3.2 Terminology ... 35
3.3.3 Credential Store Interaction in MiCADO .. 35
3.3.4 Credential Store Design and Implementation .. 36

3.4 Credential Manager ... 44

3.4.1 Credential Manager Functionality ... 44
3.4.2 Credential Manager Interaction in MiCADO .. 45
3.4.3 Credential Manager Design and Implementation .. 45

3.5 Master Node Zorp Firewall ... 70

3.5.1 Master Node Zorp Firewall Functionality ... 70
3.5.2 Master Node Zorp Firewall Design ... 70
3.5.3 Master Node Zorp Firewall Implementation ... 71

3.6 Security Policy Manager ... 76

3.6.1 Security Policy Manager Functionality ... 76
3.6.2 Security Policy Manager Design ... 77
3.6.3 Security Policy Manager Implementation ... 77

3.7 Master-Worker Secure Communication ... 78

3.7.1 Master-Worker Secure Communication Functionality 78
3.7.2 Master-Worker Secure Communication Design .. 78
3.7.3 Master-Worker Secure Communication Implementation 79

4 Artefact Traceability ... 80

4.1 Image Integrity Verifier .. 80

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 8 of 84

4.2 CryptoEngine .. 80

4.3 Credential Manager ... 80

4.4 Credential Store... 81

4.5 Zorp Firewall... 81

4.6 Security Policy Manager ... 81

4.7 Master-Worker Secure Communication ... 82

5 Summary and Conclusions ... 83

6 References .. 84

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 9 of 84

1 Introduc tion

This document focuses on describing the reference implementation of MiCADO security

enablers. The reference implementation of MiCADO security enablers and the current

MiCADO security modules reference implementation description constitute Deliverable D7.5.

The current document aims to describe the specific design and implementation decisions taken

during the development of the MiCADO security modules within the COLA project.

To achieve that, we follow two approaches. First, we thoroughly describe the reference

implementation of the MiCADO security modules delivered in the project. Second, we outline

the traceability of the MiCADO security module implementations relative to the earlier

relevant deliverables, namely D7.1 COLA security requirements, D7.2 MiCADO security

architecture specification, D7.3 Design of application level security classification formats and

principles and D7.4 Security policy formats specification.

The main objectives of this document are as follows:

¶ Describe the reference implementation of MiCADO security enablers.

¶ Document the technical decisions, implementation trade-offs and limitations of the

reference implementations.

¶ Complement the technical implementation of the MiCADO security enablers.

The MiCADO security modules reference implementations will be used as input for D7.6

ñMiCADO security evaluation reportò, the last deliverable in Work Package 7 of the COLA

project. The current document explicitly excludes out of its scope the description of the

integration of the MiCADO security enablers into the MiCADO orchestration system. A report

describing the integration of the MiCADO security enablers is expected in the following

deliverable of the project, D7.6 ñMiCADO security evaluation reportò.

The remainder of this deliverable is structured as follows:

¶ Chapter 2 ï Overview of MiCADO security modules.

This chapter contains an overview of the MiCADO security modules in the context of

the MiCADO platform.

¶ Chapter 3 ï MiCADO security modules implementation description.

This chapter contains the descriptions of the MiCADO security modules included in

the deliverable. The descriptions focus on the specific implementation decisions and

solutions, implementation trade-offs and limitations of the delivered reference

implementations.

¶ Chapter 4 ï Artefact Traceability

This chapter describes the traceability of the MiCADO security enabler

implementations to the requirements and design specifications described in the earlier

deliverables.

¶ Chapter 5 ï Summary and conclusion

This chapter concludes this deliverable.

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 10 of 84

2 Overview of MiCADO security modules

This section provides an overview on implemented security modules and their interaction with

existing core components of MiCADO. Further details on the implementation of security

modules will be described in Section 3.

Figure 1 MiCADO infrastructure with core components [14]

Figure 1 displays MiCADO infrastructure, where it is composed of a master node and worker

node(s). We mainly focus on MiCADO master node that consists of various components

having different functionalities. The short descriptions of these components are provided

below, except the Optimiser, which currently exists considering future extension.

¶ Submitter: It receives the Application Description Template (ADT) file from MiCADO

users. The ADT file contains details on the application topology and the relevant

policies, e.g. scaling and/or security policies. Please refer to deliverable D5.4 [15] for

more details on the ADT file;

¶ Monitoring system: It collects monitoring data of virtual machines, microservices and

containers from worker nodes;

¶ Policy Keeper: The purpose of the Policy Keeper is twofold. Firstly, it facilitates the

definition of scaling policies in the ADT file. Secondly, it makes a scaling decision of

virtual machines/containers based on the collected monitoring information;

¶ Cloud Orchestrator: It executes the scaling decision of virtual machines made by the

Policy Keeper;

¶ Container Orchestrator: It performs the scaling of containers in worker nodes made by

the Policy Keeper;

For further details on each component, please refer to deliverable D6.2 [14].

Figure 2 provides more secure version of MiCADO with additional security components.

Node/container
monitor

Node/container
monitor

MICADO
WORKER
NODE

Info on
nodes/containers

Container create/destroy/scale
up/down, node evacuation, etc.

Container
Orchestrator

Worker node create/destroy/scale up hor/verCloud
Orchestrator

Monitoring
System

MiCADO
Submitter

Policy Keeper

Register
policies

Scale/update
worker
nodes

Scale/update containers

description on
infrastructure
and policies

Create
Worker
nodes

MICADO
MASTER
NODE

container

container

container

Optimiser

Advice
Parameters

MICADO
WORKER
NODE

Container
Executor

Create
container
infra

Container
Executor

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 11 of 84

Figure 2 MiCADO infrastructure with core components and security components

The grey box in Figure 2 depicts the MiCADO master node along with all its components. The

inner green boxes are the core components of MiCADO whereas the yellow boxes represent

the security components. For the sake of simplicity, Figure 2 does not display all those core

components that currently do not have direct interaction with security components. However,

there are two additional components depicted in Figure 2 that are not core ones, i.e. Dashboard

and Service Discovery. We show them as they also have interactions with the security

components. The short description of all the security components are provided below except

TTP, which is an extension for the future and therefore we skip it currently.

¶ Master Node L7 Zorp Firewall: It is an application level protocol firewall. It provides

a secure TLS interface and adds authentication to the administratorôs dashboard. The

firewall protects the master node by blocking all outside communication but the

management dashboard and the submitter;

¶ Master-Worker Secure Communication: It provides secure communication between

master node management components and worker nodes. It identifies the endpoints and

encrypts master-worker communication, ensuring authenticity and confidentiality;

¶ Security Policy Manager: It is a single point of access for MiCADO security

components. The Security Policy Manager provides an aggregation of Restful API

endpoints that serves different backends including Credential Store, Image Integrity

Verifier, CryptoEngine, IPsec credentials and Kubernetes network join tokens;

¶ Credential Manager: It centrally manages all MiCADO users. It provides user

verification for Zorp so that Zorp can perform authentication and access control.

Besides that, it supplies the Security Policy Manager with functionalities for managing

users such as creating, updating, deleting, etc.;

¶ Credential Store: It securely stores all sensitive information for MiCADO

infrastructure. It provides the Security Policy Manager with functionalities to manage

sensitive information such as creating, updating, deleting, etc.;

¶ PKI (part of CryptoEngine): It provides MiCADO with Public Key Infrastructure;

¶ Image Verifier: It ensures that the application images are not corrupted;

The following description provides an overview of the interaction between security

components and core components. For communication among core components, please refer

to deliverable D6.2 [14].

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 12 of 84

¶ Master Node Zorp Firewall Ą Dashboard: firewall provides secure communication,

authentication and request routing to the different Dashboard components

¶ Master Node Zorp Firewall Ą MiCADO Submitter: firewall provides secure

communication, authentication and request routing to the Submitter

¶ Master Node Zorp Firewall Ą Credential Manager: invokes a Restful API to the

Credential Manager to verify the login credentials supplied by MiCADO users;

¶ MiCADO Submitter Ą Security Policy Manager: It invokes Restful APIs to Security

Policy Manager (SPM) to enforce security policies defined in the ADT file;

¶ Security Policy Manager (SPM) Ą Credential Manager: For actions related to user

management, SPM invokes APIs to Credential Manager;

¶ Security Policy Manager (SPM) Ą Credential Store: For actions related to sensitive

information storage, SPM invokes calls to Credential Store;

¶ Security Policy Manager (SPM) Ą PKI (a part of CryptoEngine): For actions related

to certificates issuing / signing / revocation/ etc., SPM calls PKI

¶ Security Policy Manager Ą Image Verifier: For actions related to application image

verification, Verifier invokes calls to Image Verifier;

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 13 of 84

3 MiCADO Security Modules Implementation Description

3.1 Image Integrity Verifier

This section aims to describe the core functionality, requirements and implementation of the

Integrity Image Verifier (IIV) as a security component in the MiCADO architecture. The IIV

is responsible for providing integrity security guarantees to the MiCADO infrastructure. It does

this through integrity verification of application images prior to deployment. The IIV provides

a mechanism to detect corrupted images prior to their instantiation in the cloud.

3.1.1 Image Integrity Verifier Functionality

A privileged remote user provides the MiCADO infrastructure with a TOSCA file containing

the list of images and VMôs to deploy new topologies or services. The MiCADO infrastructure

will delegate the integrity verification process of every image to the IIV, and it will continue

with the deployment process only if the result of the integrity verification returns a valid

response. IIV returns a positive response (TRUE) when the integrity of a supplied image is

assured to have not been altered. Otherwise, the IIV returns a negative result (FALSE), which

means the image integrity could not be confirmed.

Figure 3, illustrates the components interaction for the IIV and the sequence followed in the

verification integrity of a valid image prior its instantiation. Within the remote attestation

protocol, the Broadcaster - a component of the COLA architecture [1] - sends the image that is

required to be verified plus the integrity quote of the enclave to the IIV (1). The integrity

mechanism then validates the quote and if successful, proceeds to calculate a hash of the

received image and compare the result against a hash stored in a list of well-known hashes (2).

If both hashes match, the IIV mechanism returns the image and the result of the image integrity

verification. Otherwise, only the result of the verification is returned (3). Upon a positive

attestation result, the Broadcaster sends the image to the worker nodes for instantiation (4);

otherwise, the image is rejected and the deployment aborted.

Figure 3 Component interaction for the image integrity verifier and image verification
sequence

Broadcaster

Image Integrity

Verifier (IIV)

1
ὍάὥὫὩȟὍὲὸὩὫὶὭὸώὗόέὸὩ ὍάὥὫὩȟὍάὥὫὩὠὩὶὭὪὭὧὥὸὭέὲὙὩίόὰὸ>

3

Image

Repository

ὖόὰὰ ὥὲ ὭάὥὫὩ

Worker

Nodes

4
ὍὲίὸὥὲὸὭὥὸὩ ὸὬὩ ὭάὥὫὩ

ὙὩάέὸὩ
ὃὸὸὩίὸὥὸὭέὲ

2

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 14 of 84

3.1.1.1 Image Integrity Verifier Requirements

To provide its core functionality, the IIV fulfils the following security requirements [1]:

1. Keep in a secure location a list of generated 256-byte hash (well-known measurements)

of all images the system allows for deployment.

2. The integrity mechanism must verify the integrity of an image by comparing a fresh

computing hash against a hash, for that image, in the list inside the IIV.

3.1.2 Image Integrity Verifier Design

The IIV core functionality is developed as an Intel SGX [2] dynamic library that can be

embedded in a large system. The untrusted part exposes the API responsible for handling

incoming requests with well-defined input parameters (i.e., an Image and the enclaveôs

measurement) and returning the corresponding verification process result. The trusted part is

in charge of the integrity mechanism itself. The integrity mechanism is invoked through a

request via remote attestation, resulting in a quote with the result of the verification process.

This quote is the basis of the decision to continue or halt image deployment. Figure 3, shows

the IIV, developed as an SGX library, with its the respective components.

Figure 4 The Image Integrity Verifier developed as an SGX library

The integrity verification API contains the function ImagVerify, which is responsible for the

execution of the verification tasks within the enclave (trusted part) via an enclave call (ecall).

The integrity verification mechanism is further split into sequential blocks, all of which are

securely deployed inside the SGX enclave as depicted in figure 3.

Attestation

 ecall

untrusted part trusted part

List of hash

measurements

Integrity

Verification

Mechanism
Integrity

Verification

API

SGX Library

Incoming

Request

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 15 of 84

Figure 5 Integrity Verification Mechanism inside the IIV component

The first stage of the integrity verification mechanism is to get the image from the incoming

request (1). Next, the mechanism computes a 256-byte hash for the image (2). After that, the

verify hash block compares the calculated hash against a stored hash from the hash_trusted_list

file (3). Finally, the output result block evaluates the result and based on that, returns an

appropriate response to the requester (4).

The hash_trusted_list file, in trusted memory, contains a well-known list of previously

computed image hashes. This implies that if a new image or a modification to an existing one

is required, the IIV library must be updated to include the new measurement.

3.1.3 Image Integrity Verifier Implementation

The IIV is implemented as an SGX library named libiivr . In order to see the functionality of

the integrity verification mechanism, the library is embedded in an application from which its

service is requested. The application is deployed as a python flask app that embeds and calls

the libiivr library and exposes a JSON REST API interface called image verify. Moreover,

external entities invoke this image verify API to get images verified.

