D7.5 MiCADO Security Modules Reference Implementation

COLA

Cloud Orchestration
at the Level of Application

Cloud Orchestration at the Level of Application
Project AcronymCOLA
Project Number731574

Programmelnformation and Communication Technologies
Advanced Computing and Cloud Computing

Topic: ICT -06-2016 Cloud Computing

Call Identifier:H2020ICT -2016-1
Funding Schemdnnovation Action

Start date of project: 01/01/2017 Duration: 30 months

Deliverable:
D7.5 MICADO security modules reference implementations

Due date of deliverabl&1/12/2018 Actual submission dat&1/12/2018

WPL: Nicolae Paladi
Dissemination Level: PU
Version: 1.6

Work Package W Pagel of 84



Cloud Orchestration

m Status and Change History

D7.5 MiCADO Security Modules Reference Implementation

Table 1 Status Change History

Status: Name: Date: Signature:
Dratft: N. Paladi 11/122018 | Nicolae Paladi
Reviewed: B. Despotov 20/12/2018 | Bogdan Despotov
Approved: T. Kiss 21/12/2018 | Tamas Kiss
Table 2 Document Change History
Version Date Pages | Author Modification
V0.1 20111 7 Nicolae Paladi | Document template
Add sample description for Imag
V0.2 22/11 18 Nicolae Paladi | Integrity Verifier (Section3.1)
Add sample description for é¢hCrypto
V0.3 23/11 35 Nicolae Paladi | Engine security enabléBection3.2)
Review Crypto Engine security enab
V0.4 03/12 34 Nicolae Paladi | (Section3.2)
V0.5 03/12 34 Nicolae Paladi | Add introduction to deliverable
Antonis Michalag Add sample description for the Credent
Amjad Ullah | Engine and Credential Store secu
V0.6 04/12 71 Hai-Van Dang | enablers
V0.7 04/12 71 Nicolae Paladi | Write conclusion(to be updated)
V0.8 04/12 71 Amjad Ullah Changes to Section 2
V0.9 04/12 71 Peter Bauer Changes to Section 2
V1.0 04/12 71 Hai-Van Dang | Changes to Section 2 and 3.4
V1.1 05/12 72 Nicolae Paladi | Add sectiod Artefact Traceability
Amjad Ullah
V1.2 05/12 75 Hai-Van Changes to SectioB.3 and3.4
Add description of Zorp, Security Polig
Manager and Madsr-Worker Secure
V1.3 10/12 83 Peter Bauer Communication security enablers
Minor wording andormatting fixes in all
V14 1112 83 Balint Kovacs sections
V1.5 18/12 84 Nicolae Paladi | Address some issues raised by review
V1.6 20/12 84 Balint Kovacs Final edit

Work Package W

Page2 of 84




Y 4

D7.5 MiCADO Security Modules Reference Implementation

Glossary

API

Application Programming Interface

AWS

Amazon Web Services

COLA

Cloud Orchestration at the Level of Application

UML

Unified Modelling Language

MICADO

Microservicebased Cloud Applicatiofevel Dynamic
Orchestrator

CM

Credential Manager

PM

Policy Manager

CSP

Cloud Service Provider

MAC

Message Authentication Code

HMAC

Hashbased Message Authentication Code

DoS

Denial of Service Attack

Pl

Personally Identifiable Information

Work Package W

Table 3 Glossary

Page3 of 84



v D7.5 MiCADO Security Modules Reference Implementation

List of Figures and Tables

Figure 1 MiCADO infrastructure with core components [14]........cccccciiiiiiiiccienneennnn. 10
Figure 2 MiCADO infrastructure with cor@mponents and security components......... 11
Figure 3 Component interaction for the image integrity verifier and image verification
CST<T0 [ 1] o o = PPN 13
Figure 4 The Image Integrity Verifier developed as an SGhaty............ccccceeeeeiiiierienns 14
Figure 5 Integrity Verification Mechanism inside the 11V component.......................... 15
Figure 6 image verifier rest APl invocation and reSpanSe...............eeeeeveeemieevvvrnneeeenee. 16
Figure 7 Summary of findlow implementation.................ccccooiiiiiieceiiiccce e 18
Figure 8 Crypto Engine FUNCHONALILY..........covviiiiuiiiieeeeeiiiiees e 19
Figure 9 genToken APl format reqUESL........ccooeeeeiiiiiiiieeee e 24
Figure 10 genKey AP fOrmat FEQUESE.........uuuuiriiiiiiiiieeeiiitieiieee e e e e e e e s eeemee e e eeeeeeeeas 25
Figure 11 encryptdata APl format reQUESE........cccooviiiiei e 26
Figure 12 decryptdata request/response specification..............ccccccvmrreeeeeiciciiiinnnnne, 27
Figure 13 rsaencryptdata request/response specification...............ccovveeeeieiiieeiee e, 28
Figure 14 rsadecryptdata request/response SPeCifiCation................uuveeeercuvevvervnneneenne. 29
Figure 15 getHash request/response SpecifiCation............ccccoviiiecevvviiiiiiiiiee e 30
Figure 16 genCert request/response SpecifiCation..............ccccuuummmrnneeseiiiiiiiiiiineee e 32
Figure 17 genSignature request/response specificatiQn...............ccevvccceeveeeeevvinnnnnnnnns 33
Figure 18 veriSignature request/response specificatian...............cccueeeeriiieiiiiiinnnnne. 34
Figure 19 Component interaction for the infrastructure secret request...................... 36
Figure 20 Vault Initialization MeChaniSm............ccccuuuiiiiiiireei e 37
Figure 21 Secret Insertion MechaniSM................ouuiiiiiccceiiiieeee e 38
Figure 22 Secret Insertion request and reSPANSE............uuuuuirimemiiiniiiiiriereeeeeeeeeeeeeenes 38
Figure 23 Seret Retrieval MeChaniSM.............ooooviiiiiiiieecceeeeee e 39
Figure 24 Secret Retrieval request and reSPONSE. ........uuuueiiiiiiieeeiiiiiiiieieeeeee e 40
Figure 25 Secret Deletion MeChaniSm...............uuuuiiiiccciieiieee e 41
Figure 26 Secret Deletion request and reSPONSE..........uuuurriiirimemriiiiiiiirreeeeeeeeeeeeeeeeees 41
Figure 27 Secret Update MeChaniSIm............ccoooiiiiiiieeeii e 42
Figure 28 Secret Update request and reSPONSE........cccvvvvvieeieeeeeeiieeeeeeeeeeeeeeessnsnneenen 42
Figure 29 Credential Store Flow Implementation..............ccooooviimemriiiiiiii e 44
Figure 30 Component interaction for user authentication................ooooevccee e 45
Figure 31 User Creation MeChaniSIL..........ccooiiiiiiiiiiceeiii et 46
Figure 32 New user creation API request and reSpANSe..........ccccuevvvimmmrnnininnniniennnnns 47
Figure 33 Uselnformation retrieval mechanisSm............ccooooviiiiiiccmiiiin e 48

Work Package W Pages of 84



Y 4

D7.5 MiCADO Security Modules Reference Implementation

Figure 34 User information retrieval APl request and response...........ccccevvveeeeeeeeennn. 49
Figure 35 User update MECNANISINL..........uuuuiiiiiiiiieeeiiiiiiii et e e s eeemr e e e e e e e eeaeeens 50
Figure 36 User update API neest and reSPONSE.......cceeiiiieieeeeiiiieeeieee e nes 50
Figure 37 User deletion MechaniSmL...........coouiiiiiiiioniiiieiiiiiiis e 52
Figure 38 User delete APl request and reSPONSE...........ccovvvvvvieeeeeeeeeeeeeeeeeeeeeeiemeees 52
Figure 39 All users retrieval meChaniSmL..............ouuiuiiiiccii e 53
Figure 40 All users retrieval API request and reSPONSE...........euvvveuumimreeeeeernrinnnnnn. 53
Figure 41 New role creation MeChaNISM............uuuiuiuiiiiireeeeeiiiiire e 55
Figure 42 New role creation APl request and response formats............cccoeevveeevvnnnnns 55
Figure 43 All roles retrieval meChaniSmL..........cooviiiiii e 56
Figure 44 All roles retrieval APl request and response formats...............cccceveeeeeeeennn. 56
Figure 45 Role retrieval MECNANISIL. .........uuuiiiiiiiiii e 57
Figure46 Role retrieval APl request and response formats............cccooeeeeeeeeivnnninennn. 58
Figure 47 Role label update mechaniSm...............uueeiiiieeriiiiiiiiiiiieeeeee e 59
Figure 48 Role label update API request and response farmats.............cccceeeeeeeeenn.n. 59
Figure49 Role deletion MeChaniSmL............uuiiiiiiiiiiieeei e 60
Figure 50 Role deletion API request and response formats..............ccoeeeeeevccciiieeeennn. 60
Figure 51 User role retrieval MEeChaNISIML..........viiiiiiiiiiiieeeiiiieeeeee e 61
Figure 52 User role retrieval APéquest and response formats.............cccceeeeeiieccevnnnnnns 62
Figure 53 User role revocation mechaniSm............oooooiiiiiiccci e 63
Figure 54 User role revocation API request and response formats...............cccceeeeeene 63
Figure 55 User role gnt mechanisSm............oooi e 64
Figure 56 User role grant API request and response formats.............ccccvveeeeeeeeenl 64
Figure 57 User verification mechaniSmM..............oooiiiccc e 65
Figure 58 User verficiation API request andpense formats...............cccovvvvvvieeeee e, 66
Figure 59 User password change mechaniSm.............oooiiiiicce e eeeeeciiieeeee 67
Figure 60 User password change API request and response formats........................ 67
Figure 61 User password reSet MECHBIIL. ...........cuiiiiiiiiiiiieeieee e 68
Figure 62 User password reset API request and response formats................cccee..... 69
Figure 63 Credential Manager Flow Implementation................cccccvveecevveeeen 20
Figure 64 NetWOTrK flOW.........ooi e eeree e e eneer e 71
Figure 65 Firewall communication OVEIVIEW..............ooveiiiiiiimeeeeeeeeeseiiiveeveeeeenn d 2
FIQUIe 66 TLS SEIUP PrOCESS .. .ciivitii e eieiiit it e e e e et e e e e e e e tb e e e e e eata e e e e aeessmnns 73
Figure 67 HTTP basic authentiCation...............ooooiiieemni e 74
Figure 68 HTTP form authentiCation...............coouuuuiiiceeiiii e 75

Work Package W Pageb of 84



Y 4

D7.5 MiCADO Security Modules Reference Implementation

| FIgure 69 ReQUESE FOULING ... ...uuureeiiee s e e e e ceeetiiiss e e s s e e e e e e e e e e e eeeeeesaeeeeeeeeeeeeeeeeeseennsnnneees 76
Figure 70 MasteWorker Secure CommunNiCation SETUR.........ccvivieeerriiiiicceeeeeeeeeeeeeene 79
Tables
Table 1 Status Change HiStQrY.........coooiiiiiiiieeeee e 2
Table 2 Document Change HISTALY..........coooiiiiiiiieeee e 2
TADIE 3 GlOSSANY ... i i i i i i ettt nn e aaaas 3
Table 4 API specification, for main functionalities offered by the Crypto Engine........ 21
Table 5 Parameter reqaments of genKey APl usage............cccovvvvvvviieeee e 25
Table 6 Parameter requirements for symmetric APIS USage..............uvvvvummeeeeeeeennnnns 27
Table 7 Parameter requirements for Asymmetric APl USage.......ccceeeeeeeeeiececiccienneennn. 28
Table 8 Parameteequirement for getHash APl usage............cco oo 30
Table 9 Parameter requirements for genCert APl USAQE.............eueiiiieeeennevnnniieenn, 32
Table 10 Parameter requirements for genSignature and veriSignature APIs............. 33
Table 11 Crypto Engine Configuration parameterS..........ccceeeeieeisceeevniiiiiie e eeeeeeeee 34
Table 12 Vault Server configuration in HCL format...........cccccooiviiiieeciieiee 36

Work Package W Page6 of 84



Cloud Orchestration

D7.5 MiCADO Security Modules Reference Implementation

Table of Contents
Status and Change HISTOLY........uuuuruiiiiiie e eeeer e e e e e e e e e e e e snnne e 2
(€10 1S7ST= Y 2SR 3
List of Figures and Tables............ccuiiiiiiiiicee e B
TaDIE Of CONTENES. .. .uiiiiiiiiiiiiii ettt rrt et e e e e e e e e e e e e s s s e s rmmne e e e e e e e e e s e annas 7
R 11 o o 11 o o o RSP RRRPPRN 9
2 Overview of MICADO security MOAUIES.............ovuviuiiiiiireeeeeiiiisee e e e eeenannens 10
3 MICADO Security Modules Implementation Descriptian..............cccccvvvimemneiiinnnns 13
3.1 Image INtegrity Verifiel...........uuuueeiiiiei e eeeer e 13
3.1.1 Image IntegrityVerifier FUNCHONAIITY.........evvviiiiiiiiiiiiiiieeee e 13
3.1.2 Image Integrity Verifiler DeSIgN.........ccovvuiiiiiiiiiimmeeeeeeeiee e eeenrnnae 14
3.1.3 Image Integrity Verifier Implementation..............cccooooeiiiiccce e 15
3.2 (@Y o] (o TN =1 o[ 1= SRR 19
3.2.1  Crypto Engine FUNCHONAIITY........cccviiiiiiiiiiiii e 19
3.2.2 Functionaland Security ReqUIremMents..........ccccceeveeeieiiceceiiiiieee e e 20
3.2.3 Design and IMplementation................ceeeiiiiiieeeiiiiiieieieeeee e 22
3.3 Credential STOTE........uuuiiiiiiiiiiiie ittt 35
3.3.1 Credential Store FUNCHONAIILY...........ccoeeiiiiiiiiiiccee e 35
R T I =T 1 0] 1 Vo] o o | 2 35
3.3.3 Credential Store Interaction in MiICAD............cccoiiiiiiiiiiirenn e 35
3.3.4 Credential Store Design and Implementation...............ccccovvieeeeee e, 36
3.4 Credential Manager............uuveiiiiiiiiiiieeeiieieeeeeeeeeee e A4
3.4.1 Credential Manager Functionality.................uuuuuiiinccreeeiviiieeee e e 44
3.4.2 Credential Manager Interaction in MiCADO.............ccccccvvvvvieeenniiinnnnnn. 45
3.4.3 CredentiaManager Design and Implementation..................cccvveeeeeeeeee. 45
3.5 Master Node Zorp FireWall............coovviiiiiiiiieeni e 70
3.5.1 Master Node Zorp Firewall Functionality.................oooovrrimmmeeeeiiiiiieieiiinn, 70
3.5.2 Master Node Zorp Firewall DeSIgN.............uuuuiimiiiiiieeeiiiiiiiiiiieieeeeeeeeeeeeaas 70
3.5.3 Master Node Zorp Firewall Implementation................ccccovvveeeeeeeeereeen 21
3.6 Security POlICY MANAGET...........cooii i 16
3.6.1 Security Policy Manager Functionality................coovvviiimmmeeeeeeieeeeeeiiiiis 76
3.6.2  Security Policy Manager 5igN..........cooooiiiiiiiiiiiieren e 77
3.6.3  Security Policy Manager Implementation...................oovvvieeeeeeeeeeeeeeeeennnn, 77
3.7 MasterWorker Secure COmMMUNICALION........ccoeeeeeeeeeiieiiieeeieieeeeeeeeeeeeeeeeeeen d B
3.7.1 MasterWorker Secure Communication Functionality..............c.cccceeeeeen.. 78
3.7.2 MasterWorker Secure Communication Design................eeveeevieencuvevennnne 78
3.7.3 MasterWorker Secure Communication Implementatian......................... 79
4 Artefact Traceability..........cooiiiiiiiiiiie e 80
4.1 Image INtegrity VEITBI ........cooe i eeeme e 80

Work Package W Page7 of 84



D7.5 MiCADO Security Modules Reference Implementation

4.2 (@ Y/ 0] 0] =1 o 1 1= SRS 80
4.3 Credential MBNAGEL..........uuuiiiiiiiiiii ettt e e e ammr e e e e e e e e e e 80
4.4 Creden Bl STOTE.........uuuiiiiiiiiiiiii e 81
4.5 ZOrP FIrE@WAl.......oo oo eeee e 31
4.6 Security POlICY MaNAJEL.........uuueeiiiiie e aeeen e e e e e e e e aa e 81
4.7 MasterWorker Secure COmMMUNICALION...........ceeeiiiiiiiiiiiieee e 82
5 Summary and CONCIUSIONS........uuuuuiiiiiiie e e e ceeeiicce s s e e e e e e e e e e e e e erer e e e e e e e e eeeeeeeenannnnn 33
N ] (=] (=] [ 1 84

Work Package W Page8 of 84



Y 4

D7.5 MiCADO Security Modules Reference Implementation

1 Introduction

This document focuses aescribing the reference implementation of MIiCADO security
enablers The reference implementation of MIiCADO securigpablersand the current
MiCADO securitynodulegeference implementatiaescriptionconstituteDeliverableD7.5.

The current document aims to describe the specific design and implementation decisions taken
during the development of the MiCADO security modules within the COLA project.

To achievethat, we follow two approaches. First, we thoroughly describereference
implementation of the MiCADO security modules delivered in the project. Sesermltline

the traceabilityof the MICADO security module implementations relative to the earlier
relevant deliverables, namely D7AOLA security requirementd)7.2 MICADO security
architecture specificatiol)7.3Design of application level security classification formats and
principles and D7.4 Security policy formats specification.

The main objectives of this documemeas follows
1 Describethe referencemplementationof MiCADO security enablers.
1 Document the technical decisionsplementationtradeoffs and limitations of the
reference implementations.
1 Complement the technical implementation of the MiCADO security enablers.

The MICADO security modules referem implementations will be used as input for D7.6
AMICADO security evaluation repod, the last deliverable in Work Package 7 of the COLA
project. The current document explicitly excludes out of its scope the description of the
integrationof the MiCADO seurity enablers into the MiCADO orchestration system. A report
describing the integration of the MiCADO security enablsr&xpectedn the following
deliverable of the project, D7f@MiCADO security evaluation repodt .

The remaiderof this deliverablas structured as follows:
1 Chapter 2 Overview of MICADO security modules.

This chaptecontains an overview of the MIiCADO security modules in the context of
the MiCADO platform.

1 Chapter 3 MiCADO security modules implementation description.

This chaptercontains the descriptions of the MiCADO security modules included in
the deliverable. The descriptions focus on the specific implementation decisions and
solutions, implementatiortradeoffs and limitations ofthe delivered reference
implementatiors.

1 Chagper 47 Artefact Traceability

This chapter describes the traceabilityof the MICADO security enabler
implementations to the requirements and design specifications described in the earlier
deliverables.

1 Chapter 5 Summary and conclusion

This chapter corlades this deliverable.

Work Package W Page9 of 84



v D7.5 MiCADO Security Modules Reference Implementation
COLA

Cloud Orc

2 Overview of MICADO security modules

This section provides an overview on implemented security modulebein interaction with
existing core components of MICADO. Further details on the implementation of security
modules will bedescribed in SectioB.

I [ Cloud | Worker node create/destroy/sceile Upor/ver
I |[:Orchestrator: Scale/update |
| Create worker MICADO
1 Worker nodes MASTE
descriptionon 1 — - NODE
infrastructure 1 ,———bm o -
andpolicies S A |
I i ! I
- - 1 1
ShS : . _||Parameters
Register | Advce SR— ': : | :
policies Ly i MICADO
| LonSysten: MICADO 1! WORKER
Info on 1 WORKER 1! NODE 1
1

B I
€ i 1
Create innnnionniii nodesfcontainers ': NODE........... i""i I
i i Gt Coonaned
i fra Scale/updatecontainers |: @ II I :
1
1

“~Container | 1! [ Container.

ontainer. | Container create/destroy/scale !

-0 2 L EYARTIAE 1 L ENACHOF

I et al - - - _—_ [ ——- -
Figure 1 MiCADO infrastructure with core components [14]

Figure 1 displays MiCADO infrastructure, where it is composed of a master node and worke
node(s). We mainly focus on MiCADO master node that consists of various components
having different functionalities. The short descriptions of these components are provided
below, except the Optimiser, which currently exists considering future extension.

1 Submitter: It receivethe Application Description Template (ADT) fileom MiCADO
users. The ADT filecontains details on the application topology and the relevant
policies, e.g. scaling and/or security policies. Please refer to deliverabl¢1B5bfdr
more details on the ADT file;

1 Monitoring system: It collectmonitoring data of virtual machines, microservices and
containers from worker nodes;

1 Policy Keeper: The purpose tife Policy Keeper is twofold. Fstly, it facilitates the
definition of scaling policies ithe ADT file. Secondly, it makea scaling decision of
virtual machines/containers based on the collected monitoring information;

1 Cloud Orchestrator: It executes the scaling decision of virtuahimas made by the
Policy Keeper;

1 Container Orchestratolt performs the scaling of containers in worker nodes made by
the Policy Keeper;

For further details on each component, please refer to deliverabl¢lag.2

Figure2 provides more secure version of MICADO with additional security components.

Work Package W PagelOof 84



v D7.5 MiCADO Security Modules Reference Implementation
COLA

Cloud Orchestration
at the Level of Appiication

MiCADO master node

Cloud API
(HTTPS)

Master-Worker Secure
Policy Keeper ‘ BT et Worker Node ‘
Security policy .
manager Monitoring System

e AN

Credential
manager

HTTPS

?) Sl L7 firewall
»

Administrators -

Application Description
Template

Dashboard

IMICADO Submitter|

q PKI Image verifier
Credential Store (part of CryptoEngine) (optional)

TP
(optional)

Figure 2 MiCADO infrastructure with core components and security components

The grey boxn Figure2 depicts the MiCADO master node along with all its components. The
inner green boxes are the core components of MICADO whereas the yellow boxes represent
the security components. For the sake of simplicity, Figure 2 does not displagsalldbre
components that currently do not have direct interaction with security components. However,
thereare two additionatomponentsiepicted in Figure 2 that are regire ones, i.e. Dashboard

and Service Discovery. We show them as they also haveadtitars with the security
components. The short description of all the security components are provided below except
TTP, which is an extension for the future and therefore we skip it currently.

1 Master Nodd.7 Zorp Firewall: It is anapplication level préocol firewall. It provides
a secure TLS interface amdds authenticatioto thea d mi n i ssdashlearditre 6
firewall protectsthe master node by blocking all outside communication but the
management dashboaadd the submitter

1 MasterWorker Secure Gomunication It provides secure communication between
master node management components and worker rnibidksitifies the endpoints and
encrypts masteworker communication, ensuriragithenticity and confidentiality

1 Security Policy Managerit is a sinde point of access for MiIiCADO security
componentsThe Security Policy Manager provides an aggregatiorRestful API
endpoints that serves different backends including Credential Store, Image Integrity
Verifier, CryptoEngine, IPsec credentials and Kubss@etwork join tokens

1 Credential Manager: It centrally manages all MiCADO users. It provides user
verification for Zorp so thatZorp can perform authentication and access control.
Besides that, it suppligbe Security Policy Manager with functionaliséor managing
users such as creating, updating, deleting, etc.;

1 Credential Store: It securely stores all sensitive information for MICADO
infrastructure. It providethe Security Policy Manager with functionalities to manage
sensitive information such aseating, updating, deleting, etc.;

1 PKI (part of CryptoEngine): It provides MiCADO with Public Key Infrastructure;

1 Image Verifier: It ensures that the application imag@snotcorrupted,;

The following description provides an overview of the interactlmetween security

components and core components. For communication among core components, please refer
to deliverable D6.214].

Work Package W Pagellof 84



Y 4

D7.5 MiCADO Security Modules Reference Implementation

Master NodeZorp Firewall A Dashboardfirewall providessecure communication,
auhenticationandrequest routingo the different shboard compeens

Master Node Zorp Firewall A MICADO Submitter firewall provides secure
communication, authentication and request routing to the Submitter

Master Node Zorp Firewalp Credential Managerinvokes a Restful API to the
Credential Manager to verify the login credentials supplieMiyADO users;

MICADO SubmitterA Security Policy Manager: It invokes Restful APIs to Security
Policy Manager (SPM) to enforce security policies defined in the ABT f

Security Policy Manager (SPM) Credential Manager: For actions related to user
management, SPM invokes APIs to Credential Manager;

Security Policy Manager (SPMY Credential Store: For actions related to sensitive
information storage, SPM invokes Isalo Credential Store;

Security Policy Manager (SPMY PKI (a part of CryptoEngine): For actions related
to certificates issuingsigning /revocation/ etc., SPMalls PKI

Security Policy Managef, Image Verifier: For actions related to application image
verification, Verifier invokes calls to Image Verifier;

Work Package W Pagel2 of 84



v D7.5 MiCADO Security Modules Reference Implementation

3 MICADO Security Modulesimplementation Description

3.1 Image Integrity Verifier

This section aims to describe the core functionality, requirements and implementation of the
Integrity Image Verifier (V) as asecurity component in the MiCADO architecture. The 11V

is responsible for providing integrity security guarantees to the MiCADO infrastrulitdoes

this throughintegrity verification ofapplicationimagesprior to deploymentThe 11V provides

a mechanism to detect corrupted images prior to their instantiation in the cloud.

3.1.1 Image Integrity Verifier Functionality

A privilegedremote user providghe MiCADO infrastructure with a TOSCA file containing
the | ist of tddephmesnstgobgies orgeMites. The MICADO infrastructure
will delegate the integrity verification process of every image to the 11V, and it will continue
with the deployment procesmly if the result of the integrity verification returns a valid
responsellV returns apositiveresponse (TRUE) when the integrity of a supplied image is
assured to have not been alte@therwise the 11V returnsa negativeresult (FALSE) which
means the imagategrity could not be confirmed

Figure3, illustratesthe components interaction for the IV and the sequence followed in the
verification integrity of a valid image prior its instantiatioWithin the remote attestation
protocol,the Broadcastera component of the COLA architectidd - sends the image that is
required to be verified plus the integrity quote of the enclave to the IV (1). The integrity
mechanism then validateéhe quote and if successful, proce¢d calculate a hash of the
received image and compare the resultragja hash stored in a list of w&thown hashes (2).

If both hashes match, the 11V mechanism resdtine image and the result of the image integrity
verification Otherwise,only the result ofthe verification is returned (3).Upon a positive
attestatiorresult, he Broadcaster seathe image to the worker nodes for instantiation (4)
otherwise, the image is rejected and the deployment aborted.

Image Integrity
Verifier (1IV) (2)

04 OfTR 0 Q01 QO 04 GHE GRQGOQI "QQQH

Image 0 6 HEQG &'Q

Repository Broadcaster

‘O¢ i 0 OESQG O@

Worker
Nodes

Figure 3 Component interaction for the image integrity verifier and image verification
sequence

Work Package W Pagel3of 84



w

Cloud Orchestration
at the Level of Appiication

D7.5 MiCADO Security Modules Reference Implementation

3.1.1.1 Image Integrity Verifier Requirements

To provideits core functionality, the IMulfils the following security requirements [1]:

1. Keepin a secure location a list of generated2f@ hash (welknown measurements)
of all images the systeailows for deployment

2. The integrity mechanism must verify the integrity of an image by comparing a fresh
computing hash against a hash, for that image, in the list inside the IIV.

3.1.2 Image Integrity Verifier Design

The 1V core functionality is developeds aniIntel SGX [2] dynamic library that can be
embedded in a large system. The untrusted part exposes the API responsible for handling
incoming requests with wetl e f i ned i nput parameters (i.e.
measurement) and returning theresponding verification process result. The trustedipart
in charge of the integrity mechanism itsélhe integrity mechanisnis invoked througha
request via remote attestatjoesulting ina quote with the result of the verification process
This qude is the basis dhe decision to continuer haltimage deploymentigure3, shows
the IV, developed as an SGX library, with its the respective components.

Attestaion Integrity

Verification
Incoming Integrity ocal Mechanism
Request Verification >

API
List of hash
measurements
SGX Library

Figure 4 The Image Integrity Verifier developed as an SGX library

The integrity verification API contagthe function ImagVerify, whichs responsible for the
execution of the verification tasks within the enclave (trusted part) via an enclave call (ecall).
The integrity verificabn mechanism is further split into sequential blocks, all of which are
securely deployed inside the SGX enclave as depicted in figure 3.

Work Package W Pagel4of 84



v D7.5 MiCADO Security Modules Reference Implementation

Getanimage| | Compute hash Verify hash Output result

(1) g ) ®3) (4)

Figure 5 Integrity Verification Mechanism inside the [IV component

The firststageof theintegrity verification mechanism is to get the image from the incoming
request (1). Nexthe mechanism compwa 256byte hash for the image (2). After that, the
verify hash block compas¢he calculated hash against a stored hash frommeiste trustedlist

file (3). Finally, the output result block evalustine result and based on that, retuam
appropriate response to the requester (4).

The hash_trusted_lisffile, in trusted memorygcontains a welknown list of previously
computed imaglashes. Tis implies that if a new image or a modification to an existing one
is required, the 11V librarynustbe updated to include the new measurement.

3.1.3 Image Integrity Verifier Implementation

The IIV is implemented as an SGX library nantigdvr . In order to ee the functionality of

the integrity verification mechanism, the library is embedded in an application from which its
service is requested. The application is deployed as a python flashaapmbeds and calls

the libiivr library and exposes a JSCREST API interface calledmage verify Moreover,
external entities invokthis image verifyAPI to get images verified.

3.1.3.1 Image Integrity Verifier Main Application

As stated above, this application is responsible for providing an interface to the requester
external entities and to call the services provided byilthigr library. This application can be
initialized in two different mode First thecomplete moderequires a list of hashes previously
computed, to be passed. That list, is a file (semicolorratguhvalues) with lines containing

the exact name of the image followed by its corresponding measurement. The different hashes
in the list are welknown measurements collected by a trusted administrator, who is also
responsible for the compilation of threegrity verification mechanism. The second m(fdst

mode) does not compile the entiligiivr library as in the case of the complete mode. Similar

to the complete mode, in the fast mode, a hash list file needs to be provided. However, this file
has tobe a hash list previously sealed by the integrity mechanism. This indicates that the same
material used in the key that seals the enclave is utilized in the derivation of the key that seals
the hash list filelfash_trusted_list)

The main application htsa JSON REST API, to validate the integrity of desired imades.
is implemented ithe APlimage verifier A caller uses the POST HT Tiethod to invoke the
image verifer API, as illustrated ifigure6. The body of the reqseincludes the image name
(file_namé and the contents of the imadie.

Work Package W Pagel5of 84



v D7.5 MiCADO Security Modules Reference Implementation

Request Format
POST | http:/fiivr_hog_ip:port: /api/vl.0/image_verify

data= {image name file_name,image: file}

Response Output

HTTP Code response success (201):
response: <1><0>¢>

imagename

image(if responseeq J

Figure 6 image verifier rest APl invocation and response.

As aresponse, the API retisan HTTP code, indicating the results of the HTTP request
1 Resut 1: success, the result of the integrity verification mechanism is etufine
the response retwsTRUE (1) and the image name.
1 Result 0 (Image not valid)the response includes the result and the image name.
1 Result-1 (image not supportedhe reponse includethe result and the image name.

The first task of themage verifyAPI is to decode the binary content of the image from the
JSON request. The recovered image is stored in a temporal location for its processing by the
[IV. Next, the main pplication invokes a pythoBGX_wrappetibrary, which is a wrapper
around thdibiivr library. TheSGX_wrappelibrary, is an interface created to be able to make
use of thdibiivr library created in C in the python flask microframework. It is implentente
using the python extension Cython [2], which allows to combine C code into the python
environment.

3.1.3.2 Initialization of the Image Integrity Mechanism

Depending on the chosen initialization mode, it is mandatory to provide a hash list and the
correspondingignature [IV.signed.sp required to initialized the enclave. This signature file
must be kept secure by the administrator in a tasrgsstance place (e.g., TPM). The function
SGX.nit, defined in the untrustgohrt oflibiivr library, is the responsielfor the initialization

of the 11V mechanism.

3.1.3.3 Image Integrity Verifier Mechanism

As illustrated in Figure 5, the 1IV mechanism follows a sequential series of steps. The
image_verifyAPI requests th@nmageverification by provighg the image that was received
from the caller to the IIVR mechanism. This image is passed by indirectly calling the SGX
untrusted functiolsGX_IIMthat takes the image name andltheation or path of the image.

Once the IIV mechanism gets the image #sdame, it proceeds to search if the image name
is in thehash_trusted_listlf the image name is in the lists, the mechanism extracts the hash

Work Package W Pagel6 of 84



Y 4

D7.5 MiCADO Security Modules Reference Implementation

from the list and start the process of computing a fresh hash for that image. If the image name
is not foundthe functionSGX_IIMreturns with resultl (image not supported).

To calculate the fresh hash of the incoming image, the 11V mechanism makes use of an outside
enclave call (OCALL) to obtain the 256/te measurement. The rationale for implementing

this computation outside the enclave is for performance reason because of the high complexity
when it comes to transfer large size images to trusted memory. The fuolbrsha256 _file

is the responsible for sucbmputation in untrusted memory.

With the fresh hash value, the IIV proceeds to verify the integrity of the image by comparing
both hashes. If both hashes match, the verification will return a 1 (Image OK), otherwise, a 0
(Image not OK) will be returned. The image verifier API receives the resuteofllV
mechanism and proceeds to construct the final output to be given to the API caller. If the result
is 1, the response includes the binary of the Image; in any of the other cased)(@her
response only includes the result of the verification.