3.1.3.1 Image Integrity Verifier Main Application

As stated above, this application is responsible for providing an interface to the requester

external entities and to call the services provided by the libiivr library. This application can be

initialized in two different modes. First, the complete mode requires a list of hashes previously

computed, to be passed. That list, is a file (semicolon separated values) with lines containing

the exact name of the image followed by its corresponding measurement. The different hashes

in the list are well-known measurements collected by a trusted administrator, who is also

responsible for the compilation of the integrity verification mechanism. The second mode (fast

mode) does not compile the entire libiivr library as in the case of the complete mode. Similar

to the complete mode, in the fast mode, a hash list file needs to be provided. However, this file

has to be a hash list previously sealed by the integrity mechanism. This indicates that the same

material used in the key that seals the enclave is utilized in the derivation of the key that seals

the hash list file (hash_trusted_list).

The main application hosts a JSON REST API, to validate the integrity of desired images. This

is implemented in the API image verifier. A caller uses the POST HTTP method to invoke the

image verifier API, as illustrated in Figure 6. The body of the request includes the image name

(file_name) and the contents of the image (file).

Get an image

(1)

Compute hash

(2)

Verify hash

(3)

Output result

(4)

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 16 of 84

Figure 6 image verifier rest API invocation and response.

As a response, the API returns an HTTP code, indicating the results of the HTTP request:

¶ Result 1: success, the result of the integrity verification mechanism is returned. The

the response returns TRUE (1) and the image name.

¶ Result 0: (Image not valid); the response includes the result and the image name.

¶ Result -1 (image not supported); the response includes the result and the image name.

The first task of the image verify API is to decode the binary content of the image from the

JSON request. The recovered image is stored in a temporal location for its processing by the

IIV. Next, the main application invokes a python SGX_wrapper library, which is a wrapper

around the libiivr library. The SGX_wrapper library, is an interface created to be able to make

use of the libiivr library created in C in the python flask microframework. It is implemented

using the python extension Cython [2], which allows to combine C code into the python

environment.

3.1.3.2 Initialization of the Image Integrity Mechanism

Depending on the chosen initialization mode, it is mandatory to provide a hash list and the

corresponding signature (IIV.signed.so) required to initialized the enclave. This signature file

must be kept secure by the administrator in a tamper-resistance place (e.g., TPM). The function

SGX_init, defined in the untrusted part of libiivr library, is the responsible for the initialization

of the IIV mechanism.

3.1.3.3 Image Integrity Verifier Mechanism

As illustrated in Figure 5, the IIV mechanism follows a sequential series of steps. The

image_verify API requests the image verification by providing the image that was received

from the caller to the IIVR mechanism. This image is passed by indirectly calling the SGX

untrusted function SGX_IIM that takes the image name and the location or path of the image.

Once the IIV mechanism gets the image and its name, it proceeds to search if the image name

is in the hash_trusted_list. If the image name is in the lists, the mechanism extracts the hash

 http://iivr_host_ip:port: /api/v1.0/image_verify POST

 data= {'image_name': file_name, 'image': file}

HTTP Code response success (201):

response: <1><0><-1>

image name

image (if response -eq 1)

Response Output

Request Format

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 17 of 84

from the list and start the process of computing a fresh hash for that image. If the image name

is not found, the function SGX_IIM returns with result -1 (image not supported).

To calculate the fresh hash of the incoming image, the IIV mechanism makes use of an outside

enclave call (OCALL) to obtain the 256-byte measurement. The rationale for implementing

this computation outside the enclave is for performance reason because of the high complexity

when it comes to transfer large size images to trusted memory. The function ocall_sha256_file

is the responsible for such computation in untrusted memory.

With the fresh hash value, the IIV proceeds to verify the integrity of the image by comparing

both hashes. If both hashes match, the verification will return a 1 (Image OK), otherwise, a 0

(Image not OK) will be returned. The image verifier API receives the result of the IIV

mechanism and proceeds to construct the final output to be given to the API caller. If the result

is 1, the response includes the binary of the Image; in any of the other cases (0 or -1) the

response only includes the result of the verification.

3.1.3.4 Summary of final flow implementation

The final flow of the IIV implementation is summarized in Figure 7. A privileged user runs the

main application in the complete mode, providing a hash list of all images intended for

instantiation (1). The main application invokes the python wrapper library to initialize the IIV

mechanism, passing the plain hash file (2). The python wrapper on behalf of the main

application invokes the function SGX_init, that initializes the SGX enclave and passes the plain

hash list to the enclave for the corresponding sealing (3) and (4). The data sealing involves

copying the content of the plain hash list to the hash_trusted_list, which is a file encrypted with

a sealing key derived from the CPU. For I/O file manipulation, the trusted SGX protected file

system libraries [3] are used. These libraries provide a set of I/O file handling functions similar

as the ones provided by the stdio C library. To be able to incorporate these libraries in the libiivr

library code, some requirements are necessary to be met as explain in [4]. Once the file has

been created and sealed, the initialization of the IIV mechanism is successfully completed. If

the main application must be restarted, it can be later re-initialized in fast mode, assuming that

the hash_trusted_list is in place.

Following initialization, the IIV mechanism can accept incoming requests from external callers

(5). The main application receives the HTTP POST requests invoked from its exposed rest API.

This API receives as parameters the supplied image name and image file which is desired to

be verified. Next, the python wrapper library is invoked to validate the integrity of the supplied

image, by calling the function SGX_IIM (6). The untrusted part of the libii vr calls the method

ecall_ImagVerify to delegate the verification process to the IIV mechanism (7). At this point

the IIV mechanism is ready to execute the integrity verification of the image. To do so, the

name of the image is first searched in the hash_trusted_list file and if found (9), the

corresponding hash measurement is saved in a temporary variable for later comparison. If the

IIV mechanism does not find the image name in the file, the mechanism returns a result of -1,

indicating that the image is not supported for instantiation.

In case the hash for the supplied image is found in the sealed list, the IIV mechanism proceeds

with the computation of a new fresh hash, by calling the untrusted function ocall_sha256_file,

which makes use of the openssl/sha library (9). Once the IIV mechanism has obtained both

hashes, the comparison takes places and the result of the verification is returned by the

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 18 of 84

ecall_Imagverify function (10). If the result is successful a 1 is return, otherwise a 0 will be

returned. Finally, the response is properly wrapped, by the main application, and returned to

the caller.

Figure 7 Summary of final flow implementation.

3.1.3.5 Limitations of the Proposed Solution.

The current implementation has some limitations, summarized as follows:

1. The IIV mechanism is attested locally instead of remotely. However, the mechanism

can be extended to support it. The respective module can be integrated between the

main application and Python wrapper, without altering the core functionality of the

verification process.

2. The supplied images, are docker images, which binary files are compressed in a tar

archive file. The compressed file, has to be named after the name of the image,

otherwise, the verification process fails for that particular image. Once the tar file has

been validated, the caller can instantiate it by simply execute the docker load image.tar

command.

3. The sizes of the supplied images are limited to the available memory. The API in its

data parameters expects to get the entire image 64byte-encoded, which sets a constraint

in regard to the supplied image size and available memory.

4. To limit the number of ocalls to the minimum possible, it was decided to compute the

fresh hash measurement in the untrusted part of the libiivr library. It is possible,

however, to perform the entire computation in trusted memory, by splitting the image

file in blocks of data. Every block is read in an ocall and consumed internally using the

trusted crypto SGX library (sgx_tcrypto). This means that the total number of required

ocalls will depend on both the size of the block chosen and the image size.

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 19 of 84

3.2 Crypto Engine

This subsection describes the functionality, design and implementation of the Crypto Engine,

one of the security enablers of the COLA security architecture. The Crypto Engine aims to

provide a set of cryptographic material and algorithms to enforce the security of the

communication between the components of the MiCADO system.

3.2.1 Crypto Engine Functionality

As mentioned above, the Crypto Engine is responsible for the generation of cryptographic

material and operations over the flowing data, as shown in Figure 8. It is designed and

implemented as a microservice, providing the following functionalities [1]

Figure 8 Crypto Engine Functionality

1. Key Generation Orchestrator: This function is responsible for the generation of both

cryptographic symmetric and asymmetric keys. It takes as secure input parameters the

size of the key ᴂ‗ᴂ and the type of the key (asymmetric: ᴂὥίώάᴂ or symmetric: ᴂίώάᴂ).
This function will return the symmetric secret key ᴂὯᴂ or the pair of asymmetric keys,
ὴ
ί depending on the request being made.

2. Symmetric Cipher Suite: This function contains a collection of symmetric encryption

algorithms to perform encryption/decryption operations. The symmetric algorithms

will be supported in a variety of flavours; combining them with different encryption

modes and key sizes. The supplied input parameters are verified by the Crypto Engine

to make sure they meet the configured security policies. The definition of the involved

symmetric operations is as follows:

╓▄█░▪░◄░▫▪ ὴὶὭὺὥὸὩὑὩώ ὉὲὧὶώὴὸὭέὲȡ For an arbitrary message ά πȟρ,

we denoted by ὧ Ὁὲὧὑȟά a symmetric encryption of m using a symmetric

secret key ɣ ɣ, where ɣ is the available message space. The corresponding

symmetric decryption operation is denoted by ά ὈὩὧɣȟὧȢ

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 20 of 84

3. Asymmetric Ciphers Suite: This function provides a library to perform asymmetric

encryption/decryption operations. By default, the asymmetric Rivest-Shamir-Adleman

(RSA) algorithm is used as the asymmetric encryption scheme. Similar to the

Symmetric Cipher suite, the asymmetric algorithm supports different key sizes,

depending on the security configuration of the Crypto Engine. The definition of

asymmetric operations is specified as follows:

4. Digital Signature: a digital signature is an asymmetric encryption algorithm used to

verify the integrity of a message and the actual identity of a sender. The signing of a

message and the verification of a signature is defined as follows:

5. Cryptographic Hash Functions: This function provides a one-way fixed length

compression of arbitrary-length messages. A cryptographic hash function contains

special features that make it suitable for use in specific communication protocols. A

hash function over a message ά is denoted by Ὤ Ὄά .

The requirement of a good secure cryptographic hash function requires ease in its

computation but hard computation if the operation is reversed from a resultant hash.

The result of the hash operation is known as a digest, and many are the algorithms that

can be used for such computation. The Crypto Engine supports a variety of hash

algorithms.

6. Message Authentication Code (MAC): A MAC is a special type of hash function that

uses a symmetric key to produce a fingerprint that is used to exchange messages in

order to provide security integrity guarantees. A MAC of a message ά with a secret

key ὑ is denoted by ‘ ὓὃὅὑȟά .

7. Token Generator: This function is responsible for the generation of secure strong

random numbers, with sufficient entropy. This function can be denoted by †
ὅὛὖὙὔὲ, which is a random binary sequence of n bits generated by a

Cryptographically Secure Pseudo-Random Number Generator (CSPRN).

3.2.2 Functional and Security Requirements

This section enumerates the high-level functional requirements and corresponding security

considerations implemented by the Crypto Engine. Additionally, a specification of the different

APIs implementing the different functions or services of the Crypto Engine are specified to

give an insight into the final design and implementation [2].

╓▄█░▪░◄░▫▪ ὖόὦὰὭὧὑὩώ ὉὲὧὶώὴὸὭέὲȡ We denote by
ὴ
ίa public/private

key pair for an asymmetric encryption scheme. Encryption of a message m under

the public key ὴ is denoted by ὧN Ὁ ÍȢ While the corresponding decryption

operation is denoted by ὧN ὈὩὧÃ

╓▄█░▪░◄░▫▪ ὈὭὫὭὸὥὰ ὛὭὫὲὥὸόὶὩȡ A digital signature over a message ά signed

with a private key ί, is denoted by „ ίὭὫὲά . While the corresponding

verification using a public key ὴ over the signature „, as ὦ ὠὩὶὭὪώάȟ„

which equals to 1 if the signature is valid and 0 otherwise.

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 21 of 84

3.2.2.1 High-Level Functional Requirements

These functional requirements are based on the requirements towards cryptographic security

of (a) the primitive operations performed by the Crypto Engine and (b) the cryptographic

primitives produce by the Crypto Engine. The functional requirements are described as follows:

1. The Crypto Engine should perform symmetric encryption/decryption operations with

keys that are at least 128-bit long.

2. The Crypto Engine should perform asymmetric encryption/decryption operation with

keys that are at least 2048-bit long.

3. The Crypto Engine should only accept combinations of parameters for both symmetric

and asymmetric encryption schemes that are aligned with the security configuration set

by the Crypto Engine.

4. The provided hash functions must produce preimage-resistant results.

3.2.2.2 API specifications

Table 4 contains a sample description of the API requirements, implementing the main

functionalities of the Crypto Engine.

Table 4 API specification, for main functionalities offered by the Crypto Engine.

API Description

Generate

public-private

key pair

a. Input parameters:

1. Function invocation ïgenKey

2. Parameters [crypto library, key type,

Encryption algorithm]

b. Output

1. Tuple list <public key, private key>

c. Comment:

The choice of the crypto library could be pre-defined by the

administrator in the crypto security policy.

Generate X.509

Certificate

a. Input parameters:

1. Function invocation ï genCert

2. Parameters [crypto library, encryption algorithm, validity

period, certificate authority, certificate storage location]

b. Output

1. X509 certificate

c. Comment

The choice of the crypto library, validity period and certificate

authority could be pre-defined by the administrator in the

crypto security policy.

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 22 of 84

Encrypt Content

using a

symmetric

cipher suite

a. Input

1. Struct <Plaintext message, Encryption Key>

2. Parameters [crypto library, encryption algorithm,

encryption mode]

b. Output

1. Tuple list <result, ciphertext message>

c. Comment

N/A

Decrypt content

using

asymmetric

cipher suite

a. Input

1. Struct <Ciphertext message, Decryption Key>

2. Parameters [crypto library, encryption algorithm,

encryption mode]

b. Output

1. Tuple list <Plaintext message>

c. Comment

d. N/A

3.2.2.3 Main Interactions

The following two use cases describe the main aspects that include most of the services

provided by the Crypto Engine. They do not represent a complete list of uses cases.