3.1.3.4 Summary of final flow implementation

The final flow of thellV implementation is summarizedkiigure?7. A privileged user runs the

main application in the complete mode, providing a hash list of all imagesdedfor
instantiaton (1). The main application invokes the python wrapper library to initialize the 11V
mechanism, passing the plain hash file (2). The python wrapper on behalf of the main
application invokes the functid®GX_init thatinitializes the SGX enclave and pasghe plain

hash list to the enclave for the corresponding sealing (3) and (4). The data sealing involves
copying the content of the plain hash list toltheh_trusted_listivhich is a file encrypted with

a sealing key derived from the CPU. For I/O fil@nipulation, the trusted SGX protected file
system libraries [3] are used. These libraries provide a set of I/O file handling functions similar
as the ones provided by thiglioC library. To be able to incorporate these libraries irilthigr

library code, some requirements are necessary to be met as explain in [4]. Once the file has
been created and sealed, the initialization of the 11V mechanism is successfully contpleted.
the main applicatiomust be restarted can be later ranitialized in fag mode, assuming that
thehash_trusted_list in place.

Followinginitialization, the IIV mechanisncanaccept incoming requedtom external callers

(5). The main application receives the HTTP POST requests invoked from its exposed rest API.
This APlreceives as parameters the supplied image name and image file which is desired to
be verified. Next, the python wrapper library is invoked to validate the integrity of the supplied
image, by calling the functioBGX_IIM(6). The untrusted part of tH#bii vr calls the method
ecall_ImagVerifyto delegate the verification process to the IIV mechanism (7). At this point
the IIV mechanism is ready to execute the integrity verification of the image. To do so, the
name of the image is first searched in timesh_tusted_listfile and if found (9), the
corresponding hash measurement is saved in a temporary variable for later comparison. If the
[V mechanism does not find the image name in the file, the mechanism returns a rdsult of
indicating that the image iohsupported for instantiation.

In case the hash for the supplied image is found in the sealed list, the 11V mechanism proceeds
with the computation of a new fresh hash, by calling the untrusted fulctadin sha256_file

which makes use of thepenssl/sa library (9). Once the IIV mechanism has obtained both
hashes, the comparison takes places and the result of the verification is returned by the

Work Package W Pagel7 of 84



v D7.5 MiCADO Security Modules Reference Implementation
COLA

Cloud Orchestration
at the Level of Appiication

ecall_Imagverifyfunction (10). If the result is successful a 1 is return, otherwise a 0 will be
returned. Faally, the response is properly wrapped, by the main application, and returned to
the caller.

Untrusted part Trusted part

Main Application

ocall sha256_file |(w-|...1 "

| (6)

ecall_ImagVerify

Ao il soam N
t . !
requests (5l Imaget\:;lfv (1) "l 1., ecall file_handiing 1
res I N |

(2) SGX_init 3) ‘ |

libiivr library hash_trusted_list i

Figure 7 Summary of final flow implementation.

3.1.3.5 Limitations of the Proposed Solution.

Thecurrent implementatiohas some limitatiosy summarized as follows:

1. The IIV mechanism is attested locally instead of remotdbwever, the mechanism
can be extended to support it. The respective module can be integrated between the
main application and Python wrapper, without altering the aametibnality of the
verification process.

2. The supplied images, are docker images, which binary filescanpressedn a tar
archive file. Thecompressedile, has to be named after the name of the image,
otherwise, the verification process &ibr tha particular image. Once the tar file has
been validated, the caller can instantiate it by simply executiothker load image.tar
command.

3. The sizes of the supplied images are limited to the available memory. The API in its
data parameters expects to thet entire image 64bytencoded, which setscanstraint
in regard tahe supplied image size and available memory.

4. To limit the number of ocalls to the minimum possible, it was decided to compute the
fresh hash measurement in the untrusted part ofiliier library. It is possible,
however, to perform the entire computation in trusted memory, by splitting the image
file in blocks of data. Every block is read in an ocall and consumed internally using the
trusted crypto SGX librarys@x_tcryptd. This mens that the total number of required
ocalls will depend on both the size of the block chosen and the image size.

Work Package W Pagel8of 84



Y 4

Clou stration
at the Level of Appiication

D7.5 MiCADO Security Modules Reference Implementation

3.2 Crypto Engine

This subsection describes the functionality, design andeimghtation of the Crypto Engine,
one of the securitgnablers othe COLA security architecture. The Crypto Engine aims to
provide a set of cryptographic material and algorithms to enforce the security of the
communication between the components of the MiCAdy&iem

3.2.1 Crypto Engine Functionality

As mentioned above, th@rypto Engine is responsible for the generation of cryptographic
material and operations over the flowing data, as showfigare 8. It is designed and
implemented as a microservice, providing the following functionaliigs

Hash Functions Token Generator

ONE @
WAY
Al

N

Crypto Engine \
) Encryption Digital
Key Generation Ciphers Signatures
(o % =

Figure 8 Crypto Engine Functionality

1. Key Generation Orchestrator. This function is responsible for the generation of both
cryptographic symmetric and asymmetric keys. It takes as secure ingotgters the
size of the keyeaand the type of the key (asymmetri i cagr symmetricde wde
This function will return the symmetric secret kier the pair of asymmetric keys,

n i depending on the request being made.

2. Symmetric Cipher Suite This functon contains a collection of symmetric encryption
algorithms to perform encryption/decryption operations. The symmetric algorithms
will be supported in a variety of flauos, combining them with different encryption
modes and key sizes. The supplied inpatameters are verified by the Crypto Engine
to make sure they meet the configured security policies. The definition of the involved
symmetric operations is as follows:

rmll - <o) @oam: Gi @ ndsoan arbitrary messager Tip

we denoted byd O¢ @hx a symmetric encryption of m using a symmet
secret keyy i y, wherey is the available message space. The correipg

symmetric decryption operation is denoteddby ‘0 'Q ehto 8

Work Package W Pagel9of 84



v D7.5 MiCADO Security Modules Reference Implementation

Cloud Orchestration

3. Asymmetric Ciphers Suite This function provides a library to perform asymmetric
encryption/decryption operations. By default, the asymmetric RiS8hamirAdleman
(RSA) algorithm is used as the asymmetric encryption scheme. Similar to the
Symmetric Cipher suite, the asymmetric algorittsmpportsdifferent key sizes,
depending on the earity configuration of the Crypto Engine. The definition of
asymmetric operations is specified as follows:

rmllii" i €06ma0OO: Oi &ndEdedote byl | a public/private
key pair for an asymmetric encryption scheme. Encryption of a messagden
the public keyr) is denoted byoN ‘'O | 8While the corresponding decryptio
rmlli - | QOQeOGI%E & JAdigial signature over a messafesigned
with a pivate keyi , is denoted by, i "QQ& . While the corresponding
verification using a public key} over the signature, as® Qi "Qad,

which equals to 1 if the signature is valid and O otherwise.

4. Digital Signature: a digital signature is an asymmetric encryption algorithna trse
verify the integrity of a message and the actual identity s&énder. The signing of a
message and the verification of a signature is defined as follows:

5. Cryptographic Hash Functions: This function provides a ongay fixed length
compression of arbitrarlength messages. A cryptographic hash function contains
specal features that make it suitable for use in specific communication protocols. A
hash function over a messagds denoted byQ O da .

The requirement of a good secure cryptographic hash function requires ease in its
computation but hard computation if the operation is reversed from a resultant hash.
The result of the hash operation is known as a digedtyamy are the algorithms that

can be used for such computation. The Crypto Engine sgpporariety of hash
algorithms

6. Message Authentication Code (MAC)A MAC is a special type of hash function that
uses a symmetric key to produce a fingerprint thaisesd to exchange messages in
order to provide security integrity guarantees. A MAC of a mes§aggth a secret
keyU is denotedby 0 6 6uhd .

7. Token Generator. This function is responsible for the generation of secure strong
random numbers, with sufficient entropy. This function can be denotedl by
6 "YO "0, which is a random binaryequence of n bits generated by a
Cryptographically Secure PseuBiandom Number Generator (CSPRN).

3.2.2 Functional and Security Requirements

This sectionenumerateshe highlevel functional requirementand corresponding security
considerationsmplementedy the Crypto Engine. Additionally, a specification of the different
APIs implementing the different functions or services of the Crypto Engine are specified to
give an insight into the final design and implementafitjn

Work Package W Page20of 84



D7.5 MiCADO Security Modules Reference Implementation

3.2.2.1 High-Level Functional Requirements

These functional requirements are based on the requirements towards cryptographic security
of (a) the primitive operations performed by the Crypto Engine @)dhe cryptographic
primitives produce by the Crypto Engine. The fumetil requirements are describeda®ws:

1. The Crypto Engine should perform symmetric encryption/decryption operations with
keys that are at least 1-B& long.

2. The Crypto Engine should perform asymmetric encryption/decryption operation with
keys that a at least 2048it long.

3. The Crypto Engine should only accept combinaiofiparameters for both symmetric
and asymmetric encryption schemes that are aligned with the security configuration set
by the Crypto Engine.

4. Theprovidedhash functions must prodepreimageresistantesults.

3.2.2.2 API specifications

Table 4 contains a sample description of the API requirements, ingiény the main
functionalitiesof the Crypto Engine.

Table 4 API specification, for main functionalities offered by the Crypto Engine.

API Description

Generate

public-private a. Input parameters:

key pair 1. Function invocation genKey

2. Parameters [crypto library, key type,
Encryption algorithm]

b. Output
1. Tuple list <public key, private key>

c. Commaent:
The choice of the crypto library could be jatefined by the
administrator in the crypto security policy.

Generate X.50¢
Certificate a. Input parameters:
1. Function invocationi genCert
2. Parameters [crypto library, encryption algorithm, valig
period, cetificate authority, certificate storage location
b. Output
1. X509 certificate
c. Comment
The choice of the crypto library, validity period and certific
authority could be preefined by the administrator in t
crypto security policy.

Work Package W Page21of 84



v D7.5 MiCADO Security Modules Reference Implementation

COLA
Encrypt Content
using a a. Input
symmetric 1. Struct <Plaintext message, Encryption Key>
cipher suite 2. Parameters [crypto library, encryption algorith
encryption mode]
b. Output

1. Tuple list <result, ciphertext message>
c. Comment
N/A

Decrypt content

using a. Input

asymmetric 1. Struct <Ciphertext message, Decryption Key>

cipher suite 2. Parameters [crypto library, encryption algorith
encryption mode]

b. Output

1. Tuple list <Plaintext message>

Comment

N/A

oo

3.2.2.3 Main Interactions

The following two use casedescribe themain aspects that include most betservice
provided by the Crypto Engin&@heydo notrepresent completdist of uses cases.

Use case:lGeneration of a public key cryptography key pair

The administrator, via the Security Policy Manager, makes a request to the Crypto Engine for
the generation of a publiprivate key pair, specifying the key size and the asymmetric
algorithm to be employed. For security considerations the key size must be greater than 2048
bits and the supported algorithms should include B$And ECDSAA4]. This kind of request

can be used before making a request for the generation of an X.509 certificate or to request the
encryption or decryption of a particular message.

Use case li Creation of an X.509 certificate

The administrator, via the Security Policy Mgeg makes a request to the Crypto Engine to
create an X.509 certificate by proving a proper private key (as defined in use case 1), the
algorithm the key was generated with, the validity of the certificate and the Certificate
Authority (CA) that sigsthe certificate. The Crypto Engine, vis configuration, decidethe

final validity and the CA that signthe certificate. 8 default the Crypto Engine asfas the

CA, unless specified in the configuration file of the Crypto Engine. The hashing algosigaim u

in the digital signature of the certificate a default parameter configurable in the Crypto
Engine configrationfile.

3.2.3 Design and Implementation

The Crypto Engine is designed as a microservice using the Python microframework Flask.
Functionality preided by theCrypto Engineis exposedas an APlthat takessomeinput

parameters and returtise requested cryptographic information. Those input parameters are
vali dated before any computation against the
verify they are compliant with the security policies defined in the englime python

Work Package W Page22 of 84



Y 4

D7.5 MiCADO Security Modules Reference Implementation

cryptography modulgs] (with the Open SSL library as the cryptographic backend$ed 6r

provisioning cryptographic material and the executibthe cryptographic opations.This
choice is motivated by the availability sédfe recipes and lo¥evel cryptography primitives.

3.2.3.1 Random Number Generator: genToken API

The Crypto Engine requires the generation of strong random numbers with sufficient entropy
to be used as noes, tokens and secret keyis is achieved using th@ryptographically
Secure PseudBandom Number Generator (CSPRNfajctionality available in Python
modulesos, secretanduuid.

The os modulg4]

This module generates crtggraphically secure random bytes with -§&cific randomness
source, derived from the filelev/urandom(Unix) collected from deice drivers and other
sourcesThe functionos.urandomis used for the generation of the random numbers, with the
size numbespecified as the only input argument, no manual seeding is required.

The secretmodule

New in Bthonv3.6, the secret module provides a uisEndly interface for the generation of
strong random numbers and is suggested as the de facto module ferraadam number
generation. This module is a wrapper aroundafi@randommethod. In the secret module,
tokens are generated passing the desired token size in bytes (defayted6using the
functionssecrets.token_bytes secrets.token_hex

The uuid module

Anotheroptionfor generatingandom numbers as integers, bytes or hexadecimal objects is to
use the function uuid4 from the uuid module. The disadvantage is that ehigtel Gandom
numbers can be generated. There are other flavours of funstiohs uuidlibrary: uuidl,
uuid3anduuid4. However, none of these meet the definition of randomness, as thesptake

form of input (seeding).wi d1 wuses the machineds host I D
and uuid5 are based on t8elA-1 and MD5 lash respectivelgf both a namespace identifier

and a name.

For the implementation of the genToken API, the os module is selected with a wrapper function
for the generation of a token as an integer from the byte object returned. The function that takes
care of the token generation is named after the genToken API and takes as an input argument
the size (in bits) of the generated random number.

Figure9, shows the structure of the genToken API request and response.

Work Package W Page23of 84



v D7.5 MiCADO Security Modules Reference Implementation
COLA

Request Format

Get | http://CryptdEngine_ip:port:/api/v1.0/genToken/<int: size>

Optional Parameters

Response Output

HTTP Code response success(j20
YQi € ¢ ii M QoG NP ¢ BME T adRET a ho

Figure 9 genToken API format request

The genToken API expects to get the size of the token as a mandatory input and the format of
the token (binary: as aegquence of bytespr as an intger computed from the binary
representatioim big endian as dault) as an optional parametehd defaultformatvalueis

set tobinary. I f the requests returns with an HTTP
in the chosen format are returned. Any other different HTTP code, means tbst ifagjad.

3.2.3.2 Generation of a public-private key pair: genKey API

To generate a pubkgrivate key pair, a GET request needs to be made specifying the size of

the keys and optionally their desired encoding format. The default encoding configuration for

theprivate key is PEM and SSH for the public key. The Crypto Engine slieekequestand

verifies that the supplied parameters are aligned with its secure configuration (e.g., requests

with keys sizesd < 2048 wil |l puted20bHITPcodec e s s e
response, with the result of otHewsiseolptreereautti on b
i s 0 1he key paieigretired. H wever, i f the result is 606,

inform the caller of the reasavhy the operation could not be completed.

The function KeyGenPair is responsible for the generation of the gublate key pair. This
function takes as input arguments, the desired algorithm, the size of the keys and the encoding
of every key. As a r@g®nse, it returns a tuple consisting of the result of the operation; the
private and public key; and the status of the operation. Internally, the keyGenPair function
verifiesthe supplied parameters, returning immediately if one parameter is not cormitiant

the security of the engine.

Error! Reference source not found.displays the format of the request and the expected
response of the genKey API. I n case-ptblice oper
key pair are returned as atbeystring base64 encodedable 5 shows some parameter
requirements that need to be consider before using the genKeyAPI.

Work Package W Page24 of 84



v D7.5 MiCADO Security Modules Reference Implementation
COLA

Request Format

Get | http://CryptoEngine_ip:port:/api/v1.0/genKey<string:algorithm>/<int:Si;

Optional Parameters

<string:Eprivate>/<string:Epublic>

Response Output

HTTP Code response success(j20
Resporse={'"result; 1, 'keypait;
{'private_key. {'key:key, 'encodingenc},
‘public_key: {'key:key, 'encoding:enc}

}

Response="fesult: 0, 'statu&status}

Figure 10 genKey API format request

Table 5 Parameter requirements of genKey APl usage

Parameter | Requirement

Choose any of the supported algortih
[RSA, ECDSA].

Key size Keys should be at least 20468

Keys must be encoded as PEM or D
Key and should be base64 encoded be
paséng them to the Crypto Engine.