Use case I: Generation of a public key cryptography key pair

The administrator, via the Security Policy Manager, makes a request to the Crypto Engine for

the generation of a public-private key pair, specifying the key size and the asymmetric

algorithm to be employed. For security considerations the key size must be greater than 2048

bits and the supported algorithms should include RSA [3] and ECDSA [4]. This kind of request

can be used before making a request for the generation of an X.509 certificate or to request the

encryption or decryption of a particular message.

Use case II: Creation of an X.509 certificate

The administrator, via the Security Policy Manager, makes a request to the Crypto Engine to

create an X.509 certificate by proving a proper private key (as defined in use case I), the

algorithm the key was generated with, the validity of the certificate and the Certificate

Authority (CA) that signs the certificate. The Crypto Engine, via its configuration, decides the

final validity and the CA that signs the certificate. By default, the Crypto Engine acts as the

CA, unless specified in the configuration file of the Crypto Engine. The hashing algorithm used

in the digital signature of the certificate is a default parameter configurable in the Crypto

Engine configuration file.

3.2.3 Design and Implementation

The Crypto Engine is designed as a microservice using the Python microframework Flask.

Functionality provided by the Crypto Engine is exposed as an API that takes some input

parameters and returns the requested cryptographic information. Those input parameters are

validated before any computation against the Crypto Engineôs configuration file, in order to

verify they are compliant with the security policies defined in the engine. The python

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 23 of 84

cryptography module [5] (with the Open SSL library as the cryptographic backend) is used for

provisioning cryptographic material and the execution of the cryptographic operations. This

choice is motivated by the availability of safe recipes and low-level cryptography primitives.

3.2.3.1 Random Number Generator: genToken API

The Crypto Engine requires the generation of strong random numbers with sufficient entropy

to be used as nonces, tokens and secret keys. This is achieved using the Cryptographically

Secure Pseudo-Random Number Generator (CSPRNG) functionality available in Python

modules os, secrets and uuid.

The os module [4]

This module generates cryptographically secure random bytes with OS-specific randomness

source, derived from the file /dev/urandom (Unix) collected from device drivers and other

sources. The function os.urandom is used for the generation of the random numbers, with the

size number specified as the only input argument, no manual seeding is required.

The secret module

New in Python v3.6, the secret module provides a user-friendly interface for the generation of

strong random numbers and is suggested as the de facto module for secure random number

generation. This module is a wrapper around the os.urandom method. In the secret module,

tokens are generated passing the desired token size in bytes (default 16 bytes) using the

functions secrets.token_bytes or secrets.token_hex.

The uuid module

Another option for generating random numbers as integers, bytes or hexadecimal objects is to

use the function uuid4 from the uuid module. The disadvantage is that only 16-byte random

numbers can be generated. There are other flavours of functions in the uuid library: uuid1,

uuid3 and uuid4. However, none of these meet the definition of randomness, as they take some

form of input (seeding). uuid1 uses the machineôs host ID and the current time, while uuid3

and uuid5 are based on the SHA-1 and MD5 hash respectively of both a namespace identifier

and a name.

For the implementation of the genToken API, the os module is selected with a wrapper function

for the generation of a token as an integer from the byte object returned. The function that takes

care of the token generation is named after the genToken API and takes as an input argument

the size (in bits) of the generated random number.

Figure 9, shows the structure of the genToken API request and response.

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 24 of 84

 Figure 9 genToken API format request

The genToken API expects to get the size of the token as a mandatory input and the format of

the token (binary: as a sequence of bytes; or as an integer computed from the binary

representation in big endian as default) as an optional parameter. The default format value is

set to binary. If the requests returns with an HTTP code 200, the ôsizeô in bytes and the token

in the chosen format are returned. Any other different HTTP code, means the request failed.

3.2.3.2 Generation of a public-private key pair: genKey API

To generate a public-private key pair, a GET request needs to be made specifying the size of

the keys and optionally their desired encoding format. The default encoding configuration for

the private key is PEM and SSH for the public key. The Crypto Engine checks the request, and

verifies that the supplied parameters are aligned with its secure configuration (e.g., requests

with keys sizesô < 2048 will not be processed). A processed request outputs a 200 HTTP code

response, with the result of the operation being ó1ô if successful and ó0ô, otherwise. If the result

is ó1ô then the key pair is returned. However, if the result is ó0ô, a status is returned as a way to

inform the caller of the reason why the operation could not be completed.

The function KeyGenPair is responsible for the generation of the public-private key pair. This

function takes as input arguments, the desired algorithm, the size of the keys and the encoding

of every key. As a response, it returns a tuple consisting of the result of the operation; the

private and public key; and the status of the operation. Internally, the keyGenPair function

verifies the supplied parameters, returning immediately if one parameter is not compliant with

the security of the engine.

Error! Reference source not found. displays the format of the request and the expected

response of the genKey API. In case the operation returns a valid result (ó1ô), the private-public

key pair are returned as a byte string base64 encoded. Table 5 shows some parameter

requirements that need to be consider before using the genKeyAPI.

 http://CryptoEngine_ip:port:/api/v1.0/genToken/<int: size> Get

HTTP Code response success (200):
ὙὩίὴέὲίὩίὭᾀὩȡίὭᾀὩȟὸέὯὩὲȡὸέὯὩὲȟὪέὶάὥὸȡὪέὶάὥὸ

Response Output

Optional Parameters

 <string: format>: integer/binary

Request Format

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 25 of 84

Figure 10 genKey API format request

Table 5 Parameter requirements of genKey API usage

Parameter Requirement

Algorithm
Choose any of the supported algortihms

[RSA, ECDSA].

Key size Keys should be at least 2048-bit

Key

Keys must be encoded as PEM or DER

and should be base64 encoded before

passing them to the Crypto Engine.

3.2.3.2.1 API error status

The API returns the following error statuses:

¶ key-pair format not supported status - if any of the key pairs provided is in an encoding

format not supported by the Crypto Engine;

¶ algorithm not supported status, if the algorithm chosen is not any of the algorithms

configured in the configuration file;

¶ key size not supported status, if the length in bits of any key is not compliant with the

security policies of the engine.

3.2.3.3 Symmetric Encryption: encryptdata & decryptdata API

The Crypto Engine provides the service to encrypt messages and decrypt cipher texts using a

secret private key following some security considerations. The Security Policy Manager - via

an HTTP POST request - makes use of these symmetric services via invocation of the

encryptdata and decryptdata API accordingly. In case the encryptdata API is invoked, the body

of the request must contain the encryption algorithm, a mode, a random number with the same

size as the encryption algorithmôs block size and the plaintext to be encrypted (base64

encoded). In case the decryptdata API is invoked, the body of the request must contain the

decryption algorithm, the same mode and random number used in the encryption operation, the

same secret key and the ciphertext (base64 encoded).

 http://CryptoEngine_ip:port:/api/v1.0/genKey<string:algorithm>/<int:Size

>
Get

HTTP Code response success (200):
 Response= { 'result': 1, 'keypair':

 { 'private_key': { 'key':key, 'encoding':enc },

 'public_key': { 'key':key, 'encoding ':enc }

 }

Response= {'result': 0, 'status':status}

Response Output

Optional Parameters

<string:Eprivate>/<string:Epublic>

Request Format

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 26 of 84

The encryption and decryption operations are executed by the functions EncryptData and

DecryptData, respectively. The EncryptData function takes as input arguments the ciphertext,

the secret key, the algorithm, mode, and a random number. Similar to the EncryptData, the

DecryptData function takes the same arguments except on the plaintext, which is replaced by

the corresponding ciphertext. Both functions respond, returning a tuple consisting of the result

of the operation, the plaintext/ciphertext and the status. The security policies configured in the

Crypto Engineôs config file are enforced via internal functions that make sure the supplied

parameters meet the security considerations.

Figure 11 shows the format request and response for the encryptdata API, while the

decryptdata API format is shown in Figure 12. For the correct processing of the request, it is

necessary that both plaintext and ciphertext be base64 encoded before invoking the respective

API.

Table 6, shows a summary of both APIs requirements. It is important to mention that the Crypto

Engine, ensures that messages get encrypted with the appropriate padding, i.e. padding the

message so its size is a multiple of the algorithmôs block size.

Figure 11 encryptdata API format request

3.2.3.3.1 API error status

Most of the security verification of the supplied parameters in both encryption and decryption

operations are performed by the internal function symmetric_check. This function can abort

the operation and return error status due to unsupported algorithms, key sizes, modes and

random numbers which sizes are not the same as the block sizes of the selected cryptographic

algorithms. Finally, when the decryption API is invoked, the status wrong padding could be

return when unpadding a message after using a random number or key different from the one

used in the encryption operation.

 http://CryptoEngine_ip:port: /api/v1.0/encryptdata POST

data= {'key': key, 'algorithm': algorithm, 'mode': mode,

'random': random, 'plaintext': message}

HTTP Code response success (201):

response= {'result': 1, 'ciphertext': ciphertext}

response= {'result': 0, 'status': status }

Response Output

Request Format

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 27 of 84

Figure 12 decryptdata request/response specification

Table 6 Parameter requirements for symmetric APIs usage

Parameter Requirements

Secret key The size of the key must be greater than 128

bits. Supported key sizes by default [192,

256] bits for AES and [192] bits for 3DES

Algorithm Choose any of the configured algorithms.

Supported by default: 3DES and AES

Mode Choose any of the configured modes.

Supported by default: CBC, CTR, OFB,

CFB

Random Number Depending on the mode selected, it is used as

a nonce or as an initialization vector. The

size of this random number has to be equal

to the block size used by the selected

algorithm.

Plain/cipher text This text needs to be base64 encoded. The

response from the API will also be base64

encoded.

3.2.3.4 Asymmetric Encryption: rsaencryptdata & rsadecryptdata APIs

The Crypto Engine provides functionality for asymmetric encryption and decryption using the

RSA algorithm with some security considerations. Both asymmetric operations are

implemented by the APIs rsaencryptdata and rsadecryptdata accordingly. The Crypto Engine

makes sure only keys with sizes greater than 2048-bits are accepted in the involved asymmetric

operations.

The encryption operation is performed by the function RSA_EncryptData that takes as input

arguments the message to be encrypted, the public encryption key and the asymmetric

 http://CryptoEngine_ip:port: /api/v1.0/decryptdata POST

data= {'key': key, 'algorithm': algorithm, 'mode': mode,

'random': random, 'ciphertext': cipher}

HTTP Code response success (201):

response= {'result': 1, 'plaintext': ciphertext}

response= {'result': 0, 'status': status }

Response Output

Request Format

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 28 of 84

algorithm (RSA). Similarly, the decryption operation is performed by the function

RSA_DecryptData, that takes as input arguments the cipher text, the private decryption key

and the algorithm (RSA). These two functions invoke the services of special methods that make

sure the security policies defined in the Crypto Engineôs config file are enforced. As a result,

both functions return the result of the operation. If successful (ó1ô) the function returns the

cipher/plaintext. Otherwise, the function returns the status with the reason why the operation

could not be completed if the result is ó0ô.

Figure 13 shows the request and response format for the invocation of the rsaencryptdata API,

while Figure 14 shows it for the rsadecryptdata API. The crypto Engine supports by default

RSA key sizes of 2048 and 4096 bits. Smaller sizes are discarded and the operation aborted.

Table 7 show the API parameter requirements.

3.2.3.4.1 API error status

The possible reasons that can be returned in case any of the above functions cannot be

completed are due to an algorithm not supported or to a key size lower than 2048 bits.

Additionally, if the key provided cannot be loaded by the Engine due to a variety of reasons

(e.g., wrong key or encoding/format not supported) the reason, key could not be loaded would

be returned.

Table 7 Parameter requirements for Asymmetric API usage

Parameter Requirement

Algorithm

RSA should be the supplied algorithm.

The algorithm is specified for inclusion of

other algorithms in future version of the

Crypto Engine.

Key The supplied key must be base64

encoded.

Key Size

Key sizes should be >2048 bits. By

default, the Crypto Engine supports keys

with sizes: [2048,4096] bits

Plaintext/ciphertext Both texts must be base64 encoded.

Figure 13 rsaencryptdata request/response specification

 http://CryptoEngine_ip:port: /api/v1.0/rsaencryptdata POST

 data= {'key': key, 'algorithm': algorithm,

 'plaintext': message}

HTTP Code response success (201):

response= {'result': 1, 'ciphertext': ciphertext

response= {'result': 0, 'status': status

Response Output

Request Format

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 29 of 84

Figure 14 rsadecryptdata request/response specification

3.2.3.5 Hashing Algorithms: getHash API

The Crypto Engine provides the getHash API for the computation of a fixed-size bit string

called hash (digest) from a block of data of any size using a one-way hashing algorithm. For

security considerations the supported algorithms must have strong security properties, easy to

compute but hard to reverse. However, weak hashing algorithms would still be considered, via

configuration, for legacy applications only.

The hashing algorithms from the SHA-2 family are configured and supported in the Crypto

Engine by default. If it is required to configure any other hashing algorithm, then the

administrator can do it by simply adding the desired algorithm to the HASHCONF parameter,

in the configuration file.

The Crypto Engine function for computing hash messages is called hash_message. This

function takes as input arguments the message (in bytes) and the name of the supplied

algorithm. The Crypto Engine searches in its configuration file if the supplied algorithm is

supported and aborts the operation if not match is retrieved. As a successful outcome the

function returns a tuple containing the results of the operation, the hash message and a status.