Algorithm

3.2.3.2.1 API error status

The API returns the following error statuses:
1 keypair format not supportedtatus- if any of the key pagprovided is in an encoding
format notsupported by the Crypto Engine;
1 algorithm not supportedtaus, if the algorithm chosen is not any of the algorithms
configured in the configuration filg
1 Kkey size not supportestatus, if the length in bits of any key is not compliant with the
security policies of the engine.

3.2.3.3 Symmetric Encryption: encryptdata & decryptdata API

The Crypto Engine provides the service to encrypt messages and decryptecifghasing a

secret private key following some security considerations. Eleary Policy Manager via

an HTTP POST request makes use of these symmetric $e#g via invocation of the
encryptdata and decryptdata APl accordingly. In case the encryptdata APl is invoked, the body
of the request must contain the encryption algorithm, a mode, a random number with the same
Ssize as the encr ypzeiamnhe pldingert rto e emyed hasecd k
encoded). In case the decryptdata API is invoked, the body of the request must contain the
decryption algorithm, the same mode and random number used in the encryption operation, the
same secret key and the aptext (base64 encoded).

Work Package W Page25 of 84



Y 4

Clou stration
at the Level of Appiication

D7.5 MiCADO Security Modules Reference Implementation

The encryption and decryption operations are executed by the funEinmngptData and
DecryptData, respectively. The EncryptData function takes as input arguments the ciphertext,

the secret key, the algorithm, mode, and a randamber. Similar to the Encrtfpata, the
DecryptData functionakes the same arguments except on the plaintext, which is replaced by

the corresponding ciphertext. Both functions respond, returning a tuple consisting of the result

of the operation, the plaiext/ciphertext and the status. The security policies configured in the
Crypto Engineds config file are enforced vi
parameters meet the security considerations.

Figurellshows thdormat request and response for the encryptdata API, while the

decryptdata API format is shown igure12. For the correct processing of the request, it is
necessary that both plaintext and ciphertext be base64 encoded bes&negrthe respective

API.

Table6, shows a summary of both APIs requirements. It is important to mention that the Crypto
Engine, ensures that messaggetencryped with the appropriate padding, igadding the
message soitssze i s a multiple of the algorithmds

Request Format
POST | http://CryptoEngine_ip:port: /api/v@/encryptdata

data= {key: key, 'algorithni: algorithm,'mode: mode,
‘randont random,plaintext. message

Response Outpu

HTTP Code response success (201):
response="fesult: 1, ‘ciphertext ciphertext}
response="fesult: 0, 'statu& statts }

Figure 11 encryptdata API format request

3.2.3.3.1 API error status

Most of the security verification of the supplied parameters in both encryption and decryption
operationsare performed by the internal function symmetric_check. This function can abort
the operation and return error status due to unsupported algorithms, key sizes, modes and
random numbers which sizes are not the same as the block sizes of the selectghphypto
algorithms. Finally, when the decryption API is invoked, the status wrong padding could be
return when unpadding a message after using a random number or key different from the one
used in the encryption operation.

Work Package W Page26 of 84

l



v D7.5 MiCADO Security Modules Reference Implementation
COLA

Request Format
POST | http://CryptoEngine_ip:port: /api/v1.0/decryptdata

data= {key: key, 'algorithmi: algorithm,'mode: mode,
‘randont random,'ciphertext ciphei

Response Outpu

HTTP Code response success (201):
response="fesult: 1, ‘plaintext: ciphertext}
response="fesult: 0, 'status status }

Figure 12 decryptdata request/response specification

Table 6 Parameter requirements for symmetric APIs usage

Parameter Requirements

Secret key The size of the key must be greater than
bits. Supported key sizes by default [1
256] bits for AES and [192] bits for 3DES

Algorithm Choose any of the configured algorithn
Supported by default: 3DES and AES

Mode Choose any of the configured mod
Supported by default: CBC, CTR, OF
CFB

Random Number | Depending on the mode selecteds iised ag
a nonce or as an initialization vector. T
size of this random number has to be eq
to the block size used by the selec
algorithm.

Plain/cipher text This text needs to be base64 encoded.
response from the API will also be base
encaled.

3.2.3.4 Asymmetric Encryption: rsaencryptdata & rsadecryptdata APIs

The Crypto Engine provides functionalfgr asymmetric encryption and decryption using the
RSA algorithm with some security considerations. Both asymmetric operations are
implemented byhe APIs rsaencryptdata and rsadecryptdata accordingly. The Crypto Engine
makes sure only keys with sizes greater than 20&8are accepted in the involved asymmetric
operations.

The encryption operation is performed by the function RSA_Encryptibatéakes as input
arguments the message to be encrypted, the public encryption key and the asymmetric

Work Package W Page27 of 84



Y 4

Cloud Orchestration
at the Level of Appiication

D7.5 MiCADO Security Modules Reference Implementation

algorithm (RSA). Similarly, the decryption operation is performed by the function
RSA_DecryptDatathat takes as input arguments the cipher text, the pridateyption key

and the algorithm (RSA). These two functions invoke the services of special methods that make
sure the security policies defined in the Cr
both functions retrn the result of the operatiof s u ¢ ¢ e ghe functlon r€tudre.tide)
cipher/plaintext Otherwise, the function returns te&tus with the reason why the operation
could not be completed if the result is 060606.

Figure13shows the request and respormeniat for the invocation of the rsaencryptdata API,
while Figure 14 shows it for the rsadecryptdata API. The crypto Engine supports by default
RSA key sizes of 2048 and 4096 bitsn&ller sizesarediscarded and the operation aieaol.
Table7 show the API parameter requirements.

3.2.3.4.1 API error status

The possible reasons that can be returned in case any of the above functions cannot be
completed are due to an algorithm not supported or to a key size loweRQ@h8nbits.
Additionally, if the key provided cannot be loaded by the Engine due to a variety of reasons
(e.g., wrong key or encoding/format not supported) the reason, key could not be loaded would
be returned.

Table 7 Parameter requirements for Asymmetric APl usage

Parameter Requirement
RSA should be the supplied algorithi
The algorithm is specified for inclusion |

Algorithm other algorithms in future version of tf
Crypto Engine.

Key The supplied key must be base
encoded.
Key sizes should be >2048 bits. |

Key Size default, the Crypto Engine supports ke

with sizes: [2048,4096] bits
Plaintext/ciphertext | Both texts must be base64 encoded.

Request Format

POST | http://CryptoEngine_ip:port: /api/vl@eencryptdata

data= {key: key, 'algorithm: algorithm,
‘plaintext: message

Response Outpul

HTTP Code response success (201):
response="fesult: 1, 'ciphertext ciphertext
response="fesult: O, 'status status

Figure 13 rsaencryptdata request/response specification

Work Package W Page28of 84



v D7.5 MiCADO Security Modules Reference Implementation
COLA

Request Format

POST | http://CryptoEngine_ip:port: /api/vl.O/rsadecryptd%

data= {key: key, 'algorithm: algorithm,
‘ciphertext messagge

Response Outpu

HTTP Code response success (201):
response="fesult: 1, ‘plaintext: ciphertext
response="fesult: 0, 'status status

Figure 14 rsadecryptdata request/response specification

3.2.3.5 Hashing Algorithms: getHash API

The Crypto Engine provides the getHash API for the computation of adixedit string
called hash (digesfjom a block of data of any size using a am&y hashing algorithm. For
security consideratiorthe supported algorithms must have strong security propezéisg,to
compute but hard to reverse. However, weak hashing algorithms would still be considered,
configuration, for legacy applications only.

The hashing algorithms from the SKAfamily are configured and supported in the Crypto
Engine by default. If it is required to configureyanther hashing algorithm, thethe
administratoicando it by sinply adding the desired algorithm to the HASHCONF parameter,
in the configuration file.

The Crypto Engine functiorfor computing hash messages is called hash_message. This
function takes as input arguments the message (in bytes) and the name of thel supplie
algorithm. The Crypto Engine searches in its configuration file if the supplied algorithm is
supported and aborts the operation if not match is retrieved. As a successful outcome the
function returns a tuple containing the results of the operatiomgitie message and a status.

A result 6Trued indicates that the operation
operation is completed, the resultant hash and the status OK are returned, otherwise, just the
status is returned describing te@son why the operation failed. The getHash API, formats the
response obtained from the hash_message function and returns to the caller the result of the
operation. The result is 616 for completion
corresponding error status

Figure15 shows the request and response format for the invocation of the getHash invocation
API. A caller makes use of the APl viaa HTTP POST request with body containing a message
and the desired hashiaggorithm.Table8 shows the parameter requirements to consider when
using the API.

Work Package W Page29 of 84



v D7.5 MiCADO Security Modules Reference Implementation

Cloud Orchestration
at the Level of Appiication

Request Format

POST

http://CryptoEngine_ip:port: /api/vl §étHas

data= {messagemsg ‘algorithni: algorithn}

Response Outpu

HTTP Code response success (201):
response="fesult: 1, hash digest}
response="fesult: 0, 'status status }

Figure 15 getHash request/response specification

3.2.3.5.1 API error status

The error returned due to an incomplete hagdratjon is unsupported algorithm. If this is the
case, the caller must make sure to use one of the secure hashing algorithms provided by the

Crypto Engine.

Table 8 Parameter requirement for getHash APl usage

Parameter

Requirement

Algorithm

Choose any of the defadlashing algorithmg
from SHA2 family
[[SHA224''SHA256','SHA384','SHA512"].
another protocol is needed the Cryj
Engineods admin mu s
configuration file.

Message

This message needs to be base6zoeed,
before passing it to the engine.

3.2.3.6 Certificate Generation: the genCert API

One fundamental function provided by the Crypto Engine is the generation of X.509
certificates which are used to authenticate clients and servers. To create a certificate is
necessary to take a series of sequential steps, yielding the desired cryptographic material. The

required steps are the following:

1. Generation of a private/public key pair

2. Creation of a Certificate Signing request (CSR), signed with the private key geherat

in step 1.

3. A Certificate Authority(CA) validates that the requester owns the resource claimed.

Work Package W

Page30 of 84



v D7.5 MiCADO Security Modules Reference Implementation

4. A CA signs with its private key the CSR,
his/her domain.
5. The requester gets the certificate and can start usionganfigure any server.

The genCert API, provides 3 functions related to the generation of certificates. First, it is
possible to just generate a CSR. This could be the case when a caller wants a specific CA to
sign his/her certificate. Second, the ABY,default, generates an X.509 Certificate signed by

the Crypto Engine as the CA. Third, sometimes it is necessary to generaseyrsedf
certificates for testingurposes only, this can also be possible via the genCert API.

The function that does all ¢hcertificate work in the genAPI is called the gencert_content,
which takes as input arguments the subject requesting the X.509 material, the request type, and
thech | er 6s pr i vat e the&kfengtion réiusns a tupte evihptire meswdt of the
opeation, the X.509 material and a status. If the operation is successfully completed (True),
the X.509 material with the status OK is generated, otherwise, the function returns False with
the status of the request, providing a reason to determine the ttheséadure. For the subject
information, there are some mandatory fields that should be supplibe lopller (described
below).

As explained above there are three =ignpdes of
certificatescerdtsfGNBD@sf i gned by the Crypt
generation of X.509 certificate requests to be signed by apghitgt CA. When certificates are

signed by the Crypto Engine three configuration parameters must be set, the validity period in
days; the Crypto Engineds private key; and d
entity.

The private key supplied by the caller can be encoded as binary DER or as ASCII PEM, any
other encoding will cause the operation to be aborted. The egcestiffication is performed

by the inner key loader functioRigure 11 shows the request/response format specification
for the genCert invocation. The caller makes a HTTP POST request providing all the required
parameters in thigody of the request and ensures a valid X.509 request type is spdaféa.

9 shows the parameter requirements to consider when using genCert API.

3.2.3.6.1 APl error status

There are many reasons why certificate operations cannot b@etech If the private key
supplied by the caller cannot be | oaded, t h
returned, which indicates that either the key is not large enough or the encoding is not
supported. If the X509 request type is not dialihe invalid type of certificate would be

returned. When the Crypto Engine is chosen to be the CA, the error indicating that the engine
cannot sign the request can be returned if the configuration parameters are not set or if there is

a field not speciid correctly. Finally, the status certificate could not be generated can be
returned if the backend selected and configured in the Crypto Engine does not support the
functions required tgenerate certificate material.

Work Package W Page31of 84



Y 4

Cloud Orchestration
at the Level of Appiication

D7.5 MiCADO Security Modules Reference Implementation

Request Format
POST | http://CryptoEngine_ip:port: /api/vl gétCert

data={'x509request':x509request,'private_key':private_key,
'subject”: {'countrytountry; 'state’:state 'locality'locality,
‘organizationbrg_namécommon’common_namg

Response Outpu

HTTP Code response success (201):
response="fesult: 1,x509content"; certificatétype".ceritype }
response="fesult: 0,'status": status }

Figure 16 genCert request/response specification

Table 9 Parameter requirements for genCert APl usage

Parameter Requirement

The type of the request must
X509request [ 6CSR6, 6SI GNEDGOG,
set to SIGNED.

Must be encoded as PEM or DER 3
passed base64 encoded.
The details of the subject of t
Subject certificate. Mandatory fields: countr
state, organization, locality, common

private_key

3.2.3.7 Digital Signatures: genSignature and veriSignature APIs

TheCrypto Engine provides the genSignature API for the generation of a digital signature and
the veriSignature API for its verification. A digital signature is used to verify the integrity of a
message, guaranteeing that it has not been tampered with darisig. tA digital signature is
produced by hashing a desired message with a secure algorithm and encrypting its output with
a private key. To verify the signature is necessary to decrypt it using the public key
corresponding to the encryption key and tmpare the hash obtained from the signature with

a fresh hash computed from the original message.

To produce the signature, the Crypto Engine makes use of the default SHA256 algorithm for
the computation of the digest. The Crypto Engine supports keysietithiom the RSA and
ECDSA algorithms for both the generation and validation of signatures. In the case a key
obtained from the RSA algorithm is selected, a proper padding scheme must be put into place.
In the Crypto Engine, the Probabilistic Signatureedet (PSS) is the default padding scheme
used, as it is suggested for any new protocols or applications.

The function genDSA is the responsible for the generation of a digital signature. This function
takes as input arguments a message, a private key ahglosithm. As a response the result of

Work Package W Page32of 84



v D7.5 MiCADO Security Modules Reference Implementation
COLA

Cloud Orchestration
at the Level of Appiication

the operation is returned, which is True if completed or False otherwise. If the operation is
successfully completed, then, the signature and the status OK are returned. On the other hand,
if the operation is not copleted, a status is returned to describe the reason of the failure.

The function veriDSA is the responsible for the verification of a digital signature. This function
takes as input arguments the signature to verify, the message the signature id &lotaine

the public key corresponding to the signing private key and the same key algorithm used. As a
response, the function returns the result of the operation.

Figurel7 shows the request/response format forgégSignature APMvhile Figure18 shows

it for the veriSignature. Some security considerations should be met when constructing the
body of the POST request for both APIablel11 shows he parameter requirements.

Table 10 Parameter requirements for genSignature and veriSignature APIs

Parameter Requirement

Message/Signature | Must be base64 encoded

Should be formatted with a val
encoding schme (see genKey sped
and should be passed to the Cry
Engine base64 encoded

Choose any of the asymmet
Algorithm encryption algorithm  supporte
[RSA, ECDSA]

Private/Public Key

Request Format

POST | http://CryptoEngine_ip:port: /api/vl §étSignature

data= {messagemsg, 'algorithm: algorithm,'private_ley: key }

Response Outpu

HTTP Code response success (201):
response="fesult: 1, 'signaturé signature}
response="fesult: 0, 'status status }

Figure 17 genSignature request/response specification

Work Package W Page33of 84



v D7.5 MiCADO Security Modules Reference Implementation
COLA

Request Format

POST | http://CryptoEngine_ip:port: /api/vl@ériCertificate

data= {messge: msg,'signaturé signaturealgorithm: algorithm,
‘public_key: key,

Response Outpu

HTTP Code response success (201):
response="fesult: 1, 'statu§ status}
response="fesult: 0, 'status status }

Figure 18 veriSignhature request/response specification

3.2.3.7.1 APl error status

Both APIs can return the status algorithm not supported if the supplied algorithm is not any of
the configured algorithms in the CrypEmgine config file. If any of the provided keys does

not meet the security policies defined in the configuration file, then, the status key cannot be
loaded is returned to the call&inally, if the validation of the signature is not successful, the
verification API responds with a status verification failed.

3.2.3.8 Crypto Configuration Parameters.

The configuration file contains the global variables that define the overall security policies to
be implemented by the Crypto Engine against the input paramatmbes! by the different
callers,especiallythe SPM.Tablel11 shows the configuration parameters with their functions.

Table 11 Crypto Engine Configuration parameters

Parameter Function

CONF_ASYMMETRIC Defines the asymmetric algorithms, k
sizes and encoding to be allowed.

CRYPTOCONF Defines the symmetric algorithms, k
sizes and modes to be supported.

ASYMCONF Defines the asymmetric algorithms to
used in encryption/decryption operatio

HASHCONF Hashing algorithms supported

CA PRIVATE KEY PATH|Locati on of Crypt

VALIDITY PERIOD Default validity duration of certificate

CA_ISSUER_CONF Crypto Engine issuer information

Work Package W Page34of 84



Y 4

Cloud Orchestration
at the Level of Appiication

D7.5 MiCADO Security Modules Reference Implementation

3.3 Credential Store

3.3.1 Credential Store Functionality

This setion aims to describe the core functionality of the Credential Store (CredStore) as a
security component in the MiCADO architecture. The CredStore takes care of securely storing

all types of sensitive information, which we will call infrastructure seaetecrets, needed

for running the MICADO infrastructure. It protects infrastructure secrets by encrypting them

and restricting access to theie CredStore fulfils the following security requirements:

1.
2

Infrastructure secrets must be stored in encryfuted,
. Access to infrastructure secrets must be restricted to only Security Policy Manager
(SPM) component in MICADO. Other components are not allowed to access secrets
stored in CredStore;

3. Secrets are only decrypted at the time of accessing.

3.3.2 Terminology

The CredStore implementation relies on the open source Hashicorp[¥jalidensed under

Mozilla Public License 2.0. As a consequence, we present a few terminologies related to

Hashicorp Vault in the table below.

Terminology

Meaning

Vault or Hashicorp Vault

It is a tool for securely accessing secrets. It follows
clientserver infrastructure.

Vault Server

It is the entity that interacts with the data storage
backends. In MiCADQO, it is the Credential Store.

Vault Client It is the entity that interacts with the vault server to ac
secrets. In MICADQ, it is the Security Policy Manage|
Secret A piece of sensitive information that has a name a

value.

Encryption key

The key used for encrypting data.

Master key

Thekey used for encrypting encryption key. It could
recovered from a minimum number of unseal keys.

Unseal keys or shares

The keys used for unsealing. They are generated
master key.

Threshold The minimum number of unseal keys required
reconstrgting the master key.
#shares The number of generated unseal keys from the m

key.

Sealed state

The state of vault server in which vault server only kn
the physical storage position of secrets but does not |
how to decrypt them.

Sealing

The pocess to set the vault server into a sealed statg

Unsealing

The process of reconstructing the master key from ur,
keys.

3.3.3 Credential Store Interaction in MiCADO

In MICADO architecture,Credential Store (CredStore) component is designed as a Vault

Sewer where Security Policy Manager (SPM) plays the role of Vault Clieigince, SPM is

Work Package W

Page35 of 84



Y 4

Cloud Orchestration
at the Level of Appiication

D7.5 MiCADO Security Modules Reference Implementation

the only component that directly interact with CredStore ahdther componesthave to
request secrefrom SPM instead of direct interaction with CredStdree Cred®re can be
used in the following two ways: (1) Thoadmin® u whe haseaccesso the Master Node
through SSH to call Restful APIs @redStore. The calls are to perform various functions such
as insert, update, and delete secrets (2) In contrdss tlinin interface, all other components
that needed to interact with CredStore, has to communicate via SPNI&Ld. Orchestrator
(CO) component as an entity requests a secret from JRM.interaction is illustrated in
Figure 19. In this case, the CO request for thleud user credentiglsvhich are stored in
CredStore, to SPM.

1. Request for 2. Request for
cloud credertials cloud cremertials

3. Decrypt the
! CredStore | cloud

CO SPM 4. Cloud credential -
credentials

5. Cloud \_ J

credentials

Figure 19 Component interaction for the infrastructure secret request

The abovementioned processapplies to all othercomponents of MICADO to access
infrastructure secrets.

3.3.4 Credential Store Design and Implementation

The CredStore is deployed as a Vault Server using Hashicorp Vault software. At first, we create
a configuration file in which we could define type (e.g.,fltonsul, etc.) and physical path of
database backend, TLS/SSL enable/ disable option, TCP address to listen for API requests, log
level, cache size, etc. After that, we deploy the Vault Server using the configuration file. It
exposes Restful APIs for SPike.

Apart from that, SPM plays the role of a Vault Client. It is implemented as a Python Flask web
service that exposes Restful APIs for secret requests from other components. For its
implementation, instead of interacting with CredStore throtaythh RESTcalls we use a
wrapping library, HashiCorp Vault API client for Python 2.7/Bk i.e. HVAC.

3.3.4.1 Credential Store as Vault Server

The Credential Store is deployed as a Vault Server which is the main storage for all kind of
infrastructure secrets. For the sake of simplicity, we configure the storage backend as a file
stored inside CredStore component. In addition to that, based on current assumption that
communication between components in the Master Node is secure, we disSKBST Lfor
communication between CredStore and SPM. Finally, CredStore is configured to listen on port
8200. All configurations are described in a file of HCL (HashiCorp Configuration Language)
format[9]. Table12 describes the above configuration in HCL.

"backend": {"file": {"path": "/config/data"}},
"listener": {"tcp": {"address": "0.0.0.0:8200", "tls_disable": 1}}

}

Table 12 Vault Server configuration in HCL format

Work Package W Page36 of 84



v D7.5 MiCADO Security Modules Reference Implementation
COLA

Based on HCL file, the vault server configurations could be defined easily.

3.3.4.2 Security Policy Manager as Vault Client

Security Policy Manager (SPM) plays the role of vault client. It is the only component in
MICADO master node that could access inmasture secrets from CredStore. Any other
component(s) would need to assessetechrough SPM as intermediaBPM exposes APIs
for bridgingthe calls to the Credential Manager

1 Secretconsists of APIs for inserting, accessing, updating and deletingtse

Apart from that, SPM keeps a token used for authenticating to CredStore and unseal key(s) for
unsealing vault in CredStore. For the current version of implementation, the token is the root
token without expiration.

3.3.4.3 Vault Initialization Mechanism

Prior to sending infrastructure secrets to CredStore for the very first time, SPM needs to send
a request to initialize the vault in CredStore. Initialization is the process of setting up things for
authentication and encryptioAfter initialization, SPM useals the Vault so that upcoming
secret management requests will be able to acceSgure 20 depicts interaction between

SPM and CredStore in that process.

2. Generate

1. Vault initialization reque )
encryption key,

with #shares and threshold

4, Store rot K Ik root token and

token an SPM 3. Root token, unseal keys CredStore unseal keys

unseal keys i 5. Unseal request 6. Vaul

files - vaul
unsealed

Figure 20 Vault Initialization Mechanism

More specifically, SPM sends tmeimber of shareandthreshold valugo CredStore in the
initialization request. Upon reception, CredStore generates an encryption key, a root token and
a master key.

The encryption key would be used to encrypt se@atl the master key is used to encrypt the
encryption key. By the end, ciphertext of the encryption key would be stored inside CredStore
along with encrypted secrets. For the sake of security, the master key would be not stored
anywhere. Instead, CredS¢or uses Shamirés Secret Sharing sc
multiple shares, i.e. unseal keys, in such a way that a minimum number of shares are required

to re-construct the master key. Such minimum number is defingdrbghold value

The root t&en is a neveexpiringtoken generated at the time of vault initialisation. VMite
root tokenthe SPMis permittedto perform any operatioim the vault of the CredStore.

The vault initialization islone automatically upon Security Policy Manageitsfa

3.3.4.4 Infrastructure Secret Insertion Mechanism

The Admin user who has access to the Master Node can invoke API provided by SPM to insert
infrastructure secrets into MIiCADO. The secrets will be stored in CredStore.

Work Package W Page37 of 84



D7.5 MiCADO Security Modules Reference Implementation

1. Secret name 2. Secret name
Admin  Secret value > secret value
SPM CredStore | 3. Write the secret

Figure 21 Secret Insertion Mechanism

The following API allows to write a secret to the initialized vault. If the secret already exists
then it will be overwritten.

Request

- http://spm_ip:port/v1.0/secrets

Json data: {"name": secret_name, "value": secret_value]

Response

Json format: {"code™: HTTP_code, "message":
returned_message}

Figure 22 Secret Insertion request and response

Reques:

Name In Description

name Json body |Name of infrastructure secret

value Json body | Value of infrastructure secret
Example:
curl -H"Content - Type: application/json” -d
{"name":"cloudsigma_username","value":"userl@mail.com"}' - X POST
http://127.0.0.1 :5003/v1.0/secrets
curl -H"Content - Type: application/json" -d
{"name":"cloudsigma_password","value":"1aB"}' - X POST

http://127.0.0.1:5003/v1.0/secrets

Work Package W Page38of 84



Y 4

Cloud Orchestration
at the Level of Appiication

D7.5 MiCADO Security Modules Reference Implementation

Response:
Name In Description
code Json body | Status code
message Json body | Returned message

Status codes:
Success:

1 201- OK: Request was successful

Error:

1 400- Bad Request: Some content in the request was invalid or missing a required
parameter

1 500- Server error: Some error happened at server side

Example:
{

"code": 201,

"message"

: "Add/ Upda

te secret successfully!"

3.3.4.5 Infrastructure Secret Retrieval/ Update/ Deletion Mechanism

MiCADO security componentg@ designed to provide accdsgshe CredStore onlyhrough
theSPM. As a consequence, SPM stores necessary information for CredStorgadoelssg
token and unseal key(s).

Apart from that, SPM provides Restful APIs for other component(s) which needs to retrieve

infrastructure secret(s) at running time. One example is Cloud Orchestrator which needs cloud

user credentials for invoking Cldu Pr ovi der 6 s

by SPM, their parameters and how to invoke them.

1. Secret Retrieval Mechansim
This mechanism illustrates how a secret will be retrieved. The mechanism consists of the
interaction among three componemne. CO, SPM and CredStore. The mechanism is started
by CO which requires to get value of a secret.

1. Secret name¢

CO

5. Secret value

2. Secret name

API s.

SPM

4. Secret value
.l

CredStore

Figure 23 Secret Retrieval

The following API allows to retrieve a secret value from CredStore.

Work Package W

—

The

f ol

Retieve

3.
secret value

Mechanism

Page39 of 84

OWi



D7.5 MiCADO Security Modules Reference Implementation

Cloud Orchestration
at the Level of Appiication

Request

- http://spm_ip:port/v1.0/secrets/{secret_name}

Response

Json format: {"code™: HTTP_code, "message":
returned_message}

Figure24 Secret Retrieval request and response

Request:
Name In Description
secret_name Path Name of secret
Example:

curl - X GET http://127.0.0.1:5003/v1.0/secrets/cloudsigma_username

Response:
Name In Description
code Json body Status code
message Json body Returned message
data Json object
secret_value Value of secret

Status codes:
Success:
1 200- OK: Request was successful
Error:
1 400- Bad Request: Some content in the request was invalid or missing @edequi
parameter
9 40471 Not found: Provided secret name does not exist

1 500- Server error: Some error happened at server side

Example:
{

"message": "Read secret successfully!”,
"code": 200,
"data": {"secret_value": "userl@mail.com"},

Work Package W Page40of 84



D7.5 MiCADO Security Modules Reference Implementation

2. Secret DeletionMechanism

A secret should be removed from MiCADO when there is no longer need of it. In such case,
the Admin user can invoke an APl from SPM.

1. Secret nam 2. Secret name C 3. Remove the
; ;L 5 redStore
Admin > SPM secret

Figure 25 Secret Deletion Mechanism

The following API allows to remove a setfeom CredStore.

Request

_ http://spm_ip:port/v1.0/secrets/{secret_name}

Response

Json format: {"code™: HTTP_code, "message":
returned_message}

Figure26 Secret Deletion request and response

Request:
Name In Description
secret_name Path Name of secret
Example:

curl - X DELETE http://127.0.0.1:5003/v1.0/secrets/cloudsigma_username
cur | - X DELETE http://127.0.0.1:5003/v1.0/secrets/cloudsigma_password

Response:
Name In Description
code Json body Status code
message Json body Returned message

Work Package W Page41of 84



D7.5 MiCADO Security Modules Reference Implementation

Cloud Orchestration
at the Level of Appiication

Status codes:
Success:
1 200- OK: Request was successful

Error:
1 400- Bad Request: Some content in the request was invalid or missing a required

parameter
1 500- Server error: Some error happened at server side

Example:

"code": 200,
"message": "Deleted the secret successfully!"

3. Secret Update Mechanism

When MICADO is running and there is a need to update some infrastructure secret, it could be
done by invoking an API from SPM.

L Secret 2. Secret name
name, secre ) 3. Update the
, new secret valu :
Admin new value | SPM CredStore | secret with new
> value

Figure 27 Secret Update Mechanism

The following API allows to update value of an infrastructu@etsn CredStore.

Request

- http://spm_ip:port/v1.0/secrets/{secret_name}

Json data: {"value": secret_new_value}

Response

Json format: {"code"™: HTTP_code, "message":
returned_message}

Figure 28 Secret Update request and response

Request:
Name In Description
secret_name Path Secret name

Work Package W Page42 of 84



Y 4

Clou stration
at the Level of Appiication

D7.5 MiCADO Security Modules Reference Implementation

value Json body | New value of the secret
Example:
curl -H "Content - Type: applicat ion/json" -d '{"value™:"laBc"} -X PUT
http://127.0.0.1:5003/v1.0/secrets/cloudsigma_password
Response:
Name In Description
code Json body Status code
message Json body Returned message

Status codes:
Success:
1 200- OK: Request was successful
Error:
1 400- Bad Request: Some content in the request was invalid or missing a required
parameter
9 40471 Not found: Provided secret name does not exist

1 500- Server error: Some error happened at server side

Example:

{
"code": 200,

"message": " Update secret suc cessful"

3.3.4.6 Summary of overall flow
The overall flow of Cedential Store is summarized in

Figure 29. At launching time of MiCADO, Vault Initializationn SPM is invoked to set up

secret ®rage in Credential Ster(Lb). Root token and unseal key(s) are stored as files inside

SPM. After that, admin invokes Secret insertion API from SPM to add one or more
infrastructure secrets into MiCADO (2a, 2b). Since then, a component inside the Master Node,
such as CO, can ioke Secret retrieval APl from SPM to access a secret value (3a, 3b). During

the entire process, the admin user is all owe
value (4a, 4b), if required. The admin can also invoke the Secret deletion APldeeram

secret from MICADO (5a, 5b), when it is not requiged longer

Work Package W Page43of 84



Cloud Orchestration
at the Level of Appiication

D7.5 MiCADO Security Modules Reference Implementation

2a.Insert secret(s)

1b. Initialize Vault

2b. Insert secret(s) g

Admin

4a. (Optional)
Update secret(s)

5a. Delete secret(s)‘

L

4b. (Optional)
Update secret(s) |

SPM

(o)

3a. Retrieve secret(s

5b. Delete secret(s)

CredStore

L

3b. Retrieve secret(s

L

— —

Figure 29 Credential Store Flow Implementation

3.3.4.7 Limitations and extensibility of the Proposed Solution

The Root token issued by CredStore is aetokwithout expiration. In the current
implementation, root token and all unseal keys are stored as files inside SPM.

In future, the root token should be exported to admin and then deleted from MICADO. For
SPM, admin should request to generate slnet token(s) with restricted fingrained control
instead of root contrdlL3]. In such case, SPM should be implemented to provide more APIs
for generating/revoking/renewing token(s).

Due to simplicity, all the unseal key(s)eacurrently stored in SPM anahy component in
MiICADO could request to access secret through SPM. However, in order to restrict secret
access, SPM should keep only one unseal key and distribute another key to an authorized
component. The threshold value shiblbe at least two. As soon as the component requests for

a secret, it needs to send out its unseal key. Because it requires at least two (defined by the
threshold value) unseal keys, the received key need to be used along with the stored unseal key
inside SPM to access secret in CredStore. After the request is accomplished, SPM should
remove the received unseal key. By this way, even SPM could not access the secret without
the componentds consent .

Finally, we may develop more functions related to keystakens. In addition to previously
referred token functions (generating/revoking/renewing token), we could implement SPM with
APIs for revoking unseal keys, renewing the master key (called as Rekey) and change the
encryption key (called as Key Rotatididp].