A result óTrueô indicates that the operation could be completed and óFalseô that it failed. If the

operation is completed, the resultant hash and the status OK are returned, otherwise, just the

status is returned describing the reason why the operation failed. The getHash API, formats the

response obtained from the hash_message function and returns to the caller the result of the

operation. The result is ó1ô for completion returning the hash message or ó0ô for failed with its

corresponding error status

Figure 15 shows the request and response format for the invocation of the getHash invocation

API. A caller makes use of the API via a HTTP POST request with body containing a message

and the desired hashing algorithm. Table 8 shows the parameter requirements to consider when

using the API.

 http://CryptoEngine_ip:port: /api/v1.0/rsadecryptdata POST

 data= {'key': key, 'algorithm': algorithm,

 'ciphertext': message}

HTTP Code response success (201):

response= {'result': 1, 'plaintext': ciphertext

response= {'result': 0, 'status': status

Response Output

Request Format

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 30 of 84

Figure 15 getHash request/response specification

3.2.3.5.1 API error status

The error returned due to an incomplete hash operation is unsupported algorithm. If this is the

case, the caller must make sure to use one of the secure hashing algorithms provided by the

Crypto Engine.

Table 8 Parameter requirement for getHash API usage

Parameter Requirement

Algorithm

Choose any of the default hashing algorithms

from SHA-2 family

['SHA224','SHA256','SHA384','SHA512']. If

another protocol is needed the Crypto

Engineôs admin must configure it in the

configuration file.

Message This message needs to be base64 encoded,

before passing it to the engine.

3.2.3.6 Certificate Generation: the genCert API

One fundamental function provided by the Crypto Engine is the generation of X.509

certificates which are used to authenticate clients and servers. To create a certificate is

necessary to take a series of sequential steps, yielding the desired cryptographic material. The

required steps are the following:

1. Generation of a private/public key pair

2. Creation of a Certificate Signing request (CSR), signed with the private key generated

in step 1.

3. A Certificate Authority(CA) validates that the requester owns the resource claimed.

 http://CryptoEngine_ip:port: /api/v1.0/getHash POST

 data= {'message': msg, 'algorithm': algorithm}

HTTP Code response success (201):

response= {'result': 1, 'hash': digest}

response= {'result': 0, 'status': status }

Response Output

Request Format

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 31 of 84

4. A CA signs with its private key the CSR, identifying the requesterôs public key and
his/her domain.

5. The requester gets the certificate and can start using it to configure any server.

The genCert API, provides 3 functions related to the generation of certificates. First, it is

possible to just generate a CSR. This could be the case when a caller wants a specific CA to

sign his/her certificate. Second, the API, by default, generates an X.509 Certificate signed by

the Crypto Engine as the CA. Third, sometimes it is necessary to generate self-signed

certificates for testing-purposes only, this can also be possible via the genCert API.

The function that does all the certificate work in the genAPI is called the gencert_content,

which takes as input arguments the subject requesting the X.509 material, the request type, and

the callerôs private key. As a response the function returns a tuple with the result of the

operation, the X.509 material and a status. If the operation is successfully completed (True),

the X.509 material with the status OK is generated, otherwise, the function returns False with

the status of the request, providing a reason to determine the cause of the failure. For the subject

information, there are some mandatory fields that should be supplied by the caller (described

below).

As explained above there are three types of requests that are supported: óSELFô for self-signed

certificates; óSIGNEDô for certificates signed by the Crypto Engine as CA; and ôCSRô for

generation of X.509 certificate requests to be signed by a third-party CA. When certificates are

signed by the Crypto Engine three configuration parameters must be set, the validity period in

days; the Crypto Engineôs private key; and details of the Crypto Engine acting as the issuer

entity.

The private key supplied by the caller can be encoded as binary DER or as ASCII PEM, any

other encoding will cause the operation to be aborted. The encoding verification is performed

by the inner key_loader function. Figure 11 shows the request/response format specification

for the genCert invocation. The caller makes a HTTP POST request providing all the required

parameters in the body of the request and ensures a valid X.509 request type is specified. Table

9 shows the parameter requirements to consider when using genCert API.

3.2.3.6.1 API error status

There are many reasons why certificate operations cannot be completed. If the private key

supplied by the caller cannot be loaded, the error status ókey could not be loadedô would be

returned, which indicates that either the key is not large enough or the encoding is not

supported. If the X509 request type is not valid, the invalid type of certificate would be

returned. When the Crypto Engine is chosen to be the CA, the error indicating that the engine

cannot sign the request can be returned if the configuration parameters are not set or if there is

a field not specified correctly. Finally, the status certificate could not be generated can be

returned if the backend selected and configured in the Crypto Engine does not support the

functions required to generate certificate material.

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 32 of 84

Figure 16 genCert request/response specification

Table 9 Parameter requirements for genCert API usage

3.2.3.7 Digital Signatures: genSignature and veriSignature APIs

The Crypto Engine provides the genSignature API for the generation of a digital signature and

the veriSignature API for its verification. A digital signature is used to verify the integrity of a

message, guaranteeing that it has not been tampered with during transit. A digital signature is

produced by hashing a desired message with a secure algorithm and encrypting its output with

a private key. To verify the signature is necessary to decrypt it using the public key

corresponding to the encryption key and to compare the hash obtained from the signature with

a fresh hash computed from the original message.

To produce the signature, the Crypto Engine makes use of the default SHA256 algorithm for

the computation of the digest. The Crypto Engine supports keys obtained from the RSA and

ECDSA algorithms for both the generation and validation of signatures. In the case a key

obtained from the RSA algorithm is selected, a proper padding scheme must be put into place.

In the Crypto Engine, the Probabilistic Signature Scheme (PSS) is the default padding scheme

used, as it is suggested for any new protocols or applications.

The function genDSA is the responsible for the generation of a digital signature. This function

takes as input arguments a message, a private key and an algorithm. As a response the result of

Parameter Requirement

X509request

The type of the request must be

[ôCSRô,ôSIGNEDô,SELFô] default is

set to SIGNED.

private_key
Must be encoded as PEM or DER and

passed base64 encoded.

Subject

The details of the subject of the

certificate. Mandatory fields: country,

state, organization, locality, common

 http://CryptoEngine_ip:port: /api/v1.0/getCert POST

data={'x509request':x509request,'private_key':private_key,

 'subject': {'country':country, 'state': state, 'locality':locality,

 'organization':org_name,'common':common_name}}

HTTP Code response success (201):

response= {'result': 1, 'x509content': certificate, 'type':cert-type }

response= {'result': 0, 'status': status }

Response Output

Request Format

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 33 of 84

the operation is returned, which is True if completed or False otherwise. If the operation is

successfully completed, then, the signature and the status OK are returned. On the other hand,

if the operation is not completed, a status is returned to describe the reason of the failure.

The function veriDSA is the responsible for the verification of a digital signature. This function

takes as input arguments the signature to verify, the message the signature is obtained from,

the public key corresponding to the signing private key and the same key algorithm used. As a

response, the function returns the result of the operation.

Figure 17 shows the request/response format for the getSignature API, while Figure 18 shows

it for the veriSignature. Some security considerations should be met when constructing the

body of the POST request for both APIs, Table 11 shows the parameter requirements.

Table 10 Parameter requirements for genSignature and veriSignature APIs

Parameter Requirement

Message/Signature Must be base64 encoded

Private/Public Key

Should be formatted with a valid

encoding scheme (see genKey specs)

and should be passed to the Crypto

Engine base64 encoded

Algorithm

Choose any of the asymmetric

encryption algorithm supported

[RSA, ECDSA]

Figure 17 genSignature request/response specification

 http://CryptoEngine_ip:port: /api/v1.0/getSignature POST

 data= {'message': msg, 'algorithm': algorithm, 'private_key': key }

HTTP Code response success (201):

response= {'result': 1, 'signature': signature}

response= {'result': 0, 'status': status }

Response Output

Request Format

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 34 of 84

Figure 18 veriSignature request/response specification

3.2.3.7.1 API error status

Both APIs can return the status algorithm not supported if the supplied algorithm is not any of

the configured algorithms in the Crypto Engine config file. If any of the provided keys does

not meet the security policies defined in the configuration file, then, the status key cannot be

loaded is returned to the caller. Finally, if the validation of the signature is not successful, the

verification API responds with a status verification failed.

3.2.3.8 Crypto Configuration Parameters.

The configuration file contains the global variables that define the overall security policies to

be implemented by the Crypto Engine against the input parameters supplied by the different

callers, especially the SPM. Table 11 shows the configuration parameters with their functions.

Table 11 Crypto Engine Configuration parameters

Parameter Function

CONF_ASYMMETRIC Defines the asymmetric algorithms, key

sizes and encoding to be allowed.

CRYPTOCONF Defines the symmetric algorithms, key

sizes and modes to be supported.

ASYMCONF Defines the asymmetric algorithms to be

used in encryption/decryption operations

HASHCONF Hashing algorithms supported

CA_PRIVATE_KEY_PATH Location of Crypto Engineôs private key

VALIDITY_PERIOD Default validity duration of certificate

CA_ISSUER_CONF Crypto Engine issuer information

 http://CryptoEngine_ip:port: /api/v1.0/veriCertificate POST

 data= {'message': msg, 'signature': signature 'algorithm': algorithm,

 'public_key': key,

 }

HTTP Code response success (201):

response= {'result': 1, 'status': status}

response= {'result': 0, 'status': status }

Response Output

Request Format

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 35 of 84

3.3 Credential Store

3.3.1 Credential Store Functionality

This section aims to describe the core functionality of the Credential Store (CredStore) as a

security component in the MiCADO architecture. The CredStore takes care of securely storing

all types of sensitive information, which we will call infrastructure secrets or secrets, needed

for running the MiCADO infrastructure. It protects infrastructure secrets by encrypting them

and restricting access to them. The CredStore fulfils the following security requirements:

1. Infrastructure secrets must be stored in encrypted form;

2. Access to infrastructure secrets must be restricted to only Security Policy Manager

(SPM) component in MiCADO. Other components are not allowed to access secrets

stored in CredStore;

3. Secrets are only decrypted at the time of accessing.

3.3.2 Terminology

The CredStore implementation relies on the open source Hashicorp Vault [7] licensed under

Mozilla Public License 2.0. As a consequence, we present a few terminologies related to

Hashicorp Vault in the table below.

Terminology Meaning

Vault or Hashicorp Vault It is a tool for securely accessing secrets. It follows the

client-server infrastructure.

Vault Server It is the entity that interacts with the data storage and

backends. In MiCADO, it is the Credential Store.

Vault Client It is the entity that interacts with the vault server to access

secrets. In MiCADO, it is the Security Policy Manager.

Secret A piece of sensitive information that has a name and a

value.

Encryption key The key used for encrypting data.

Master key The key used for encrypting encryption key. It could be

recovered from a minimum number of unseal keys.

Unseal keys or shares The keys used for unsealing. They are generated from

master key.

Threshold The minimum number of unseal keys required for

reconstructing the master key.

#shares The number of generated unseal keys from the master

key.

Sealed state The state of vault server in which vault server only knows

the physical storage position of secrets but does not know

how to decrypt them.

Sealing The process to set the vault server into a sealed state.

Unsealing The process of reconstructing the master key from unseal

keys.

3.3.3 Credential Store Interaction in MiCADO

In MiCADO architecture, Credential Store (CredStore) component is designed as a Vault

Server where Security Policy Manager (SPM) plays the role of Vault Client. Hence, SPM is

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 36 of 84

the only component that directly interact with CredStore and all other components have to

request secrets from SPM instead of direct interaction with CredStore. The CredStore can be

used in the following two ways: (1) Those adminsô users who have access to the Master Node

through SSH to call Restful APIs to CredStore. The calls are to perform various functions such

as insert, update, and delete secrets (2) In contrast to the admin interface, all other components

that needed to interact with CredStore, has to communicate via SPM. E.g. Cloud Orchestrator

(CO) component as an entity requests a secret from SPM. This interaction is illustrated in

Figure 19. In this case, the CO request for the cloud user credentials, which are stored in

CredStore, to SPM.

Figure 19 Component interaction for the infrastructure secret request

The above-mentioned process applies to all other components of MiCADO to access

infrastructure secrets.

3.3.4 Credential Store Design and Implementation

The CredStore is deployed as a Vault Server using Hashicorp Vault software. At first, we create

a configuration file in which we could define type (e.g. file, Consul, etc.) and physical path of

database backend, TLS/SSL enable/ disable option, TCP address to listen for API requests, log

level, cache size, etc. After that, we deploy the Vault Server using the configuration file. It

exposes Restful APIs for SPM use.

Apart from that, SPM plays the role of a Vault Client. It is implemented as a Python Flask web

service that exposes Restful APIs for secret requests from other components. For its

implementation, instead of interacting with CredStore through raw REST calls, we use a

wrapping library, HashiCorp Vault API client for Python 2.7/3.x [8], i.e. HVAC.

3.3.4.1 Credential Store as Vault Server

The Credential Store is deployed as a Vault Server which is the main storage for all kind of

infrastructure secrets. For the sake of simplicity, we configure the storage backend as a file

stored inside CredStore component. In addition to that, based on current assumption that

communication between components in the Master Node is secure, we disable TLS/SSL for

communication between CredStore and SPM. Finally, CredStore is configured to listen on port

8200. All configurations are described in a file of HCL (HashiCorp Configuration Language)

format [9]. Table 12 describes the above configuration in HCL.

{
 "backend": {"file": {"path": "/config/data"}},
 "listener": {"tcp": {"address": "0.0.0.0:8200", "tls_disable": 1}}
}

Table 12 Vault Server configuration in HCL format

SPM CO

1. Request for

cloud crendentials
2. Request for

cloud crendentials

CredStore
3. Decrypt the

cloud

credentials
4. Cloud credentials

5. Cloud

credentials

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 37 of 84

Based on HCL file, the vault server configurations could be defined easily.