3.4 Credential Manager

3.4.1 Credential Manager Functionality

This section aims to describe the core functionality of Credential Manager (CredMan) as a
security component in the MICADO architecture. The CredMan stores and manages sl
for MICADO. It facilitatesuser veification throughZorp firewall to perform authentication
and access contralfhe CredMan fulfils the followingey security requirements:
1. Usersdé passwords not

ar e st orleslareistoredp | ai nt

Work Package W Page44 of 84



v D7.5 MiCADO Security Modules Reference Implementation
COLA

2. CredMan support strong password enforcement.
3. CredMan must supports the user access control based on roles.

3.4.2 Credential Manager Interaction in MiCADO

Credential Manager (CredMan) component is designed as a central user managethent for
MiCADO framework.The CredMan in MiCADO is used in the following two ways: Thpse
admin® u svlerhave accessto the Master Node through SSH are enabled to execute
command and/or call Restful APIs to CredMamhe commands include to perform the
following functions, i.einsert retrieve update delete users and their rol€8) Zorp firewall
canaccesshe CredMarAPI for theverification ofusers The verification results are then used
to perform authentication and access control

Figure30illustratesthe abovamentioned authentication process

2. User m@ame

1. User name password 3. Verify
user name
User —Password CredMan and
4. Verification password
result

Figure 30 Component interaction for user authentication

3.4.3 Credential Manager Design and Implementation

Previously, theCredMan version 1.&as implemerdd from scratch as a Pythbasedrlask
Web Service that utilisédslask SQLAIchemyl1] as a SQL toadlo perform differat database
oriented operationse.g. user insertion, deletion, el functions of the component were
personallydeveloped. Th&ey reason behinthe development d€redMan from s@tch is to
have full control on the user managemerddule implementatianWVhile existing solutions
also provide the functionality described in the requirements, their resosage is much
higher than that of a custom implementatibhe CredMan version 1.0 module provides the
following functionalities:

1 Userrelated:This include thereaion, deleton, retrieval andverification ofusers;
1 Passwordelated:This allows the ksargeandreseting of userpassword;
1 Rolerelated:To retrieveandupdate usefsoles,

Recently, we have fanalysed the implementation of CredMaansion 1.0and found a number

of necessary design changes and improvements. Furthermore, to make it mst;dleotible,

and easily maintainable/extendible in future, we have also decided to utilise a very popular
open source solution, known as Fléger[10], for user management. This decision leads to
the restructuring of the evall component that include major changes and therefore, it will
result in the new version of CredMan, version 2.0

Similarly, toversion 1.0theCredMan version 2. also implemented as a Python based Flask
Web Service, however, it now integratfie open source packages includiigskUser[10]

for user management akthsk-SQLAIchemyl11] for SQL tool. Both these tools are used under
MIT license. The key benefits #laskUserincludethe following,

Work Package W Page45 of 84



v D7.5 MiCADO Security Modules Reference Implementation
COLA

Cloud Orchestration
at the Level of Appiication

Built-in database design for the user management,
Easy to use utility classes to perform all the required functibtiee CredMan module,
ie.
0 User management,
o Password handling and maintenance,
o Email confirmations and notifications, and
0 Roles management.
1 Fully customisable and largely configurable
1 Facilitates rolebased authorization
1 Facilitate multiple emails per user registration.

E

CredManversion 2.0s a Flask Welservice and follows all the RESNPI standards. Currently
it exposeghe following resources:

1 Usersinclude APIs that manage MICADO userghis consist of the following
functions, i.e. Create, retrieve, update and delete Users
1 Rolesinclude APIs that manage MiCADO rolaad consist of the functions related to
role manageent such as create, retrieve, update and delete roles
1 UserRolesnclude APIs that manage roles of MiCADO ussush as retrieve user role,
/grant and /revoke user roles
1 Password ncl ude API s f or us esuch @s vaifg,clangeand s ma
reset a given user password.

The email confirmation functionality is under consideration and could be implemented in
future. Once such a functionality is included then the user will receive email notification for
any event related to their account, i.e. ségition, password change and reset, etc.
Furthermore, we also intend to apply certain policies on password. This will restrict the
password setting process must liaise with the active password policies. Hence making the
system more secure overall.

3.4.3.1 Users Management Mechanism

1. User Creation Mechanism
After MIiCADO master node is launched and admin is created, the admin can create other users
by invoking CredMan Users API.

1. User name,
password, email

. »
Admin »  CredMan Database

2. Add new user

Figure 31 User Creation Mechanism

The following API failitate the creation of a new MiCADO user.

Work Package W Page46 of 84



‘ D7.5 MiCADO Security Modules Reference Implementation
COLA

Cloud Orchestration
at the Level of Appiication

Request

- http://credman_ip:port/v2.0/users

Json data: {"username": us@ame, "password": password,
"email": email, "firstname": first name, "lastname": last nam

Response

returned_message_to_developer}

Json format: {"code™: HTTP_code, "user message":
returned_message_to_user, "developer message":

Figure 32 New user creation API request and response

Request:
Name In Description
username Json body |User name. This must be unique for a user.
password Json body |Password
emalil Jsonbody |[User 6s email . This must b
firsthame Jsonbody |[User 6s first name
(optional)
lastname Jsonbody [User 6s | ast name
(optional)

Example:

curl - XPOST \
http://127.0.0.1:5001/v2.0/users \
-H'Content - Type: ap plication/json’ \
-d '{

"username": "user3",
"password"; "1aB",
"email": "user03@a.com",
"firstname": "user3fn",
"lastname": "user3In"

Work Package W

Page47 of 84




v D7.5 MiCADO Security Modules Reference Implementation

COLA
Response:
Name In Description
code Json | Status code
body
user message Json | Message to user
body
devebper message Json | Message to developer
body
Status codes:
Success:
1 201- OK: Request was successful
Error:
1 400- Bad Request: Some content in the request was invalid or missing a required
parameter

1 500- Server error: Some error occured at server side

Example:

{
"code": 201,

"user message": "Add user successfully!”,
"developer message": "Add user successfully!"

2. User Retrieval Mechanism

At any time, admin can retrieve userods infor
Admin 1. User name
i —
< CredMan
2. User
information

Figure 33 User Information retrieval mechanism

The following APIfacilitatest he r et ri eval of wusero6s infor mat

Work Package W Page48of 84



v D7.5 MiCADO Security Modules Reference Implementation
COLA

Cloud Orc

Request

- http://credman_ip:port/v2.0/user/{user_name}

Response

Json format: {"code": HTTP_code, "user message":
returned_message_to_user, "developer message":
returned_message_to_developer}

Figure 34 User information retrieval APl request and response

Request:
Name In Description
user_name Path User name
Example:

curl -XGET http://127.0.0.1:5001/v2.0/user/user4

Response:
Name In Description
code Json Body | Status code
User Json object| (If user is retrieved successfully)
username User name
email Email
firsthname First name
lastname Last name
active Active status of user
User message Json Body | (If failed to retrieve user) Message to user
Developer message | Json Body | (If failed to retrieve user) Message to develope

Status cales:
Success:
1 200- OK: Request was successful

Work Package W Page49 of 84



‘ D7.5 MiCADO Security Modules Reference Implementation
COLA

Cloud Orc

Error:
1 400- Bad Request: Some content in the request was invalid or missing a required
parameter
i 500- Server error: Some error occured at server side

Example:

{
"code": 200,

"User": {
"user name": "user4",
"email": "user04@a.com",
"first_name": "user4fn”,
"last_name": "user4in",
"active": true

3. User Update Mechanism
Admin can also update usersd informatris@n. TI
information. Currently, the CredMan holds first name and last name of users. Therefore, the
update API support the editing of these information only. Later on, this APl must be further
extended when user is defined with more information.

1. User name, new first name, new last nan
Admin CredMan

2. Response

Figure 35 User update mechanism

The following API allows to update first and/or last name of a given user.

Request

- http://credman_ip:port/v2.0/user/{user_name}

Json data: {firstnamé: new_first_name, "lasthame":
new_last_name}

Response

Json format: {"code™: HTTP_code, "user ssage":
returned_message_to_user, "developer message":
returned_message to_developer }

Figure 36 User update API request and response

Work Package W Page50 of 84



D7.5 MiCADO Security Modules Reference Implementation

Request:
Name In Description
user name Path User name
firsthname (optional) | Json body New first name
lastname (optional) | Json body New last name
Example:
curl -XPUT \
http://127.0.0.1:5001/v2.0/user/userl \
-H'Content - Type: application/json' \
-d

"lastname": "userlnin”,
"f irstname": "userlnfn"

y

Response:
Name In Description
code Json Body Status code
user message Json Body Message to user
developer message Json Body Message to developer

Status codes:
Success:
1 200- OK: Request was successful

Error:
1 400- Bad Requst: Some content in the request was invalid or missing a required
parameter
1 500- Server error: Some error happened at server side

Example:

{
"code": 200,
"user message": "User's info is updated",
"developer message": "User's info is updated"

4. User Deletion Mechanism
The Admin user can remove a user out of MICADO by providing a user name.

Work Package W Pageb1of 84



D7.5 MiCADO Security Modules Reference Implementation

) 1. User name
—>
Admin < | CredMan
2. Response

Figure 37 User deletion mechanism

The following API allows the deletion of a MICADO user.

Request

- http://credman_ip:port/v2.0/user/{user_name}

Response

Json format: {"code": HTTP_cod&jser message":
returned_message_to_user, "developer message":
returned_message_to_developer}

Figure 38 User delete APl request and response

Request:
Name In Description
user_name Path User name
Example:

curl - X DELETE http://127.0.0.1:5001/v2.0/user/user4

Response:
Name In Description
code Json body Status code
user message Jsan body Message to user
developer messag| Json body Message to developer

Status codes:
Success:
1 200- OK: Request was successful

Work Package W Page52 of 84



w

COLA

Cloud Orchestration
at the Level of Appiication

D7.5 MiCADO Security Modules Reference Implementation

Error:
1 400- Bad Request: Some content in the request was invalid or missing a required
parameter
1 500- Server error: Someamr occured at server side
Example:
{
"code": 200,
"user message": "Delete user successfully”,
"developer message": "Delete user successfully"
}

5. All User Retrieval Mechanism

The Admin user can retrieve all users at the same time. The nohMA8ADO users are not
expected to be large, therefore, it is assumed that this function will not cause any performance
bottlenecks. However, if the number of users gets increase then this function should be altered
to retrieve a limited number of usenstead of all users to prevent performance overhead.

1. Request
Admin .
<« " CredMan
2. User
information

Figure 39 All users retrieval mechanism

The following API faciliates the retrieval of all users.

Request

- http://credman_ip:port/v2.0/users

Response

Json format: {"code": HTTP_cte, "Users": List_of users}

Figure 40 All users retrieval APl request and response

Request:
None

Example:
curl - X GET http://127.0.0.1:5001/v2.0/users

Work Package W Page53of 84


http://127.0.0.1:5001/v2.0/users

D7.5 MiCADO Security Modules Reference Implementation

Response:

Name In Description

code Json Body Status code

Users List of json objects
username User nare
email Email
firsthame First name
lastname Last name
active Active status of user

Status codes:

Success:
1 200- OK: Request was successful
Error:
9 500- Server error. Some error occured at server side

Example:

{
"code" : 200,

"Users": [

{

"username": "userl”,
"email": "user0l@a.com",
"first_name™: ",
"last_name": ",

"active": true

"username": "user2",

"e mail": "user02@a.com",
"first_name": "user2fn”,
"last_name": "user2In”,
"active": true

}

3.4.3.2 Roles Management

1. Role Insertion Mechanism
Different roles are defined in order to provide figmined access ctol in MiIiCADO.
Currently the following two roles, i.e. user and admin are defined. However, the design of
CredMan is flexible and existing roles can be easily altered and more roles can be easily
created. The Admin can easily create more role(s) by simypbking an API to Credman.

Work Package W Pageb4 of 84



‘ D7.5 MiCADO Security Modules Reference Implementation
COLA

Cloud Orchestration
at the Level of Appiication

1. New role name, 2. Create new

new role label role

Figure 41 New role creation mechanism

The following API allows the creation of a new role in MiCADO.

Request

- http://credman_ip:port/v2.0/roles

Json data: {'hame": role_name, "label": role_label}

Response

Json format: {"code": HTTP_code, "user message":

returned_message_to_user, "developer message":
returned_message_to_developer}

Figure 42 New role creation API request and response formats

Request:
Name In Description
name Json body Name of role
label Json body Label of role
Example:
curl - X POST http://127.0.0.1:5001/v2.0/roles \
-H'Content - Type: application/json' \
-d '{

"name": "developer",
"label": "Developer"

Work Package W Pageb5 of 84



D7.5 MiCADO Security Modules Reference Implementation

Response:
Name In Description
code Json body Status code
user message Json body Message to user
developer message Json body Message to developer

Status codes:
Success:
1 200- OK: Request was successful

Error:
1 400- Bad Request: Some content in the request was invalid or missing a required

parameter
9 500- Server error: Some error occured at server side

Example:
{
"code": 200,
"user message": "New role added successfully.",
"developer message": "New role ad ded successfully."

2. All Roles Retrieval Mechanism
The Admin user can retrieve the list of defined roles in MiCADO.

_ 1. Request
2. All roles info

Figure 43 All roles retrieval mechanism

The following API allows to retrieve all roles of MICADO framework.

Request

- http://credman_ip:port/v2.0/roles

Respons

Json format: {"code": HTTP_code, "Roles ":
list_ of role_names_and_labels}

Figure 44 All roles retrieval APl request and response formats

Work Package W Pageb6 of 84



w

COLA

Cloud Orc

D7.5 MiCADO Security Modules Reference Implementation

Request:
None

Example:

curl - X GET http://127.0.0.1:5001/v2.0/roles

Response:
Name In Description
code body Status code
Roles List of json obgct List of roles
name body Name of role
label body Label of role

Status codes:
Success:
1 200- OK: Request was successful
Error:
1 500- Server error: Some error happened at server side

Example:

{
"code": 200,

"Roles": [

{

"name": "admin",
"label": "Admin"

"name": "developer",
"label": "Developer"

3. Specific Role Retrieval Mechanism
The admin can also retrieve a specific role based on ite nestead of retrieving all roles.

1. Role name

Admin -— | CredMan
2. Role info

Figure 45 Role retrieval mechanism

4

The following API allows to retrieve a specific role information of MiCADO framework.

Work Package W Page57 of 84



D7.5 MiCADO Security Modules Reference Implementation

Cloud Orchestration
at the Level of Appiication

Request

- http://credman_ip:port/v2.0/role/role_name

Response

Json format: {"code": HTTP_code, "Roles ":
role_names_and_label, "user message": message_to_us
"developer message": message_to_developer}

Figure 46 Role retrieval APl request and response formats

Request:
Name In Description
role_name Path Name of a role
Example:

curl - X GET http://127.0.0.1:5001/v2.0/role/admin

Response:

Name In Description

code Json body Status code

Roles Json object (If requested role_mae exists)
name Name of role
label Label of role

user message Json body (If error) Message to user

developer messag| Json body (If error) Message to developer

Status codes:
Success:
1 200- OK: Request was successful

Error:
1 400- Bad Requst: Some content in the request was invalid or missing a required

parameter
1 500- Server error: Some error occured at server side

Work Package W Page58 of 84



D7.5 MiCADO Security Modules Reference Implementation

Example:
{
"code": 200,
"Roles": {
"name": "admin",
"label": "Admin"
}
}

4. Role Label Update Mechaism
The admin user is allowed to update label of a specific role based on its name.

1. Role name, new role label

Admin | CredMan
2. Response

Figure 47 Role label update mechanism

The following API allows to update label of a role in MiCADO.

Request

- http://credman_ip:port/v2.0/role/{role_name}

Json data: {"label"'new_role_label}

Response

Json format: {"code™: HTTP_code, "user message":
returned_message_to_user, "developer message":
returned_message_to_developer}

Figure 48 Role label update API request and response formats

Request:
Name In Description
role_name Path Name of a role
label Json body New label of the role
Example:

curl  -XPUT \
http://127.0.0.1:5001/v2.0/role/user
-H'Content - Type: app lication/json' \
-d
"label": " normal_user"

y

Work Package W Page59 of 84



D7.5 MiCADO Security Modules Reference Implementation

Cloud Orchestration
at the Level of Appiication

Response:
Name In Description
code Json body Status code
user message Json body Message to user
developer message Json body Message to developer

Status codes:
sSuccess:
1 200- OK: Request was suessful

Error:
1 400- Bad Request: Some content in the request was invalid or missing a required

parameter
1 500- Server error: Some error happened at server side

Example:

{
"code": 200,
"user message": " Updated role label successfully!",
"developer message " " Updated role label successfully!"

5. Role Deletion Mechanism
The Admin user can delete an existing role in MiCADO.

1. Role name
Admin CredMan
2. Response

Figure 49 Role deletion mechanism

The following API allows the deletion of a role from MiCADO. This fuantalso unassigned
the deleted role from all MiCADO users.