3.3.4.2 Security Policy Manager as Vault Client

Security Policy Manager (SPM) plays the role of vault client. It is the only component in

MiCADO master node that could access infrastructure secrets from CredStore. Any other

component(s) would need to assess secrets through SPM as intermediary. SPM exposes APIs

for bridging the calls to the Credential Manager:

¶ Secrets consists of APIs for inserting, accessing, updating and deleting secrets.

Apart from that, SPM keeps a token used for authenticating to CredStore and unseal key(s) for

unsealing vault in CredStore. For the current version of implementation, the token is the root

token without expiration.

3.3.4.3 Vault Initialization Mechanism

Prior to sending infrastructure secrets to CredStore for the very first time, SPM needs to send

a request to initialize the vault in CredStore. Initialization is the process of setting up things for

authentication and encryption. After initialization, SPM unseals the Vault so that upcoming

secret management requests will be able to access it. Figure 20 depicts interaction between

SPM and CredStore in that process.

Figure 20 Vault Initialization Mechanism

More specifically, SPM sends the number of shares and threshold value to CredStore in the

initialization request. Upon reception, CredStore generates an encryption key, a root token and

a master key.

The encryption key would be used to encrypt secrets and the master key is used to encrypt the

encryption key. By the end, ciphertext of the encryption key would be stored inside CredStore

along with encrypted secrets. For the sake of security, the master key would be not stored

anywhere. Instead, CredStore uses Shamirôs Secret Sharing scheme to split the master key into

multiple shares, i.e. unseal keys, in such a way that a minimum number of shares are required

to re-construct the master key. Such minimum number is defined by threshold value.

The root token is a never-expiring token, generated at the time of vault initialisation. With the

root token, the SPM is permitted to perform any operation in the vault of the CredStore.

The vault initialization is done automatically upon Security Policy Manager startup.

3.3.4.4 Infrastructure Secret Insertion Mechanism

The Admin user who has access to the Master Node can invoke API provided by SPM to insert

infrastructure secrets into MiCADO. The secrets will be stored in CredStore.

SPM

1. Vault initialization request

with #shares and threshold

CredStore
4. Store root

token and

unseal keys in

files

3. Root token, unseal keys

2. Generate

encryption key,

root token and

unseal keys
5. Unseal request

6. Vault

unsealed

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 38 of 84

Figure 21 Secret Insertion Mechanism

The following API allows to write a secret to the initialized vault. If the secret already exists

then it will be overwritten.

Figure 22 Secret Insertion request and response

Request:

Name In Description

name Json body Name of infrastructure secret

value Json body Value of infrastructure secret

Example:

curl - H "Content - Type: application/json" - d

'{"name":"cloudsigma_username","value":"user1@mail.com"}' - X POST

http://127.0.0.1 :5003/v1.0/secrets

curl - H "Content - Type: application/json" - d

'{"name":"cloudsigma_password","value":"1aB"}' - X POST

http://127.0.0.1:5003/v1.0/secrets

http://spm_ip:port/v1.0/secrets POST

Json data: {"name": secret_name, "value": secret_value}

Json format: {"code": HTTP_code, "message":

returned_message}

Request

Response

SPM CredStore

2. Secret name,

secret value

1. Secret name,

secret value

3. Write the secret
Admin

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 39 of 84

Response:

Name In Description

code Json body Status code

message Json body Returned message

Status codes:

Success:

¶ 201 - OK: Request was successful

Error:

¶ 400 - Bad Request: Some content in the request was invalid or missing a required

parameter

¶ 500 - Server error: Some error happened at server side

Example:
{

 "code": 201,

 "message": "Add/ Upda te secret successfully!"

}

3.3.4.5 Infrastructure Secret Retrieval/ Update/ Deletion Mechanism

MiCADO security components are designed to provide access to the CredStore only through

the SPM. As a consequence, SPM stores necessary information for CredStore access, including

token and unseal key(s).

Apart from that, SPM provides Restful APIs for other component(s) which needs to retrieve

infrastructure secret(s) at running time. One example is Cloud Orchestrator which needs cloud

user credentials for invoking Cloud Providerôs APIs. The following describes APIs provided

by SPM, their parameters and how to invoke them.

1. Secret Retrieval Mechansim

This mechanism illustrates how a secret will be retrieved. The mechanism consists of the

interaction among three components i.e. CO, SPM and CredStore. The mechanism is started

by CO which requires to get value of a secret.

Figure 23 Secret Retrieval Mechanism

The following API allows to retrieve a secret value from CredStore.

4. Secret value SPM CredStore

2. Secret name
1. Secret name

3. Retrieve

secret value

5. Secret value CO

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 40 of 84

Figure 24 Secret Retrieval request and response

Request:

Name In Description

secret_name Path Name of secret

Example:
curl - X GET http://127.0.0.1:5003/v1.0/secrets/cloudsigma_username

Response:

Name In Description

code Json body Status code

message Json body Returned message

data Json object

 secret_value Value of secret

Status codes:

Success:

¶ 200 - OK: Request was successful

Error:

¶ 400 - Bad Request: Some content in the request was invalid or missing a required

parameter

¶ 404 ï Not found: Provided secret name does not exist

¶ 500 - Server error: Some error happened at server side

Example:
{

 "message": "Read secret successfully!",

 "code": 200,

 "data": {"secret_value": "user1@mail.com"},

}

 http://spm_ip:port/v1.0/secrets/{secret_name} GET

Json format: {"code": HTTP_code, "message":

returned_message}

Response

Request

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 41 of 84

2. Secret Deletion Mechanism

A secret should be removed from MiCADO when there is no longer need of it. In such case,

the Admin user can invoke an API from SPM.

Figure 25 Secret Deletion Mechanism

The following API allows to remove a secret from CredStore.

Figure 26 Secret Deletion request and response

Request:

Name In Description

secret_name Path Name of secret

Example:

curl - X DELETE http://127.0.0.1:5003/v1.0/secrets/cloudsigma_username

cur l - X DELETE http://127.0.0.1:5003/v1.0/secrets/cloudsigma_password

Response:

Name In Description

code Json body Status code

message Json body Returned message

 http://spm_ip:port/v1.0/secrets/{secret_name} DELETE

Json format: {"code": HTTP_code, "message":

returned_message}

Response

Request

SPM CredStore 1. Secret name 3. Remove the

secret Admin
2. Secret name

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 42 of 84

Status codes:

Success:

¶ 200 - OK: Request was successful

Error:

¶ 400 - Bad Request: Some content in the request was invalid or missing a required

parameter

¶ 500 - Server error: Some error happened at server side

Example:
{
 "code": 200,
 "message": "Deleted the secret successfully!"
}

3. Secret Update Mechanism

When MiCADO is running and there is a need to update some infrastructure secret, it could be

done by invoking an API from SPM.

Figure 27 Secret Update Mechanism

The following API allows to update value of an infrastructure secret in CredStore.

Figure 28 Secret Update request and response

Request:

Name In Description

secret_name Path Secret name

SPM CredStore

2. Secret name,

new secret value

1. Secret

name, secret

new value
3. Update the

secret with new

value
Admin

 http://spm_ip:port/v1.0/secrets/{secret_name} PUT

Json data: {"value": secret_new_value}

Json format: {"code": HTTP_code, "message":

returned_message}

Request

Response

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 43 of 84

value Json body New value of the secret

Example:

curl - H "Content - Type: applicat ion/json" - d '{"value":"1aBc"}' - X PUT

http://127.0.0.1:5003/v1.0/secrets/cloudsigma_password

Response:

Name In Description

code Json body Status code

message Json body Returned message

Status codes:

Success:

¶ 200 - OK: Request was successful

Error:

¶ 400 - Bad Request: Some content in the request was invalid or missing a required

parameter

¶ 404 ï Not found: Provided secret name does not exist

¶ 500 - Server error: Some error happened at server side

Example:
{
 "code": 200,
 "message": " Update secret suc cessful"
}

3.3.4.6 Summary of overall flow

The overall flow of Credential Store is summarized in

Figure 29. At launching time of MiCADO, Vault Initialization in SPM is invoked to set up

secret storage in Credential Store (1b). Root token and unseal key(s) are stored as files inside

SPM. After that, admin invokes Secret insertion API from SPM to add one or more

infrastructure secrets into MiCADO (2a, 2b). Since then, a component inside the Master Node,

such as CO, can invoke Secret retrieval API from SPM to access a secret value (3a, 3b). During

the entire process, the admin user is allowed to invoke Secret update API to change a secretôs

value (4a, 4b), if required. The admin can also invoke the Secret deletion API to remove a

secret from MiCADO (5a, 5b), when it is not required any longer.

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 44 of 84

Figure 29 Credential Store Flow Implementation

3.3.4.7 Limitations and extensibility of the Proposed Solution

The Root token issued by CredStore is a token without expiration. In the current

implementation, root token and all unseal keys are stored as files inside SPM.

In future, the root token should be exported to admin and then deleted from MiCADO. For

SPM, admin should request to generate short-lived token(s) with restricted fine-grained control

instead of root control [13]. In such case, SPM should be implemented to provide more APIs

for generating/revoking/renewing token(s).

Due to simplicity, all the unseal key(s) are currently stored in SPM and any component in

MiCADO could request to access secret through SPM. However, in order to restrict secret

access, SPM should keep only one unseal key and distribute another key to an authorized

component. The threshold value should be at least two. As soon as the component requests for

a secret, it needs to send out its unseal key. Because it requires at least two (defined by the

threshold value) unseal keys, the received key need to be used along with the stored unseal key

inside SPM to access secret in CredStore. After the request is accomplished, SPM should

remove the received unseal key. By this way, even SPM could not access the secret without

the componentôs consent.

Finally, we may develop more functions related to keys and tokens. In addition to previously

referred token functions (generating/revoking/renewing token), we could implement SPM with

APIs for revoking unseal keys, renewing the master key (called as Rekey) and change the

encryption key (called as Key Rotation) [12].

3.4 Credential Manager

3.4.1 Credential Manager Functionality

This section aims to describe the core functionality of Credential Manager (CredMan) as a

security component in the MiCADO architecture. The CredMan stores and manages all users

for MiCADO. It facilitates user verification through Zorp firewall to perform authentication

and access control. The CredMan fulfils the following key security requirements:

1. Usersô passwords are not stored in plaintext; instead, only their hash values are stored.

5a. Delete secret(s)
SPM

CO

Admin

2a. Insert secret(s)

3a. Retrieve secret(s)

4a. (Optional)

Update secret(s)
CredStore

1b. Initialize Vault

2b. Insert secret(s)

3b. Retrieve secret(s)

4b. (Optional)

Update secret(s)

5b. Delete secret(s)

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 45 of 84

2. CredMan support strong password enforcement.

3. CredMan must supports the user access control based on roles.

3.4.2 Credential Manager Interaction in MiCADO

Credential Manager (CredMan) component is designed as a central user management for the

MiCADO framework. The CredMan in MiCADO is used in the following two ways: (1) Those

adminsô users who have access to the Master Node through SSH are enabled to execute

commands and/or call Restful APIs to CredMan. The commands include to perform the

following functions, i.e. insert, retrieve, update, delete users and their roles. (2) Zorp firewall

can access the CredMan API for the verification of users. The verification results are then used

to perform authentication and access control.

Figure 30 illustrates the above-mentioned authentication process.

Figure 30 Component interaction for user authentication

3.4.3 Credential Manager Design and Implementation

Previously, the CredMan version 1.0 was implemented from scratch as a Python based Flask

Web Service that utilises Flask-SQLAlchemy [11] as a SQL tool to perform different data-base

oriented operations, e.g. user insertion, deletion, etc. All functions of the component were

personally developed. The key reason behind the development of CredMan from scratch is to

have full control on the user management module implementation. While existing solutions

also provide the functionality described in the requirements, their resource usage is much

higher than that of a custom implementation. The CredMan version 1.0 module provides the

following functionalities:

¶ User-related: This include the creation, deletion, retrieval and verification of users;

¶ Password-related: This allows the change and resetting of user password;

¶ Role-related: To retrieve and update usersô roles;

Recently, we have re-analysed the implementation of CredMan version 1.0 and found a number

of necessary design changes and improvements. Furthermore, to make it more robust, flexible,

and easily maintainable/extendible in future, we have also decided to utilise a very popular

open source solution, known as Flask-User [10], for user management. This decision leads to

the restructuring of the overall component that include major changes and therefore, it will

result in the new version of CredMan, i.e. version 2.0.

Similarly, to version 1.0, the CredMan version 2.0 is also implemented as a Python based Flask

Web Service, however, it now integrates the open source packages including, Flask-User [10]

for user management and Flask-SQLAlchemy [11] for SQL tool. Both these tools are used under

MIT license. The key benefits of Flask-User include the following,

CredMan Zorp

2. User name,

password 3. Verify

user name

and

password 4. Verification

result

User

1. User name,

password

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 46 of 84

¶ Built-in database design for the user management,

¶ Easy to use utility classes to perform all the required functions of the CredMan module,

i.e.

o User management,

o Password handling and maintenance,

o Email confirmations and notifications, and

o Roles management.

¶ Fully customisable and largely configurable

¶ Facilitates role-based authorization

¶ Facilitate multiple emails per user registration.

CredMan version 2.0 is a Flask Web service and follows all the REST API standards. Currently

it exposes the following resources:

¶ Users include APIs that manage MiCADO users. This consist of the following

functions, i.e. Create, retrieve, update and delete Users,

¶ Roles include APIs that manage MiCADO roles and consist of the functions related to

role management such as create, retrieve, update and delete roles,

¶ UserRoles include APIs that manage roles of MiCADO users such as retrieve user role,

/grant and /revoke user roles,

¶ Password include APIs for usersô passwords management such as verify, change and

reset a given user password.

The email confirmation functionality is under consideration and could be implemented in

future. Once such a functionality is included then the user will receive email notification for

any event related to their account, i.e. registration, password change and reset, etc.

Furthermore, we also intend to apply certain policies on password. This will restrict the

password setting process must liaise with the active password policies. Hence making the

system more secure overall.

3.4.3.1 Users Management Mechanism

1. User Creation Mechanism

After MiCADO master node is launched and admin is created, the admin can create other users

by invoking CredMan Users API.

Figure 31 User Creation Mechanism

The following API facilitate the creation of a new MiCADO user.

CredMan Database

2. Add new user
1. User name,

password, email

Admin

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 47 of 84

Figure 32 New user creation API request and response

Request:

Name In Description

username Json body User name. This must be unique for a user.

password Json body Password

email Json body Userôs email. This must be unique for a user.

firstname

(optional)

Json body Userôs first name

lastname

(optional)

Json body Userôs last name

Example:
curl - X POST \

 http://127.0.0.1:5001/v2.0/users \

 - H 'Content - Type: ap plication/json' \

 - d '{

 "username": "user3",

 "password": "1aB",

 "email": "user03@a.com",

 "firstname": "user3fn",

 "lastname": "user3ln"

}'

http://credman_ip:port/v2.0/users POST

Json data: {"username": user_name, "password": password,

"email": email, "firstname": first name, "lastname": last name}

Json format: {"code": HTTP_code, "user message":

returned_message_to_user, "developer message":

returned_message_to_developer}

Request

Response

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 48 of 84

Response:

Name In Description

code Json

body

Status code

user message Json

body

Message to user

developer message Json

body

Message to developer

Status codes:

Success:

¶ 201 - OK: Request was successful

Error:

¶ 400 - Bad Request: Some content in the request was invalid or missing a required

parameter

¶ 500 - Server error: Some error occured at server side

Example:
{

"code": 201,

"user message": "Add user successfully!",

"developer message": "Add user successfully!"

}

2. User Retrieval Mechanism

At any time, admin can retrieve userôs information by providing a user name.

Figure 33 User Information retrieval mechanism

The following API facilitates the retrieval of userôs information against a given user name.

CredMan

1. User name
Admin

2. User

information

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 49 of 84

Figure 34 User information retrieval API request and response

Request:

Name In Description

user_name Path User name

Example:

curl - X GET http://127.0.0.1:5001/v2.0/user/user4

Response:

Name In Description

code Json Body Status code

User Json object (If user is retrieved successfully)

 username User name

 email Email

 firstname First name

 lastname Last name

 active Active status of user

User message Json Body (If failed to retrieve user) Message to user

Developer message Json Body (If failed to retrieve user) Message to developer

Status codes:

Success:

¶ 200 - OK: Request was successful

 http://credman_ip:port/v2.0/user/{user_name} GET

Json format: {"code": HTTP_code, "user message":

returned_message_to_user, "developer message":

returned_message_to_developer}

Request

Response

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 50 of 84

Error:

¶ 400 - Bad Request: Some content in the request was invalid or missing a required

parameter

¶ 500 - Server error: Some error occured at server side

Example:

{

 "code": 200,

 "User": {

 "user name": "user4",

 "email": "user04@a.com",

 "first_name": "user4fn",

 "last_name": "user4ln",

 "active": true

 }

}

3. User Update Mechanism

Admin can also update usersô information. The update function is associated with the usersô

information. Currently, the CredMan holds first name and last name of users. Therefore, the

update API support the editing of these information only. Later on, this API must be further

extended when user is defined with more information.

Figure 35 User update mechanism

The following API allows to update first and/or last name of a given user.

Figure 36 User update API request and response

2. Response

 http://credman_ip:port/v2.0/user/{user_name} PUT

Json data: {" firstname": new_first_name, "lastname":

new_last_name}

Json format: {"code": HTTP_code, "user message":

returned_message_to_user, "developer message":

returned_message_to_developer }

Request

Response

CredMan Admin

1. User name, new first name, new last name

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 51 of 84

Request:

Name In Description

user_name Path User name

firstname (optional) Json body New first name

lastname (optional) Json body New last name

Example:

curl - X PUT \

 http://127.0.0.1:5001/v2.0/user/user1 \

 - H 'Content - Type: application/json' \

 - d '{

 "lastname": "user1nln",

 "f irstname": "user1nfn"

}'

Response:

Name In Description

code Json Body Status code

user message Json Body Message to user

developer message Json Body Message to developer

Status codes:

Success:

¶ 200 - OK: Request was successful

Error:

¶ 400 - Bad Request: Some content in the request was invalid or missing a required

parameter

¶ 500 - Server error: Some error happened at server side

Example:
{

 "code": 200,

 "user message": "User's info is updated",

 "developer message": "User's info is updated"

}

4. User Deletion Mechanism

The Admin user can remove a user out of MiCADO by providing a user name.

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 52 of 84

Figure 37 User deletion mechanism

The following API allows the deletion of a MICADO user.

Figure 38 User delete API request and response

Request:

Name In Description

user_name Path User name

Example:

curl - X DELETE http://127.0.0.1:5001/v2.0/user/user4

Response:

Name In Description

code Json body Status code

user message Json body Message to user

developer message Json body Message to developer

Status codes:

Success:

¶ 200 - OK: Request was successful

1. User name

CredMan
Admin

2. Response

 http://credman_ip:port/v2.0/user/{user_name} DELETE

Json format: {"code": HTTP_code, "user message":

returned_message_to_user, "developer message":

returned_message_to_developer}

Request

Response

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 53 of 84

Error:

¶ 400 - Bad Request: Some content in the request was invalid or missing a required

parameter

¶ 500 - Server error: Some error occured at server side

Example:
{

 "code": 200,

 "user message": "Delete user successfully",

 "developer message": "Delete user successfully"

}

5. All User Retrieval Mechanism

The Admin user can retrieve all users at the same time. The number of MiCADO users are not

expected to be large, therefore, it is assumed that this function will not cause any performance

bottlenecks. However, if the number of users gets increase then this function should be altered

to retrieve a limited number of users instead of all users to prevent performance overhead.

Figure 39 All users retrieval mechanism

The following API faciliates the retrieval of all users.

Figure 40 All users retrieval API request and response

Request:

None

Example:
curl - X GET http://127.0.0.1:5001/v2.0/users

 http://credman_ip:port/v2.0/users GET

Json format: {"code": HTTP_code, "Users": List_of_users}

Request

Response

CredMan
Admin

2. User

information

1. Request

http://127.0.0.1:5001/v2.0/users

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 54 of 84

Response:

Name In Description

code Json Body Status code

Users List of json objects

 username User name

 email Email

 firstname First name

 lastname Last name

 active Active status of user

Status codes:

Success:

¶ 200 - OK: Request was successful

Error:

¶ 500 - Server error: Some error occured at server side

Example:

{

 "code" : 200,

 "Users": [

 {

 "username": "user1",

 "email": "user01@a.com",

 "first_name": "",

 "last_name": "",

 "active": true

 },

 {

 "username": "user2",

 "e mail": "user02@a.com",

 "first_name": "user2fn",

 "last_name": "user2ln",

 "active": true

 },

]

}

3.4.3.2 Roles Management

1. Role Insertion Mechanism

Different roles are defined in order to provide fine-grained access control in MiCADO.

Currently the following two roles, i.e. user and admin are defined. However, the design of

CredMan is flexible and existing roles can be easily altered and more roles can be easily

created. The Admin can easily create more role(s) by simply invoking an API to Credman.

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 55 of 84

Figure 41 New role creation mechanism

The following API allows the creation of a new role in MiCADO.

Figure 42 New role creation API request and response formats

Request:

Name In Description

name Json body Name of role

label Json body Label of role

Example:

curl - X POST http://127.0.0.1:5001/v2.0/roles \

 - H 'Content - Type: application/json' \

 - d '{

 "name": "developer",

 "label": "Developer"

}'

 http://credman_ip:port/v2.0/roles POST

Json format: {"code": HTTP_code, "user message":

returned_message_to_user, "developer message":

returned_message_to_developer}

Request

Response

CredMan Admin

1. New role name,

new role label

CredMan

2. Create new

role

Json data: {" name": role_name, "label": role_label}

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 56 of 84

Response:

Name In Description

code Json body Status code

user message Json body Message to user

developer message Json body Message to developer

Status codes:

Success:

¶ 200 - OK: Request was successful

Error:

¶ 400 - Bad Request: Some content in the request was invalid or missing a required

parameter

¶ 500 - Server error: Some error occured at server side

Example:
{

 "code": 200,

 "user message": "New role added successfully.",

 "developer message": "New role ad ded successfully."

}

2. All Roles Retrieval Mechanism

The Admin user can retrieve the list of defined roles in MiCADO.

Figure 43 All roles retrieval mechanism

The following API allows to retrieve all roles of MiCADO framework.

Figure 44 All roles retrieval API request and response formats

CredMan
Admin user

1. Request

2. All roles info

 http://credman_ip:port/v2.0/roles GET

Json format: {"code": HTTP_code, "Roles ":

list_of_role_names_and_labels}

Request

Response

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 57 of 84

Request:

None

Example:

curl - X GET http://127.0.0.1:5001/v2.0/roles

Response:

Name In Description

code body Status code

Roles List of json object List of roles

 name body Name of role

 label body Label of role

Status codes:

Success:

¶ 200 - OK: Request was successful

Error:

¶ 500 - Server error: Some error happened at server side

Example:
{

 "code": 200,

 "Roles": [

 {

 "name": "admin",

 "label": "Admin"

 },

 {

 "name": "developer",

 "label": "Developer"

 }

]

}

3. Specific Role Retrieval Mechanism

The admin can also retrieve a specific role based on its name instead of retrieving all roles.

Figure 45 Role retrieval mechanism

The following API allows to retrieve a specific role information of MiCADO framework.

CredMan
Admin

1. Role name

2. Role info

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 58 of 84

Figure 46 Role retrieval API request and response formats

Request:

Name In Description

role_name Path Name of a role

Example:
curl - X GET http://127.0.0.1:5001/v2.0/role/admin

Response:

Name In Description

code Json body Status code

Roles Json object (If requested role_name exists)

 name Name of role

 label Label of role

user message Json body (If error) Message to user

developer message Json body (If error) Message to developer

Status codes:

Success:

¶ 200 - OK: Request was successful

Error:

¶ 400 - Bad Request: Some content in the request was invalid or missing a required

parameter

¶ 500 - Server error: Some error occured at server side

 http://credman_ip:port/v2.0/role/role_name GET

Json format: {"code": HTTP_code, "Roles ":

role_names_and_label, "user message": message_to_user,

"developer message": message_to_developer}

Request

Response

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 59 of 84

Example:
{

 "code": 200,

 "Roles": {

 "name": "admin",

 "label": "Admin"

 }

}

4. Role Label Update Mechanism

The admin user is allowed to update label of a specific role based on its name.

Figure 47 Role label update mechanism

The following API allows to update label of a role in MiCADO.

Figure 48 Role label update API request and response formats

Request:

Name In Description

role_name Path Name of a role

label Json body New label of the role

Example:
curl - X PUT \

 http://127.0.0.1:5001/v2.0/role/user

 - H 'Content - Type: app lication/json' \

 - d '{

 "label": " normal_user"

}'

 http://credman_ip:port/v2.0/role/{role_name} PUT

Json format: {"code": HTTP_code, "user message":

returned_message_to_user, "developer message":

returned_message_to_developer}

Request

Response

Json data: {"label": new_role_label}

CredMan Admin

1. Role name, new role label

2. Response

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 60 of 84

Response:

Name In Description

code Json body Status code

user message Json body Message to user

developer message Json body Message to developer

Status codes:

Success:

¶ 200 - OK: Request was successful

Error:

¶ 400 - Bad Request: Some content in the request was invalid or missing a required

parameter

¶ 500 - Server error: Some error happened at server side

Example:
{

"code": 200,

"user message": " Updated role label successfully!",

"developer message ": " Updated role label successfully!"

}

5. Role Deletion Mechanism

The Admin user can delete an existing role in MiCADO.

Figure 49 Role deletion mechanism

The following API allows the deletion of a role from MiCADO. This function also unassigned

the deleted role from all MiCADO users.

Figure 50 Role deletion API request and response formats

 http://credman_ip:port/v2.0/role/{role_name} DELETE

Json format: {"code": HTTP_code, "user message":

returned_message_to_user, "developer message":

returned_message_to_developer}

Request

Response

CredMan
Admin

1. Role name

2. Response

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 61 of 84

Request:

Name In Description

role_name Path Name of a role

Example:
curl - X DELETE http:// 127.0.0.1:5001/v2.0/role/developer

Response:

Name In Description

code Json body Status code

user message Json body Message to user

developer message Json body Message to developer

Status codes:

Success:

¶ 200 - OK: Request was successful

Error:

¶ 400 - Bad Request: Some content in the request was invalid or missing a required

parameter

¶ 500 - Server error: Some error happened at server side

Example:
{

 "code": 200,

 "user message": "Delete role successfully.",

 "developer message": "Delete role successfully."

}

3.4.3.3 User Role Management

1. User Role Retrieval Mechanism

The Admin user can retreive the assigned rolesô information of a given user.

Figure 51 User role retrieval mechanism

The following API facilitate the above mentioned functionality.