Request

- http://credman_ip:port/v2.0die/{role_name}

Response

Json format: {"code™: HTTP_code, "user message":
returned_message_to_user, "developer message":
returned_message _to_developer}

Figure 50 Role deletion API request and response formats

Work Package W Page60 of 84



D7.5 MiCADO Security Modules Reference Implementation

Request:
Name In Description
role_name Path Name of a role
Example:
curl - X DELETE http:// 127.0.0.1:5001/v2.0/role/developer
Response:
Name In Description
code Json body | Status code
user message Json body | Message to user
developer messag| Json body | Message to developer

Status codes:
Success:
1 200- OK: Request was successful

Error:
1 400- Bad Request: Some content in the request was invalid or missing a required

parameter
1 500- Server error: Some error happened at server side

Example:
{
"code": 200,
"user message": "Delete role successfully.",
"developer message": "Delete role successfully."

3.4.3.3 User Role Management

1. User Role Retrieval Mechanism
The Admin user can retreive the assigned rol

1. User name
Admin | CredMan
2. List of roles of user

Figure 51 User role retrieval mechanism

A

The following API facilitate the abowaentioned functionality.

Work Package W Page6lof 84



D7.5 MiCADO Security Modules Reference Implementation

Cloud Orchestration
at the Level of Appiication

Request

- http://credman_ip:port/v2.0/user/{user_name}/rol

Response

Json format: {"code™: HTTP_code, "user message":
returned_message_to_user, "developer message":
returned_message_to_developer, "Roles": list_of roles }

Figure 52 User role retrieval APl request and response formats

Request:
Name In Description
user_name Path User name
Example:

curl - X GET http://127.0.0.1:5001/v2.0/user/userl/role

Response:
Name In Description
code Json body | Status code
Roles Json body | (if success) List of roles
user message Json body | (If error) Message to user
developer message Json body | (If error) Message to developer

Status codes:
Success:
1 200- OK: Requestvas successful
Error:
1 400- Bad Request: Some content in the request was invalid or missing a required
parameter
1 500- Server error: Some error happened at server side

Example:

{
"code": 200,

"Roles": [
"developer",
"admin"

Work Package W Page62 of 84



‘ D7.5 MiCADO Security Modules Reference Implementation
COLA

Cloud Orchestration
at the Level of Appiication

}

2. User Role Revocation Mechanism
The Admin user can revoke a particular role from a specific user. The following figure
demonstrate this mechanism.

1. User name, role name
Admin CredMan
2. Response

Figure 53 User role revocation mechanism

The following APl allowstoe voke a wuser6s rol e.

Request

- http://credman_ip:port/v2.0/user/{user_name}
Irole/{role_name}

Response

Json format: {"code": HTTP_code, "user message":
returned_message_to_user, "developer message":
returned_message_to_developer}

Figure 54 User role revocation APl request and response formats

Request:
Name In Description
user_name Path User name
role_name Path Role name
Example:
curl - X DELETE http://127.0.0.1:5 001/v2.0/user/userl/role/developer
Response:
Name In Description
code Json body Status code
user message Json body Message to user
developer messagel Json body Message to developer

Status codes:

Work Package W Page63of 84



D7.5 MiCADO Security Modules Reference Implementation

Success:
1 200- OK: Request was successful

Error:
1 400- Bad Request: Some content in the request was invalid or missing a required

parameter
1 500- Server error: Some error happened at server side

Example:

"code": 200,
"user message": " The specified role is revoked from the user!",
"developer me ssage": " The specified role is revoked from the user!"

3. User Role Grant Mechanism
The Admin user can grant a list of roles to an existing user as shown in the following figure.

1. User name, List of roles
Admin CredMan

2. Response

Figure 55 User role grant mechanism

The following API allows to assigned role(s) to a given user.

Request

- http://credman_ip:port/v2.0/user/{user_name}/rol

Json data: {"roles": List of roles}

Response

Json format: {"code": HTTP_code, "user message":
returned_message_to_us&teveloper message":
returned_message_to_developer}

Figure 56 User role grant APl request and response formats

Request:
Name In Description
user_name Path User name
roles Json body List of roles

Work Package W Pageb4 of 84



v D7.5 MiCADO Security Modules Reference Implementation

COLA

Example:

curl - X POST http://127.0.0.1:5001/v2.0/user/userl/role \
-H'Content - Type: application/json' \
-d{
"roles": ["developer","admin”]

}I

Response:
Name In Description
code Json body Status code
user message Json body Message to user
developer mgsage | Json body Message to developer

Status codes:
Success:
1 200- OK: Request was successful

Error:
1 400- Bad Request: Some content in the request was invalid or missing a required

parameter
1 500- Server error: Some error happened at server side

Example:

{
"code": 200,

"user message": " The new role(s) is assigned to the specified user!",
"developer message": " The new role(s) is assigned to the specified
user!"

}

3.4.3.4 Password

1. User Verification Mechanism
As user logs in with user name and passlyZorp invokes an API to CredMan to verify the
user. Based on the verification resdlbrp performs access control to the user.

1. User name, passwofd 2. User name, password .
User Zorp 5 " CredMan

3. Verification result

Figure 57 User verification mechanism

The following API edéntabws to verify userds cr

Work Package W Page65 of 84



D7.5 MiCADO Security Modules Reference Implementation

Request
- http://credman_ip:port/v2.0/user/{user_name}
/password
Json data: {"pasgo r d " : User 6s p:
Response

Json format: {"code": HTTP_code, "user message":
returned_message_to_user, "developer message":
returned_message_to_developer }

Figure 58 User verficiation APl request and response formats

Request:
Name In Description
user_name Path User name
password Jsonbody | User 6s password
Example:
curl - X POST http://127.0.0.1:5001 /v2.0/user/userl/password \
-H'Content - Type: application/json' \
-d '{

"password": "1234"
}l

Response:
Name In Description
code Json body Status code
user message Json body Message to user
developer messag| Json body Message to developer

Status codes:
Success:
1 200- OK: Request was successful

Error:
1 400- Bad Request: Some content in the request was invalid or missing a required

parameter
I 500- Server error: Some erroccurredat server side

Work Package W Page66 of 84



D7.5 MiCADO Security Modules Reference Implementation

Example 1:
{
"code": 200,
"user message": "User is authenticated!”,
"developer message": "User is authenticated!"
}
Example 2:
{
"code": 400,
"user message": "User name or password is wrong!",
"developer message": "Password does not match!"
}
2. User Password Change Mechanism
Zorpt akes care of access control of users base
6admindé are all owed to change their passwor c

provide his/her user name, current password and new password. Thessew must satisfy
password policies defined by CredMan.

1. User nam, current 2. User name, curren

password, new passw password, new password N
User Zorp | CredMan
3. Response

Figure 59 User password change mechanism

The foll owing API allows to change a user o6s
Request
- http://credman_ip:port/v2.0/user/{user_name}
/password
Json data: {"current _ pass
"new_password": new password}

Response

Json format: {"code": HTTP_cod&jser message":
returned_message_to_user, "developer message":
returned_message_to_developer }

Figure 60 User password change API request and response formats

Request:

Name In Description

Work Package W Page67 of 84



v D7.5 MiCADO Security Modules Reference Implementation

COLA

user_name Path User name
current_password Json body Userds current passw
new_password Json body New password

Example:

curl - X PUT http://127.0.0.1:5001/v2.0/user/userl/password \
-H'Content - Type: application/json' \
-d '{

"current_password": "1234",
"new_password": "1aBc"

y

Response:
Name In Description
code Json body | Status code
user message Json body | Message to user
developer messageg Json body | Message to developer

Status codes:
Success:
1 200- OK: Request was successful
Error:
1 400- Bad Request: Some content in the request was invalid or missing a required
parameter

1 500- Server error: Some error happened at server side

Example:

{
"code": 200,
"user mess age": "Your password is changed successfully!",
"developer message": "Your password is changed successfully!"

3. User Password Reset Mechanism
The Admin user can reset users6 passwords. N

_ 1. User name
Admin "| CredMan
2. Generated passwor

Figure 61 User password reset mechanism

The following APl allows to reset a userdos p

Work Package W Page68 of 84



v D7.5 MiCADO Security Modules Reference Implementation
COLA

ation

atthe

Request

- http://credman_ip:port/v2.0/user/{user_name}
/password

Response

Jsa format: {"code™: HTTP_code, "New reset password
generated password }

Figure 62 User password reset API request and response formats

Request:
Name In Description
user_name Path User name

Example:

curl - X DELETE http://127.0.0.1:5001/v2.0/user/userl/password

Response:
Name In Description
code Json body Status code
new reset password Json body New password

Status codes:
Success:
1 200- OK: Request was successful
Error:
1 400- Bad Regest: Some content in the request was invalid or missing a required
parameter
9 500- Server error: Some erroccurredat server side

Example:

{
"code": 200,

"New reset password": "naspnMK"

}

3.4.3.5 Summary of overall flow

The final flow of Credential Maager is summarized iRigure63. Assuming that MiCADO
has been launched and admin has been created. At first, the admin creates role(s) (1), user(s)
(2) and grant role(s) to user(s) (3). After that, as long as user logs into NOGAJ) he/ she

Work Package W Page69 of 84



v D7.5 MiCADO Security Modules Reference Implementation
COLA

provides his/her user name and password. Upon recegtign¢contacts to CredMan to verify
the user (5) and retrieve his/ her role (6).
Zorpcontrols the usero6és access to Mi CADO.

1. Create role(s) ( )
. 2. Create user(s) .
Admin - : >
3. Grant role(s) to existing user(s N

CredMan
4. Login 5. Verify user
User 7 >
orp 6. Retriev

Figure 63 Credential Manager Flow Implementation

3.4.3.6 Limitations and extensibility of the Proposed Solution
The current implementation of Credential Manager provides basic functions for central user
management. In fute, we can extend CredMan to support more advanced functions such as:

1 Email notification: Sending emails to notify users on actions such as password reset,
password change, continuous failed log in, etc.;

1 Password policy configuration: At present, passivpolicy is defined by regular
expression in source code of CredMan. Later, CredMan may be implemented to allow
admin to configure password policy;

1 Failed log in restriction: At present, user may try logging in as many time as possible.
In the future, useaccount may be blocked for some time after a fixed number of
continuous log in.

3.5 Master Node Zorp Firewall

3.5.1 Master Node Zorp Firewall Functionality

The "Layer 7" firewall on the master node is an application level firewall. Compared to the
"Layer 4" (packefilter) firewall which filters out illegitimate traffic by its network source and
destination the "Layer 7" firewall protects the components on the Master Node by inspecting
their actual communication on protocol level. It enforces protocol compliancacamas a

user authentication and authorization point for accessing the components on the Master Node.

3.5.2 Master Node Zorp Firewall Design
The "Layer 7" firewall functionality is provided by Zorp. It acts as the network entry point for
all externally availale components on the Master Node:

1 access to the Dashboard (and its-saimponents);

1 access to the TOSCA Submitter's API.

All external network connections are terminated on the firewall and recreated towards the
internal components, effectively proxyingetiprotocol traffic. This allows for a single point
where traffic related security critical implementations can be placedFi§eee 64 for a
network flow overview.

Work Package W Pager0of 84



v D7.5 MiCADO Security Modules Reference Implementation
COLA

———————————————————————————————————————— ~

Master Node!

|
’_—y‘, Prometheus
-
i -F Grafana

Credential el
manager |,/ -

s -

M S —)‘ Kubernetes
/ s

0 Dashboard
vy [/

TOSCA description HTIEIT)S \4 TOSCA Submitter ]

Figure 64 Network flow

Zorpfirewall provides:

1 TLS termination: it acts as a single point for handling TLS configuration and
implementation. It also impleemts Strict Transport Securitg¢omponents internally
are accessed through plain HTTP. This makes it easier to design, implement and
configure the internal components.

1 Protocol enforcement and filtering: The firewall enforces TLS and HTTP protocol
compliance for incoming traffidt also filters HTTP methods to those required by the
components to further reduce any attack surface.

1 User authetication: Zorp provides user authentication by verifying user's credentials
through the Credential Manager component. It provides HTTP Basic Authentication
for the TOSCA Submitter API and applies login form injection into browser traffic.

1 Request routingThe firewall provides URL entry points for the internal components
for the DashboardThe Dashboard depends on these entry points to load the
components' statuses into a unified web view.

1 Request type filtering: Onlyequest types that are valid for théeséed endpoint are
permitted to mitigate exploitation of possible security flaws.

1 URL path filtering: URL paths within the specified endpoints can be denied to ensure
that the configuration of the protected endpoints cannot be altered by MiCADO users.

3.5.3 Master Node Zorp Firewall Implementation

The following figuresdescribethe communicationlédws through the Zorp firewall.
The firewall is responsible for TLS setup, user authentication and routing requests to the
respective componerfigure65 provides an overview of these possible call flows.

Work Package W Pagerlof 84



D7.5 MiCADO Security Modules Reference Implementation

User Zorp CredMan Component
T
|
|
|

TLS setup o |

L

|

|

|

|

TLS setup |

e T i B 1

Auth request

¥

Auth request

L 4

Auth tesponse
o Puthre: ponse |

Auth response

i Authenticated requests i

HTTF request for Component

L

HTTP request for Component

¥

HTTP response fof camponent

HTTP response fof component

————e ][

Figure 65 Firewall communication overview

The first step of any communication flagvsetting up the TLS chann€&igure66 gives a more
detailed view of the standard TLS setup process.

Work Package W Pager2of 84



v D7.5 MiCADO Security Modules Reference Implementation
COLA

User £arp

¥

Servet Hello

Server Ceftificate

Servel Hello Done

Client Key Exchange

o
-
Finished -
Change Cipher Spec
-
" Finishied
|
HTTP dats

¥

L) 1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
g : Change Cipher Spec : g
Key Seneration E] | | Key Generation b]
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

Figure 66 TLS setup process

Any request to the components of the Master Node must be authentidepethding on the
client component two methods are supported: HTTP Basic autagoticand Login form
injection.

Basic authentication is used when accessing the API provided by TOSCA Submitter
component, as described Bigure67.

Work Package W Pager3of 84



D7.5 MiCADO Security Modules Reference Implementation

User Zarp CredMan Component

[ afar T coar i |
1 Aftet TLS setup |
s |

HTTF request
GET {:component
Autharization: Basic

¥

{ with Invalid credentials |

HTTP request
Check credentials

L J

HTTP response
400 /401 {423

HTTP response

| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
| | | |
| | | |
| | | |
| 101 | | |
| | | |
| - | | |
| | | |
| | | |
| | | |
| | | |
: : | with valid credentials | : :
| | | |
| | | |
| | | |
| | | |
| | HTTP request | |
| I Check credentials o | 1
| | bl | |
| | | |
| | | |
| | | |
! ! HTTP response ! !
| | 200 | |
| | - - - - - | |
| | | |
| | | |
| | | |
| | | |
| | HTTP request | o |
| | | bl |
| | | |
| | | |
| | | |
| | | |
| [ booee—______HTTRresponse
| | |

| | |

| | |

| | |

| HTTP response | |

|t I I

| |

| |

| |

| |

Figure 67 HTTP basic authentication

Browser based @s sessions are authenticated bydting an authentication form ke
firewall. Zorp hands out ZorpSession cookies for authenticated sedsmnsnauthenticated
sessions it returns a custom HTML login form to the user and verifies the provided user
credentials through the Credential Manager component as shokigue68.

Work Package W Pager4of 84



D7.5 MiCADO Security Modules Reference Implementation
COLA

Cloud Orchestration
at the Level of Appiication

Useat Zotp CredMan Component

| Py —
After TLS setup
7

GET /:component
Mo auth header -

Check ZotpSession cookie Dy
[not present)

HTTF response

T
|
|
|
|
T
|
|
|
|

HTTP reguest :
|
|
|
|
|
|
|

Authentication form |

HTTP reguest
POST /!
Form data: uset, password

Uset fills form Dy

" -
With Invalid credentials

HTTP request
Check credentials

¥

HTTP response
400 /401 /423

HTTP response
201
PR Authentication farm |

T P r——]
| With Valid credentials |

HTTP request
Check credentials

Y

. e g |

HTTP tesponse

HTTP fesponse

3m

Set-Cookie: ZorpSession
Redirect location: /:component

| Zorp caches session auth Dy

| Ty —— |
All further requests
L T

HTTP reguest
GET {:component
Cookie: ZorpSession

¥

Check Zotpsession cookie Dy

HTTF request

HTTP response

Figure 68 HTTP form authentication

Work Package W Pager5of 84



v D7.5 MiCADO Security Modules Reference Implementation
COLA

Cloud Orchestration
at the Level of Appiication

The dashboard component provides embedded views for the individual dashbosidisdpr
by theother componentg:igure 69 provides an overview of how requests are routed to the
correct components.

User Zotp Cashboard Caomponent

i After TLS setup and authentication :

HTTP request
GET ¢ or GET {dashboard - Rewtite URL L,
L

Select component

HTTP request¥GET ¢

¥

HTTP response |

HTTP Response

"
&

HTML contains calls
fot component dashboatds

[T ————
1 Fotall components |
e |

HTTP request
GET ¢:component Rewtite URL C

Select component

¥

HTTP request

¥

HTTF tesponse

HTTP tesponse

"l
]

—— e e e

Figure 69 Request routing
3.6 Security Policy Manager

3.6.1 Security Policy Manager Functionality

Security Pbcy Manager is the single of point of access for MiCADO security components.
SPM provides an aggregation of Restful API endpoints that serves different MICADO Master
Node componentdt also acts as a workflow director that uses other security enablers to
implement securityelated business processes.

Security Policy Manager has the following endpoints:
1 Credential Store for storing infrastructure secrets.35gfor details.

Work Package W Pager6 of 84



v D7.5 MiCADO Security Modules Reference Implementation

Cloud Orchestration

1 Worker Node Certificates for generating B%bcertficates used for Mastéiorker
Secure Communication. S8¢€/ for details.

1 Worker Node Certificate Revocation List.

1 Worker Node Join Tokens for handling Kubernetes join tokens3 Sder details.

1 Crypto Enginetoexpose@t o Engi neds functionality wit
See3.2for details.

T I mage Verify to expose I mage Verifieros f

See3.1for detals.

3.6.2 Security Policy Manager Design
Security Policy Manager is a Restful web service with the endpoints listed above. It is

accessible via HTTP within the MiCADO master node and is not accessiblenditimr the
public network or the Worker Nodes.

There are two types ofecurity functionality served bysPM. Some of the functions are
implemented by other MICADO security enablers. These functions are exposed via an API
similar tot he enabl erds own API . C tolthle sespéctive Ithkh e s e A
endos API .

The other type of business functionality is implemented directly in Security Policy Manager
SPM might still use external services as a backend.

Functionality implemented in other MiCADO security enablers, exposed by SPM:
1 Crypto Engine
1 Image Verifier

Functionality implemented in SPM:
1 Credential Store
1 Worker Node Certificates
1 Worker NodeCertificate Revocation List
1 Worker Node Join Tokens

3.6.3 Security Policy Manager Implementation

Security Policy Manager is a Python application implementinggakRESTful APIl. SPM

uses HVAC (Python Hashicorp Vault client) to access Vault in the Credential Store
implementation while Requests to access Vault PKI backend in Worker Node Certificates and
Certificate Revocation List endpoints. SPM also uses KuberRgteon APlin the Worker

Node Join Tokens endpointés i mplementation.

3.6.3.1 Security Policy Manager Endpoints

Security Policy Manager listens on TCP port 5003 for HTTP connections. It provides the
following Restful web service endpoints:

Iv1.0/secrets for Credgal Manager

/v1.0/nodecerts for Worker Node Certificates

/v1.0/nodecrl for Worker Node Certificate Revocation List

/v1.0/nodetokens for Worker Node Kubernetes Join Tokens

Iv1.0/cryptoengine for Crypto Engine

Iv1.0/imageverify for Image Verifier

= =4 -8 8 -9 -9

Work Package W Pager7 of 84



v D7.5 MiCADO Security Modules Reference Implementation
COLA

The Secrts endpoint exposes the Credential Store functionality as described in datail in

Nodecerts and nodecrl endpoints are implemented in terms of Hashicorp Vault PKI secrets
backend. A CA certificate is issued by Vault wherC¥DO is set up, that is used for signing
Worker Node certificates. We use these Worker Node certificates to authenticate the nodes
when building IPsec tunnel to Master Node. Worker Node certificates are validated against the
CA and the certificate revocati list by IPsec. This process is described in det&@lin

Nodetokens endpoint lets Occopus get a Kubernetes cluster join token for the new Worker
Node under provisioning. Join tokens are issued by the Kubernetes API|,ai®this API to
get a new join token and return it to Occopus. This process is described in d&fail in

Cryptoengine endpoint exposes Crypto Enginer security enabler. This endpoint forwards calls
to Crypto Engine and retas responses from it to the client application. No additional logic is
i mpl emented in this endpoint. S3&e Crypto Eng

Imageverify endpoint exposes Image Verifier security enabler. This endpoiards calls to
Image Verifier and returns responses from it to the client application. No additional logic is
i mpl emented in this endpoint. S3le | mage Ver.

3.7 Master-Worker Secure Communication

3.7.1 Master-Worker Secure Communication Functionality

In MICADO management traffic is flowing between the Master and the Worker Nodes. Since
this communication takes place over an untrusted network the communication channel must be
secured. The secured cimel mustprovide confidentiality (including endpoint identification)

and integrity for the transferred data.

This is ensured by encrypting all Master Néd@&/orker Node communication by:
1 providing a secure network channel between the Master and the Wiodes;
1 providing worker node identification for the Kubernetes cluster;
1 providing identification for the secure network channel where management traffic
flows.

3.7.2 Master-Worker Secure Communication Design

MasterWorker Secure Communication requirementshlmasatisfied by building an encrypted
communication channel between the Master Node and Worker Node with endpoint
authentication

In case of Kubernetes management traffic, additional authentication is enabled on the
Kubernetes API by issuing a new joirkém with a short expiration for every provisioned
Worker node.

For all MICADO components requiring Mast®vorker Secure Communication, an IPsec
tunnel is set up between the Master Node and each Worker Node. IPsec provides the encrypted,
secure communican channel thus guarantees management traffic confidentiality and
integrity. Endpoint authentication is achievedusing X.509 certificates on both the Master

and Worker Nodes.

Work Package W Pager8of 84



Y 4

Cloud Orchestration
at the Level of Appiication

D7.5 MiCADO Security Modules Reference Implementation

In MICADO, Security Policy Manager is responsible fpenerating and revokinglient
certificates as well as distributing Kubernetes join tokens.

3.7.3 Master-Worker Secure Communication Implementation

3.7.3.1 Setting up a new Worker Node

Setting the secure communication channel takes place when a new Worker Node is
provisioned. Provisioning theew node is orchestrated by Occopus, while Occopus gets the
required security tokens from Security Policy Manager.

Newly deployed Worker Nodes must be provisioned with identity tokens that can be verified
by Master Node components. A Worker Node neeHlsilzernetes join token so that kubelet
component can join the Kubernetes cluster. A Worker also needs an X.509 certificate used by
Ipsec to authenticate the node with Master.

Occopus receives these credentials from Security Policy Manager, that is relspfosi
lifecycle management of these tokens. SPM handles X.509 certificates with its Hashicorp Vault
backend using the PKI secret engine. Kubernetes join tokens are only distributed by SPM while
generated by the Kubernetes API.

Occopus incorporates thecurity tokens into the Cloud Init used for deploying the Worker
Node. After the Worker Node is deployed, it joins the Kubernetes cluster with the join token
and sets up an IPsec tunnel to the master node with the certificate. IPsec on the Master Node
vaidat es Wor kerds certificate with SPM.

Worker Node provisioning workflow in terms of secure communication is showkigome
70.

Master Node|

(1) Get certificate, Occopus
jdin token P

Y

o
(6) Check [certificate

validity

|
i
|
|
|
i
|
|
i
| ! i
| 1 |
| i |
1
IPSec ‘ | (4) Set up tunnel I IPSec l
(2) Qenerate enpoint | i with certificate : enpoint :
| l |
| ! '
| ! I
T |
| [ |
1
: |
I
I
I

(3) Cloud init

_______ L

Worker Node

join token
(5) Join kubernetes clusterI
with join token = @~ J

(through tunnel)

Figure 70 Master-Worker Secure Communication setup

3.7.3.2 Decommissioning a worker node

When decommissioning a worker node Occoposifies SPM of this eventSPM then
invalidates the IPsec certificate and&Kubernetes cluster membershignth IPsec endpoint and
Kubernetes API is madmwvare of this invalidation.

Work Package W Pager9of 84



v D7.5 MiCADO Security Modules Reference Implementation

Cloud Orchestration

4 Art efact Traceability

In this section we revisit the traceability chain of the MICADO security modulésm
security requirements to architecture objectives and to open specifications of security enablers.

4.1 Image Integrity Verifier

Security requirements traceability

The IIV addesses the following requirements outlinedin.l COLA security requirements:
CNSR2, CNSR6

Architecture objectives traceability

The 1V addresses the following security architecture objectives outlin®¥ .id MiCADO
security architecture specificatio®4.1, O4.4, 06.2

Open Specificationstraceability

The MICADO Image Integrity Verifier Security Modulmrresponds to Open Specification
4.1 in D7.3 Design of application level security classifications formats in principles.

4.2 CryptoEngine

Security requirements traceability

The Crypto Engine directly addresses the following requirements outlinBd.ih COLA
security requirements: SR1SR13, CNSR, CNSR9, CSSR1. Furthermore, the Crypto
Engine supports a set of additional requirements outlinBd ih CQ_A security requirements:
SRO01, SR02, SR11, CNSR

Architecture objectives traceability

The Crypto Engine directly addresses the following security architecture objectives outlined in
D7.2 MICADO security architecture specification: 03.1, OFArthermaee, the Crypto
Engine supports a set of additional security objectives outlind2i7i@ MiCADO security
architecture specification: 01.1, 03.3, 02.2, 05.1, 04.1.

Open Specificationgraceability

The MICADO Crypto Engine Security Module corresponds to Ceerification 4.2 in D7.3
Design of application level security classifications formats in principles.

4.3 Credential Manager

Security requirements traceability

The CM addresses the following requirements outlindd7ri COLA security requirements:
CNSR1, CNR-3.

Architecture objectives traceability

The CM addresses the following security architecture objective outlin®¥.a MiCADO
security architecture specification: 04.2, O5.1

Work Package W Page80of 84



v D7.5 MiCADO Security Modules Reference Implementation

Cloud Orchestration

Open Specificationgraceability

The MICADO Image Integrity Verifier Securitylodule corresponds to Open Specification
4.4 in D7.3 Design of application level security classifications formats in principles.

4.4 Credential Store

Security requirements traceability

The CM addresses an extension for the requirements outlin€7.in COLA seurity
requirements.

Architecture objectives traceability

The CM addresses the following security architecture objective outlin®d.ia MiCADO
security architecture specification: 05.1

Open Specificationgraceability

The MICADO Image Integrity VerifieSecurity Module corresponds to Open Specification
4.5 in D7.3 Design of application level security classifications formats in principles.

4.5 Zorp Firewall

Security requirements traceability

Zorp Firewall addresses the following requirements outlinedDihl COLA security
requirements: SR05, SR06, SR10, CNERCNSR2, CNSR3, CNSR4, CNSR5, CNSR6,
CNSR7, CNSR8, CNSR9, CNSR10

Architecture objectives traceability

The Zorp Firewalladdresses the following security architecture objective outlinddl7i2
MiCADO security architecture specification: O1.1, 04.2, 04.3, 04.4, 06.1, 06.2

Open Specificationgraceability

The MICADO Image Integrity Verifier Security Module corresponds to Open Specification
4.6 in D7.3 Design of application level security classifaas formats in principles.

4.6 Security Policy Manager

Security requirements traceability

The Security Policy Manageddresses the following requirements outlined in DTOLE
security requirementsSR05, SR06, SR10, CNSR CNSR2, CNSR3, CNSR4, CNSR5,
CNSR6, CNSR7, CNSR8, CNSR9, CNSR10

Architecture objectives traceability

The SPMaddresses the following security architecture objective outlined in D7.2 MiCADO
security architecture specificatiofl.1, 04.2, 04.3, 04.4, 06.1, 06.2

Open Specificationgraceability

The MiCADO Security Policy Manager Enabler corresponds to Open Specific&iorD¥.3
Design of application level security classifications formats in principles.

Work Package W PageB1of 84



v D7.5 MiCADO Security Modules Reference Implementation

Cloud Orchestration

4.7 Master-Worker Secure Communication

Security requirements traceability

TheMager-Worker Secure Communication mechanidaresses the following requirements
outlined in D7.1 COLA security requirements: SR05, SR06, SR10, ENERISR2, CNSR
3, CNSR4, CNSR5, CNSR6, CNSR7, CNSR8, CNSR9, CNSR10

Architecture objectives traceability

The MasterWorker Secure Communication implementataatdresses the following security
architecture objective outlined in D7.2 MICADO security architecture specification: O1.1,
04.2,04.3,04.4, 06.1, 06.2

Open Specificationgraceability

The MICADO MasterWorker Secure Communicatiofenabler corresponds to Open
Specification 4.7 in D7.3 Design of application level security classifications formats in
principles.

Work Package W PageB2 of 84



Y 4

Clou stration
at the Level of Appiication

D7.5 MiCADO Security Modules Reference Implementation

5 Summary and Conclusions

This document contains the implementation documentation of theityeenablers delivered
within the COLA project. The enablers provide functionality addressing various aspects of
cloud security, such as: integrity verification of container images; generation of cryptographic
material for authentication and authorizatiowtwork security (Transport Layer Security
Enforcement and Termination, Firewalling, etc.), management and storage of cryptographic
material and credential§ he enabler descriptions collected in this docuthaocompany
several earlier artacts deliveredn project COLA, namely the security enablers reference
implementationthe security enablers earlier specification as well as the MiCADO security
architecture specification. Togethertlwthe earlier arfacts, the MCADO Security Modules
Reference Impimentation allows for a complete and fundamental understanding of the
MiICADO security components. This creates the preconditions for the successful subsequent
development of security functionality in MiCADO.

The document contains thescriptionof the folowing security enabler implementations:

1. Image integrity Verifieri provides integrity security guarantees to the MiIiCADO
infrastructure, primarily through integrity verification of application images prior to
deployment. This functionality allows to detecorrupted images prior to their
instantiation in the cloud.

2. Cryptographic Enginé provides a set of cryptographic material and algorithms to
enforce the security of the communication between the components of the MiCADO
system.The module implements tle®mmon cryptographic algorithms widely used in
cloud deployments.

3. Credential Storé stores and protects security sensitive data required for operating the
the MICADO infrastructure. The credential store protects infrastructure secrets by
encrypting thenand restricting access to them.

4. Credential Managér stores andnanages the MiCADO user identities. It provides user
verification used by the components performing authentication and access control.

5. Master Node Zorp Firewall application level protocol pxy firewall, provides TLS
and authentication for MIiCADO Dashboard and TOSCA Submitter.

6. Security Policy Manageira set of restf ul web APl OGs pr
security enablers for TOSCA Submitter and Occopus Cloud Orchestrator.

7. MasterWorker Secre Communicationi a secure communication channel for
management communication between the Master Node and Worker Nodes.

Thedescriptions of the MICADO security module reference implementation reflect the design
and implementation decisions, traolés, limitations and exposed application programming
interfaces of the security enablers. The reference implementations of the security enablers
follow the open specifications outlined in the earlier Deliverable D7.4 Security policy formats
specification. Howeue the current implementation description fills in the remaining potential
knowledge gaps regarding implementation details of the security enablers.

Work Package W Page83of 84



D7.5 MiCADO Security Modules Reference Implementation

6 References

[1] Cloud Orchestration at the Level of Application (COLA), Project 731574; D7.2
MiCADO security achitecture specification, October 2017

[2] McKeen, Frank, et al. "Intel® software guard extensions (intel® sgx) support for
dynamic memory management inside an enclave." Proceedings of the Hardware and
Architectural Support for Security and Privacy 2016. AGA16.

[3] Rivest, Ronald L., Adi Shamir, and Leonard Adleman. "A method for obtaining digital
signatures and pubkkey cryptosystems.” Communications of the ACM 21.2 (1978):
120-126.

[4] Johnson, Don, Alfred Menezes, and Scott Vanstone. "The elliptic curveldigita
signature algorithm (ECDSA)." International journal of information security 1.1
(2001): 3663.

[5] Python Cryptography Toolkit (pycrypto) https://pypi.org/project/pycrypto/

[6] UUID objects according to RFC 4122 https://docs.python.org/3/library/uuid.html

[7] Hashiorp Vault, https://www.vaultproject.io

[8] Hashicorp Vault API client for Pythonhjtps://github.com/hvac/hvac

[9] Hashicorp Configuration Languadeips://github.com/hdmscorp/hcl

[10] FlaskUser, https://flaskuser.readthedocs.io/en/latest/

[11] FlaskSQLAIchemy,http://flasksglalchemy.pocoo.org/2.3/

[12] Hashicorp Vault Key Rotation,
https://www.vaultproject.io/docs/internals/rotation.html

[13] Token Policyhttps://www.vaultproject.io/docs/concepts/policies.html#default

palicy
[14] D6.2 - Prototype and documentation of the monitoring service
[15] D5.4- First Set of Templates and Services of Use Cases

Work Package W Paged4 of 84


https://github.com/hvac/hvac
https://github.com/hashicorp/hcl
http://flask-sqlalchemy.pocoo.org/2.3/
https://www.vaultproject.io/docs/internals/rotation.html
https://www.vaultproject.io/docs/concepts/policies.html#default-policy
https://www.vaultproject.io/docs/concepts/policies.html#default-policy