CredMan Admin
2. List of roles of user

1. User name

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 62 of 84

Figure 52 User role retrieval API request and response formats

Request:

Name In Description

user_name Path User name

Example:
curl - X GET http://127.0.0.1:5001/v2.0/user/user1/role

Response:

Name In Description

code Json body Status code

Roles Json body (if success) List of roles

user message Json body (If error) Message to user

developer message Json body (If error) Message to developer

Status codes:

Success:

¶ 200 - OK: Request was successful

Error:

¶ 400 - Bad Request: Some content in the request was invalid or missing a required

parameter

¶ 500 - Server error: Some error happened at server side

Example:
{

 "code": 200,

 "Roles": [

 "developer",

 "admin"

]

 http://credman_ip:port/v2.0/user/{user_name}/role GET

Json format: {"code": HTTP_code, "user message":

returned_message_to_user, "developer message":

returned_message_to_developer, "Roles": list_of_roles }

Request

Response

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 63 of 84

}

2. User Role Revocation Mechanism

The Admin user can revoke a particular role from a specific user. The following figure

demonstrate this mechanism.

Figure 53 User role revocation mechanism

The following API allows to revoke a userôs role.

Figure 54 User role revocation API request and response formats

Request:

Name In Description

user_name Path User name

role_name Path Role name

Example:
curl - X DELETE http://127.0.0.1:5 001/v2.0/user/user1/role/developer

Response:

Name In Description

code Json body Status code

user message Json body Message to user

developer message Json body Message to developer

Status codes:

CredMan
Admin

 http://credman_ip:port/v2.0/user/{user_name}

/role/{role_name}
DELETE

Json format: {"code": HTTP_code, "user message":

returned_message_to_user, "developer message":

returned_message_to_developer}

Request

Response

2. Response

1. User name, role name

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 64 of 84

Success:

¶ 200 - OK: Request was successful

Error:

¶ 400 - Bad Request: Some content in the request was invalid or missing a required

parameter

¶ 500 - Server error: Some error happened at server side

Example:
{

 "code": 200,

 "user message": " The specified role is revoked from the user!",

 "developer me ssage": " The specified role is revoked from the user!"

}

3. User Role Grant Mechanism

The Admin user can grant a list of roles to an existing user as shown in the following figure.

Figure 55 User role grant mechanism

The following API allows to assigned role(s) to a given user.

Figure 56 User role grant API request and response formats

Request:

Name In Description

user_name Path User name

roles Json body List of roles

 http://credman_ip:port/v2.0/user/{user_name}/role POST

Json format: {"code": HTTP_code, "user message":

returned_message_to_user, "developer message":

returned_message_to_developer}

Request

Response

Json data: {"roles": List of roles}

CredMan Admin

2. Response

1. User name, List of roles

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 65 of 84

Example:
curl - X POST http://127.0.0.1:5001/v2.0/user/user1/role \

 - H 'Content - Type: application/json' \

 - d '{

 "roles": ["developer","admin"]

}'

Response:

Name In Description

code Json body Status code

user message Json body Message to user

developer message Json body Message to developer

Status codes:

Success:

¶ 200 - OK: Request was successful

Error:

¶ 400 - Bad Request: Some content in the request was invalid or missing a required

parameter

¶ 500 - Server error: Some error happened at server side

Example:
{

 "code": 200,

 "user message": " The new role(s) is assigned to the specified user!",

 "developer message": " The new role(s) is assigned to the specified

user!"

}

3.4.3.4 Password

1. User Verification Mechanism

As user logs in with user name and password, Zorp invokes an API to CredMan to verify the

user. Based on the verification result, Zorp performs access control to the user.

Figure 57 User verification mechanism

The following API allows to verify userôs credential.

3. Verification result

1. User name, password

CredMan User Zorp
2. User name, password

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 66 of 84

Figure 58 User verficiation API request and response formats

Request:

Name In Description

user_name Path User name

password Json body Userôs password

Example:
curl - X POST http://127.0.0.1:5001 /v2.0/user/user1/password \

 - H 'Content - Type: application/json' \

 - d '{

 "password": "1234"

}'

Response:

Name In Description

code Json body Status code

user message Json body Message to user

developer message Json body Message to developer

Status codes:

Success:

¶ 200 - OK: Request was successful

Error:

¶ 400 - Bad Request: Some content in the request was invalid or missing a required

parameter

¶ 500 - Server error: Some error occurred at server side

 http://credman_ip:port/v2.0/user/{user_name}

/password
POST

Json format: {"code": HTTP_code, "user message":

returned_message_to_user, "developer message":

returned_message_to_developer }

Request

Response

Json data: {"password": Userôs password }

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 67 of 84

Example 1:
{

 "code": 200,

 "user message": "User is authenticated!",

 "developer message": "User is authenticated!"

}

Example 2:
{

 "code": 400,

 "user message": "User name or password is wrong!",

 "developer message": "Password does not match!"

}

2. User Password Change Mechanism

Zorp takes care of access control of users based on their roles. Users with both roles óuserô and

óadminô are allowed to change their passwords. In order to change password, a user needs to

provide his/her user name, current password and new password. The new password must satisfy

password policies defined by CredMan.

Figure 59 User password change mechanism

The following API allows to change a userôs password

Figure 60 User password change API request and response formats

Request:

Name In Description

 http://credman_ip:port/v2.0/user/{user_name}

/password
PUT

Json format: {"code": HTTP_code, "user message":

returned_message_to_user, "developer message":

returned_message_to_developer }

Request

Response

Json data: {"current_password": Userôs current password,

"new_password": new password}

3. Response

CredMan User Zorp

2. User name, current

password, new password

1. User name, current

password, new password

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 68 of 84

user_name Path User name

current_password Json body Userôs current password

new_password Json body New password

Example:
curl - X PUT http://127.0.0.1:5001/v2.0/user/user1/password \

 - H 'Content - Type: application/json' \

 - d '{

 "current_password": "1234",

 "new_password": "1aBc"

}'

Response:

Name In Description

code Json body Status code

user message Json body Message to user

developer message Json body Message to developer

Status codes:

Success:

¶ 200 - OK: Request was successful

Error:

¶ 400 - Bad Request: Some content in the request was invalid or missing a required

parameter

¶ 500 - Server error: Some error happened at server side

Example:
{

 "code": 200,

 "user mess age": "Your password is changed successfully!",

 "developer message": "Your password is changed successfully!"

}

3. User Password Reset Mechanism

The Admin user can reset usersô passwords. New password is generated randomly.

Figure 61 User password reset mechanism

The following API allows to reset a userôs password.

2. Generated password

CredMan Admin
1. User name

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 69 of 84

Figure 62 User password reset API request and response formats

Request:

Name In Description

user_name Path User name

Example:
curl - X DELETE http://127.0.0.1:5001/v2.0/user/user1/password

Response:

Name In Description

code Json body Status code

new reset password Json body New password

Status codes:

Success:

¶ 200 - OK: Request was successful

Error:

¶ 400 - Bad Request: Some content in the request was invalid or missing a required

parameter

¶ 500 - Server error: Some error occurred at server side

Example:
{

 "code": 200,

 "New reset password": "naspnMk"

}

3.4.3.5 Summary of overall flow

The final flow of Credential Manager is summarized in Figure 63. Assuming that MiCADO

has been launched and admin has been created. At first, the admin creates role(s) (1), user(s)

(2) and grant role(s) to user(s) (3). After that, as long as user logs into MiCADO (4), he/ she

 http://credman_ip:port/v2.0/user/{user_name}

/password
DELETE

Json format: {"code": HTTP_code, "New reset password ":

generated password }

Request

Response

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 70 of 84

provides his/her user name and password. Upon reception, Zorp contacts to CredMan to verify

the user (5) and retrieve his/ her role (6). Based on the verification result and the userôs role,

Zorp controls the userôs access to MiCADO.

Figure 63 Credential Manager Flow Implementation

3.4.3.6 Limitations and extensibility of the Proposed Solution

The current implementation of Credential Manager provides basic functions for central user

management. In future, we can extend CredMan to support more advanced functions such as:

¶ Email notification: Sending emails to notify users on actions such as password reset,

password change, continuous failed log in, etc.;

¶ Password policy configuration: At present, password policy is defined by regular

expression in source code of CredMan. Later, CredMan may be implemented to allow

admin to configure password policy;

¶ Failed log in restriction: At present, user may try logging in as many time as possible.

In the future, user account may be blocked for some time after a fixed number of

continuous log in.

3.5 Master Node Zorp Firewall

3.5.1 Master Node Zorp Firewall Functionality

The "Layer 7" firewall on the master node is an application level firewall. Compared to the

"Layer 4" (packet filter) firewall which filters out illegitimate traffic by its network source and

destination the "Layer 7" firewall protects the components on the Master Node by inspecting

their actual communication on protocol level. It enforces protocol compliance and acts as a

user authentication and authorization point for accessing the components on the Master Node.

3.5.2 Master Node Zorp Firewall Design

The "Layer 7" firewall functionality is provided by Zorp. It acts as the network entry point for

all externally available components on the Master Node:

¶ access to the Dashboard (and its sub-components);

¶ access to the TOSCA Submitter's API.

All external network connections are terminated on the firewall and recreated towards the

internal components, effectively proxying the protocol traffic. This allows for a single point

where traffic related security critical implementations can be placed. See Figure 64 for a

network flow overview.

Admin

1. Create role(s)

CredMan

2. Create user(s)

3. Grant role(s) to existing user(s)

4. Log in 5. Verify user
User

Zorp 6. Retrieve userôs role

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 71 of 84

Figure 64 Network flow

Zorp firewall provides:

¶ TLS termination: it acts as a single point for handling TLS configuration and

implementation. It also implements Strict Transport Security. Components internally

are accessed through plain HTTP. This makes it easier to design, implement and

configure the internal components.

¶ Protocol enforcement and filtering: The firewall enforces TLS and HTTP protocol

compliance for incoming traffic. It also filters HTTP methods to those required by the

components to further reduce any attack surface.

¶ User authentication: Zorp provides user authentication by verifying user's credentials

through the Credential Manager component. It provides HTTP Basic Authentication

for the TOSCA Submitter API and applies login form injection into browser traffic.

¶ Request routing: The firewall provides URL entry points for the internal components

for the Dashboard. The Dashboard depends on these entry points to load the

components' statuses into a unified web view.

¶ Request type filtering: Only request types that are valid for the selected endpoint are

permitted to mitigate exploitation of possible security flaws.

¶ URL path filtering: URL paths within the specified endpoints can be denied to ensure

that the configuration of the protected endpoints cannot be altered by MiCADO users.

3.5.3 Master Node Zorp Firewall Implementation

The following figures describe the communication flows through the Zorp firewall.

The firewall is responsible for TLS setup, user authentication and routing requests to the

respective component. Figure 65 provides an overview of these possible call flows.

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 72 of 84

Figure 65 Firewall communication overview

The first step of any communication flow is setting up the TLS channel. Figure 66 gives a more

detailed view of the standard TLS setup process.

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 73 of 84

Figure 66 TLS setup process

Any request to the components of the Master Node must be authenticated. Depending on the

client component two methods are supported: HTTP Basic authentication and Login form

injection.

Basic authentication is used when accessing the API provided by TOSCA Submitter

component, as described by Figure 67.

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 74 of 84

Figure 67 HTTP basic authentication

Browser based user sessions are authenticated by injecting an authentication form by the

firewall. Zorp hands out ZorpSession cookies for authenticated sessions. For unauthenticated

sessions it returns a custom HTML login form to the user and verifies the provided user

credentials through the Credential Manager component as shown on Figure 68.

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 75 of 84

Figure 68 HTTP form authentication

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 76 of 84

The dashboard component provides embedded views for the individual dashboards provided

by the other components. Figure 69 provides an overview of how requests are routed to the

correct components.

Figure 69 Request routing

3.6 Security Policy Manager

3.6.1 Security Policy Manager Functionality

Security Policy Manager is the single of point of access for MiCADO security components.

SPM provides an aggregation of Restful API endpoints that serves different MiCADO Master

Node components. It also acts as a workflow director that uses other security enablers to

implement security-related business processes.

Security Policy Manager has the following endpoints:

¶ Credential Store for storing infrastructure secrets. See 3.3 for details.

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 77 of 84

¶ Worker Node Certificates for generating X.509 certificates used for Master-Worker

Secure Communication. See 3.7 for details.

¶ Worker Node Certificate Revocation List.

¶ Worker Node Join Tokens for handling Kubernetes join tokens. See 3.7 for details.

¶ Crypto Engine to expose Crypto Engineôs functionality within MiCADO Master Node.

See 3.2 for details.

¶ Image Verify to expose Image Verifierôs functionality within MiCADO Master Node.
See 3.1 for details.

3.6.2 Security Policy Manager Design

Security Policy Manager is a Restful web service with the endpoints listed above. It is

accessible via HTTP within the MiCADO master node and is not accessible from neither the

public network or the Worker Nodes.

There are two types of security functionality served by SPM. Some of the functions are

implemented by other MiCADO security enablers. These functions are exposed via an API

similar to the enablerôs own API. Calls to these APIôs are forwarded to the respective back

endôs API.

The other type of business functionality is implemented directly in Security Policy Manager.

SPM might still use external services as a backend.

Functionality implemented in other MiCADO security enablers, exposed by SPM:

¶ Crypto Engine

¶ Image Verifier

Functionality implemented in SPM:

¶ Credential Store

¶ Worker Node Certificates

¶ Worker Node Certificate Revocation List

¶ Worker Node Join Tokens

3.6.3 Security Policy Manager Implementation

Security Policy Manager is a Python application implementing a Flask-RESTful API. SPM

uses HVAC (Python Hashicorp Vault client) to access Vault in the Credential Store

implementation while Requests to access Vault PKI backend in Worker Node Certificates and

Certificate Revocation List endpoints. SPM also uses Kubernetes Python API in the Worker

Node Join Tokens endpointôs implementation.

3.6.3.1 Security Policy Manager Endpoints

Security Policy Manager listens on TCP port 5003 for HTTP connections. It provides the

following Restful web service endpoints:

¶ /v1.0/secrets for Credential Manager

¶ /v1.0/nodecerts for Worker Node Certificates

¶ /v1.0/nodecrl for Worker Node Certificate Revocation List

¶ /v1.0/nodetokens for Worker Node Kubernetes Join Tokens

¶ /v1.0/cryptoengine for Crypto Engine

¶ /v1.0/imageverify for Image Verifier

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 78 of 84

The Secrets endpoint exposes the Credential Store functionality as described in detail in 3.3.

Nodecerts and nodecrl endpoints are implemented in terms of Hashicorp Vault PKI secrets

backend. A CA certificate is issued by Vault when MiCADO is set up, that is used for signing

Worker Node certificates. We use these Worker Node certificates to authenticate the nodes

when building IPsec tunnel to Master Node. Worker Node certificates are validated against the

CA and the certificate revocation list by IPsec. This process is described in detail in 3.7.

Nodetokens endpoint lets Occopus get a Kubernetes cluster join token for the new Worker

Node under provisioning. Join tokens are issued by the Kubernetes API, SPM calls this API to

get a new join token and return it to Occopus. This process is described in detail in 3.7.

Cryptoengine endpoint exposes Crypto Enginer security enabler. This endpoint forwards calls

to Crypto Engine and returns responses from it to the client application. No additional logic is

implemented in this endpoint. See Crypto Engineôs detailed functionality in 3.2.

Imageverify endpoint exposes Image Verifier security enabler. This endpoint forwards calls to

Image Verifier and returns responses from it to the client application. No additional logic is

implemented in this endpoint. See Image Verifierôs detailed functionality in 3.1.

3.7 Master-Worker Secure Communication

3.7.1 Master-Worker Secure Communication Functionality

In MiCADO management traffic is flowing between the Master and the Worker Nodes. Since

this communication takes place over an untrusted network the communication channel must be

secured. The secured channel must provide confidentiality (including endpoint identification)

and integrity for the transferred data.

This is ensured by encrypting all Master Node ï Worker Node communication by:

¶ providing a secure network channel between the Master and the Worker nodes;

¶ providing worker node identification for the Kubernetes cluster;

¶ providing identification for the secure network channel where management traffic

flows.

3.7.2 Master-Worker Secure Communication Design

Master-Worker Secure Communication requirements can be satisfied by building an encrypted

communication channel between the Master Node and Worker Node with endpoint

authentication.

In case of Kubernetes management traffic, additional authentication is enabled on the

Kubernetes API by issuing a new join token with a short expiration for every provisioned

Worker node.

For all MiCADO components requiring Master-Worker Secure Communication, an IPsec

tunnel is set up between the Master Node and each Worker Node. IPsec provides the encrypted,

secure communication channel thus guarantees management traffic confidentiality and

integrity. Endpoint authentication is achieved by using X.509 certificates on both the Master

and Worker Nodes.

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 79 of 84

In MiCADO, Security Policy Manager is responsible for generating and revoking client

certificates as well as distributing Kubernetes join tokens.

3.7.3 Master-Worker Secure Communication Implementation

3.7.3.1 Setting up a new Worker Node

Setting the secure communication channel takes place when a new Worker Node is

provisioned. Provisioning the new node is orchestrated by Occopus, while Occopus gets the

required security tokens from Security Policy Manager.

Newly deployed Worker Nodes must be provisioned with identity tokens that can be verified

by Master Node components. A Worker Node needs a Kubernetes join token so that kubelet

component can join the Kubernetes cluster. A Worker also needs an X.509 certificate used by

Ipsec to authenticate the node with Master.

Occopus receives these credentials from Security Policy Manager, that is responsible for

lifecycle management of these tokens. SPM handles X.509 certificates with its Hashicorp Vault

backend using the PKI secret engine. Kubernetes join tokens are only distributed by SPM while

generated by the Kubernetes API.

Occopus incorporates the security tokens into the Cloud Init used for deploying the Worker

Node. After the Worker Node is deployed, it joins the Kubernetes cluster with the join token

and sets up an IPsec tunnel to the master node with the certificate. IPsec on the Master Node

validates Workerôs certificate with SPM.

Worker Node provisioning workflow in terms of secure communication is shown on Figure

70.

Figure 70 Master-Worker Secure Communication setup

3.7.3.2 Decommissioning a worker node

When decommissioning a worker node Occopus notifies SPM of this event. SPM then

invalidates the IPsec certificate and Kubernetes cluster membership. Both IPsec endpoint and

Kubernetes API is made aware of this invalidation.

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 80 of 84

4 Art efact Traceability

In this section we revisit the traceability chain of the MiCADO security modules ï from

security requirements to architecture objectives and to open specifications of security enablers.

4.1 Image Integrity Verifier

Security requirements traceability

The IIV addresses the following requirements outlined in D7.1 COLA security requirements:

CNSR-2, CNSR-6

Architecture objectives traceability

The IIV addresses the following security architecture objectives outlined in D7.2 MiCADO

security architecture specification: O4.1, O4.4, O6.2

Open Specifications traceability

The MiCADO Image Integrity Verifier Security Module corresponds to Open Specification

4.1 in D7.3 Design of application level security classifications formats in principles.

4.2 CryptoEngine

Security requirements traceability

The Crypto Engine directly addresses the following requirements outlined in D7.1 COLA

security requirements: SR12, SR13, CNSR-3, CNSR-9, CSSR-1. Furthermore, the Crypto

Engine supports a set of additional requirements outlined in D7.1 COLA security requirements:

SR01, SR02, SR11, CNSR-7.

Architecture objectives traceability

The Crypto Engine directly addresses the following security architecture objectives outlined in

D7.2 MiCADO security architecture specification: O3.1, O5.2. Furthermore, the Crypto

Engine supports a set of additional security objectives outlined in D7.2 MiCADO security

architecture specification: O1.1, O3.3, O2.2, O5.1, O4.1.

Open Specifications traceability

The MiCADO Crypto Engine Security Module corresponds to Open Specification 4.2 in D7.3

Design of application level security classifications formats in principles.

4.3 Credential Manager

Security requirements traceability

The CM addresses the following requirements outlined in D7.1 COLA security requirements:

CNSR-1, CNSR-3.

Architecture objectives traceability

The CM addresses the following security architecture objective outlined in D7.2 MiCADO

security architecture specification: O4.2, O5.1

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 81 of 84

Open Specifications traceability

The MiCADO Image Integrity Verifier Security Module corresponds to Open Specification

4.4 in D7.3 Design of application level security classifications formats in principles.

4.4 Credential Store

Security requirements traceability

The CM addresses an extension for the requirements outlined in D7.1 COLA security

requirements.

Architecture objectives traceability

The CM addresses the following security architecture objective outlined in D7.2 MiCADO

security architecture specification: O5.1

Open Specifications traceability

The MiCADO Image Integrity Verifier Security Module corresponds to Open Specification

4.5 in D7.3 Design of application level security classifications formats in principles.

4.5 Zorp Firewall

Security requirements traceability

Zorp Firewall addresses the following requirements outlined in D7.1 COLA security

requirements: SR05, SR06, SR10, CNSR-1, CNSR-2, CNSR-3, CNSR-4, CNSR-5, CNSR-6,

CNSR-7, CNSR-8, CNSR-9, CNSR-10

Architecture objectives traceability

The Zorp Firewall addresses the following security architecture objective outlined in D7.2

MiCADO security architecture specification: O1.1, O4.2, O4.3, O4.4, O6.1, O6.2

Open Specifications traceability

The MiCADO Image Integrity Verifier Security Module corresponds to Open Specification

4.6 in D7.3 Design of application level security classifications formats in principles.

4.6 Security Policy Manager

Security requirements traceability

The Security Policy Manager addresses the following requirements outlined in D7.1 COLA

security requirements: SR05, SR06, SR10, CNSR-1, CNSR-2, CNSR-3, CNSR-4, CNSR-5,

CNSR-6, CNSR-7, CNSR-8, CNSR-9, CNSR-10

Architecture objectives traceability

The SPM addresses the following security architecture objective outlined in D7.2 MiCADO

security architecture specification: O1.1, O4.2, O4.3, O4.4, O6.1, O6.2

Open Specifications traceability

The MiCADO Security Policy Manager Enabler corresponds to Open Specification 4.3 in D7.3

Design of application level security classifications formats in principles.

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 82 of 84

4.7 Master-Worker Secure Communication

Security requirements traceability

The Master-Worker Secure Communication mechanism addresses the following requirements

outlined in D7.1 COLA security requirements: SR05, SR06, SR10, CNSR-1, CNSR-2, CNSR-

3, CNSR-4, CNSR-5, CNSR-6, CNSR-7, CNSR-8, CNSR-9, CNSR-10

Architecture objectives traceability

The Master-Worker Secure Communication implementation addresses the following security

architecture objective outlined in D7.2 MiCADO security architecture specification: O1.1,

O4.2, O4.3, O4.4, O6.1, O6.2

Open Specifications traceability

The MiCADO Master-Worker Secure Communication Enabler corresponds to Open

Specification 4.7 in D7.3 Design of application level security classifications formats in

principles.

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 83 of 84

5 Summary and Conclusions

This document contains the implementation documentation of the security enablers delivered

within the COLA project. The enablers provide functionality addressing various aspects of

cloud security, such as: integrity verification of container images; generation of cryptographic

material for authentication and authorization, network security (Transport Layer Security

Enforcement and Termination, Firewalling, etc.), management and storage of cryptographic

material and credentials. The enabler descriptions collected in this document accompany

several earlier artefacts delivered in project COLA, namely the security enablers reference

implementation, the security enablers earlier specification as well as the MiCADO security

architecture specification. Together with the earlier artefacts, the MiCADO Security Modules

Reference Implementation allows for a complete and fundamental understanding of the

MiCADO security components. This creates the preconditions for the successful subsequent

development of security functionality in MiCADO.

The document contains the description of the following security enabler implementations:

1. Image integrity Verifier ï provides integrity security guarantees to the MiCADO

infrastructure, primarily through integrity verification of application images prior to

deployment. This functionality allows to detect corrupted images prior to their

instantiation in the cloud.

2. Cryptographic Engine ï provides a set of cryptographic material and algorithms to

enforce the security of the communication between the components of the MiCADO

system. The module implements the common cryptographic algorithms widely used in

cloud deployments.

3. Credential Store ï stores and protects security sensitive data required for operating the

the MiCADO infrastructure. The credential store protects infrastructure secrets by

encrypting them and restricting access to them.

4. Credential Manager ï stores and manages the MiCADO user identities. It provides user

verification used by the components performing authentication and access control.

5. Master Node Zorp Firewall ï application level protocol proxy firewall, provides TLS

and authentication for MiCADO Dashboard and TOSCA Submitter.

6. Security Policy Manager ï a set of restful web APIôs providing access to MiCADO

security enablers for TOSCA Submitter and Occopus Cloud Orchestrator.

7. Master-Worker Secure Communication ï a secure communication channel for

management communication between the Master Node and Worker Nodes.

The descriptions of the MiCADO security module reference implementation reflect the design

and implementation decisions, trade-offs, limitations and exposed application programming

interfaces of the security enablers. The reference implementations of the security enablers

follow the open specifications outlined in the earlier Deliverable D7.4 Security policy formats

specification. However, the current implementation description fills in the remaining potential

knowledge gaps regarding implementation details of the security enablers.

D7.5 MiCADO Security Modules Reference Implementation

Work Package WP7 Page 84 of 84

6 References

[1] Cloud Orchestration at the Level of Application (COLA), Project 731574; D7.2

MiCADO security architecture specification, October 2017

[2] McKeen, Frank, et al. "Intel® software guard extensions (intel® sgx) support for

dynamic memory management inside an enclave." Proceedings of the Hardware and

Architectural Support for Security and Privacy 2016. ACM, 2016.

[3] Rivest, Ronald L., Adi Shamir, and Leonard Adleman. "A method for obtaining digital

signatures and public-key cryptosystems." Communications of the ACM 21.2 (1978):

120-126.

[4] Johnson, Don, Alfred Menezes, and Scott Vanstone. "The elliptic curve digital

signature algorithm (ECDSA)." International journal of information security 1.1

(2001): 36-63.

[5] Python Cryptography Toolkit (pycrypto) https://pypi.org/project/pycrypto/

[6] UUID objects according to RFC 4122 https://docs.python.org/3/library/uuid.html

[7] Hashicorp Vault, https://www.vaultproject.io

[8] Hashicorp Vault API client for Python, https://github.com/hvac/hvac

[9] Hashicorp Configuration Language, https://github.com/hashicorp/hcl

[10] Flask-User, https://flask-user.readthedocs.io/en/latest/

[11] Flask-SQLAlchemy, http://flask-sqlalchemy.pocoo.org/2.3/

[12] Hashicorp Vault Key Rotation,

https://www.vaultproject.io/docs/internals/rotation.html

[13] Token Policy, https://www.vaultproject.io/docs/concepts/policies.html#default-

policy

[14] D6.2 - Prototype and documentation of the monitoring service

[15] D5.4 - First Set of Templates and Services of Use Cases

https://github.com/hvac/hvac
https://github.com/hashicorp/hcl
http://flask-sqlalchemy.pocoo.org/2.3/
https://www.vaultproject.io/docs/internals/rotation.html
https://www.vaultproject.io/docs/concepts/policies.html#default-policy
https://www.vaultproject.io/docs/concepts/policies.html#default-policy

